Supplementary Materials for "RaFM: Rank-Aware Factorization Machines"

1. Proof of Theorem 6

Proof. Recall the estimated gradient:

$$
\widehat{\operatorname{grad}}=\frac{\partial L\left(\mathcal{B}_{1, m}, y\right)}{\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}+\frac{1}{N} \sum_{\boldsymbol{x}^{\prime}} \frac{\partial L\left(\mathcal{B}_{1, m}^{\prime}, y\right)}{\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}} \boldsymbol{G}^{-1} \frac{\partial^{2} L\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)}{\left.\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}} \partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}
$$

According to the chain rule and the fact that $\mathcal{B}_{1, p-1}$ does not contain $\left.\boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}$, we have

$$
\begin{align*}
& \frac{\partial^{2} L\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)}{\left.\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}} \partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}} \\
& =L_{12}\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)\left(\frac{\partial \mathcal{B}_{1, p-1}}{\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}}\right)^{\top} \frac{\partial \mathcal{B}_{1, p}}{\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}} \tag{S1}\\
& \quad+L_{22}\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)\left(\frac{\partial \mathcal{B}_{1, p}}{\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}}\right)^{\top} \frac{\partial \mathcal{B}_{1, p}}{\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}} \\
& \quad+L_{2}\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right) \frac{\partial^{2} \mathcal{B}_{1, p}}{\left.\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}} \partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}
\end{align*}
$$

where L_{2} means the partial derivative of L with regard to its first value, while L_{12} and L_{22} are the second-order partial derivatives of L. Note that the last line of (S1) equals 0 because that each pairwise interaction in the RaFM will not contain vectors from different FMs. Therefore,

$$
\frac{\partial^{2} L\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)}{\left.\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}} \partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}=\boldsymbol{H} \frac{\partial \mathcal{B}_{1, p}}{\left.\boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}
$$

where \boldsymbol{H} is a $\left(\left|\mathcal{F}_{p}\right| D_{p-1}\right) \times 1$ matrix:

$$
\boldsymbol{H}=L_{12}\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)\left(\frac{\partial \mathcal{B}_{1, p-1}}{\left.\boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}}\right)^{\top}+L_{22}\left(\mathcal{B}_{1, p-1}, \mathcal{B}_{1, p}\right)\left(\frac{\partial \mathcal{B}_{1, p}}{\left.\boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}}\right)^{\top}
$$

Then we have

$$
\begin{aligned}
\widehat{g r a d}= & L_{1}\left(\mathcal{B}_{1, m}, y\right) \frac{\partial \mathcal{B}_{1, m}}{\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}} \\
& +\frac{1}{N} \sum_{x^{\prime}} L_{1}\left(\mathcal{B}_{1, m}^{\prime}, y\right) \frac{\partial \mathcal{B}_{1, m}^{\prime}}{\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}} \boldsymbol{G}^{-1} \boldsymbol{H} \frac{\partial \mathcal{B}_{1, p}}{\left.\boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}} \\
= & L_{1}\left(\mathcal{B}_{1, m}, y\right) \frac{\partial \mathcal{B}_{1, m}}{\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}+\lambda \frac{\partial \mathcal{B}_{1, p}}{\left.\boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}}
\end{aligned}
$$

where

$$
\lambda=\frac{1}{N} \sum_{\boldsymbol{x}^{\prime}} L_{1}\left(\mathcal{B}_{1, m}^{\prime}, y\right) \frac{\partial \mathcal{B}_{1, m}^{\prime}}{\left.\partial \boldsymbol{v}^{(p-1)}\right|_{\mathcal{F}_{p}}} \boldsymbol{G}^{-1} \boldsymbol{H}
$$

Note that λ is the multiplication of a $1 \times\left|\mathcal{F}_{p}\right| D_{p-1}$ matrix, a $\left|\mathcal{F}_{p}\right| D_{p-1} \times\left|\mathcal{F}_{p}\right| D_{p-1}$ matrix, and a $\left|\mathcal{F}_{p}\right| D_{p-1} \times 1$ matrix, and thus is a scalar. Moreover, the derivative of $\mathcal{B}_{1, m}$ and $\mathcal{B}_{1, p}$ with respect to $\left.\boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}$ is the same. Therefore, the direction of $\widehat{\text { grad }}$ is parallel to that of $L_{1}\left(\mathcal{B}_{1, m}, y\right)\left(\partial \mathcal{B}_{1, m} /\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}\right)$, i.e. $\partial L\left(\mathcal{B}_{1, m}, y\right) /\left.\partial \boldsymbol{v}^{(p)}\right|_{\mathcal{F}_{p}-\mathcal{F}_{p+1}}$.

2. Performance Bound of the Learning Algorithm

Theorem S1. Assume there exist two nonnegative functions $d(\cdot)$ and $\Delta(\cdot, \cdot)$ such that d is monotonically increasing, and for all $f_{1}(\cdot), f_{2}(\cdot)$ we have

$$
\begin{align*}
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(f_{1}(\boldsymbol{x}), y\right)\right) & \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(f_{2}(\boldsymbol{x}), y\right)\right) \tag{S2}\\
& +d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x})\right)\right)
\end{align*}
$$

then regarding the training error of the k-th $F M$ model, i.e. $\mathcal{B}_{k, k}$, we have

$$
\begin{align*}
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{k, k}^{*}, y\right)\right) & \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, m}^{*}, y\right)\right) \\
& +\sum_{p=k}^{m-1} d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(\mathcal{B}_{1, p}^{*}, \mathcal{B}_{1, p+1}^{*}\right)\right) \tag{S3}
\end{align*}
$$

where $\mathcal{B}_{1, m}^{*}$ is the optimal $\mathcal{B}_{1, m}$, and $\mathcal{B}_{1, p}^{*}$ is defined in the same way.
Remark: In practice, Δ represents the error of expressing f_{2} by f_{1}. Eq. (S2) is an extension to the triangle inequality, and can be applied to both regression tasks and classification tasks. In regression tasks, L is the square loss, then we can set d as the square root function and $\Delta=L$. In classification tasks, L is the logarithm loss, then we can let d be an identity function, and define Δ as

$$
\begin{equation*}
\Delta\left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x})\right)=C_{\theta, \delta} \mathcal{D}_{K L}\left[f_{1}(\boldsymbol{x}) \| f_{2}(\boldsymbol{x})\right]+\log \delta \tag{S4}
\end{equation*}
$$

where $\delta>1, C_{\theta, \delta}=\frac{\log \delta}{\theta \log \delta+(1-\theta) \log \frac{1-\theta}{1-\theta / \delta}}$, and $\theta=\min _{\boldsymbol{x}}\left[y f_{2}(\boldsymbol{x})+(1-y)\left(1-f_{2}(\boldsymbol{x})\right)\right] . \mathcal{D}_{K L}$ is the KL divergence of two bimonial variables. The readers can refer to Section 3 in the supplementary material for the proof of Eq. (S2) for logarithm loss.
In order to prove Theorem S1, we first provide the following lemma:
Lemma S2. The following inequalities hold

$$
\begin{equation*}
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} l\left(\mathcal{B}_{l, k}^{*}, y\right)\right) \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{l-1, k}^{*}, y\right)\right) \tag{S5}
\end{equation*}
$$

Proof. Note that we have $\mathcal{B}_{l, k}=\mathcal{B}_{l-1, k}$ provided that

$$
\boldsymbol{v}_{i}^{(l)}=\left[\begin{array}{c}
\mathbf{0}_{D_{l}-D_{l-1}} \\
\boldsymbol{v}_{i}^{(l-1)}
\end{array}\right], \forall i \in \mathcal{F}_{l}
$$

And such solution also satisfies the constraint (12) in the main body of the paper. Therefore $\mathcal{B}_{l-1, k}$ is a submodel of $\mathcal{B}_{l, k}$, and thus the optimal training error of $\mathcal{B}_{l, k}$ is smaller than $\mathcal{B}_{l-1, k}$, and (S5) follows.

Proof of Theorem S1. According to (S5) we have

$$
\begin{aligned}
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{k, k}^{*}, y\right)\right) & \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{k-1, k}^{*}, y\right)\right) \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{k-2, k}^{*}, y\right)\right) \\
& \ldots \\
& \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, k}^{*}, y\right)\right)
\end{aligned}
$$

Moreover, according to (S2) we have

$$
\begin{aligned}
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, k}^{*}, y\right)\right) & \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, k+1}^{*}, y\right)\right)+d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(\mathcal{B}_{1, k}^{*}, \mathcal{B}_{1, k+1}^{*}\right)\right) \\
& \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, k+2}^{*}, y\right)\right)+\sum_{p=k}^{k+1} d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(\mathcal{B}_{1, p}^{*}, \mathcal{B}_{1, p+1}^{*}\right)\right) \\
& \ldots \\
& \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, m}^{*}, y\right)\right)+\sum_{p=k}^{m-1} d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(\mathcal{B}_{1, p}^{*}, \mathcal{B}_{1, p+1}^{*}\right)\right)
\end{aligned}
$$

Therefore we have

$$
d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{k, k}^{*}, y\right)\right) \leq d\left(\frac{1}{N} \sum_{\boldsymbol{x}} L\left(\mathcal{B}_{1, m}^{*}, y\right)\right)+\sum_{p=k}^{m-1} d\left(\frac{1}{N} \sum_{\boldsymbol{x}} \Delta\left(\mathcal{B}_{1, p}^{*}, \mathcal{B}_{1, p+1}^{*}\right)\right)
$$

3. Quasi-Triangle Inequality for Logarithmic Loss

The following proposition is an extension of the triangle inequality for log loss.
Proposition S3. Suppose $y \in\{0,1\}, 0<\hat{y}_{1}, \hat{y}_{2}<1$, and define the log loss function $L\left(\hat{y}_{i}, y\right)$ and the KL divergence $\mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)$ as

$$
\begin{aligned}
L\left(\hat{y}_{i}, y\right) & =-y \log \hat{y}_{i}-(1-y) \log \left(1-\hat{y}_{i}\right) \\
\mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right) & =\hat{y}_{1} \log \frac{\hat{y}_{1}}{\hat{y}_{2}}+\left(1-\hat{y}_{1}\right) \log \frac{1-\hat{y}_{1}}{1-\hat{y}_{2}}
\end{aligned}
$$

then $\forall \delta>1,0<\theta \leq y \hat{y}_{1}+(1-y)\left(1-\hat{y}_{1}\right)$, we have

$$
\begin{equation*}
L\left(\hat{y}_{2}, y\right) \leq L\left(\hat{y}_{1}, y\right)+C_{\theta, \delta} \mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)+\log \delta \tag{S6}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\theta, \delta}=\frac{\log \delta}{\theta \log \delta+(1-\theta) \log \frac{1-\theta}{1-\theta / \delta}} \tag{S7}
\end{equation*}
$$

Before proving Proposition S3, we first provide some lemmas.
Lemma S4. $\forall \theta>0, \delta>1$, we have $C_{\theta, \delta}>0$, and $C_{\theta, \delta}$ monotonically decreases when θ increases.
Proof. Consider $g(\theta)=1 / C_{\theta, \delta}=\theta+\left[(1-\theta) \log \frac{1-\theta}{1-\theta / \delta} / \log \delta\right]$, then we have

$$
\begin{aligned}
g^{\prime}(\theta) \log \delta & =\log \delta-\log \frac{1-\theta}{1-\theta / \delta}-1+\frac{1}{\delta} \frac{1-\theta}{1-\theta / \delta} \\
& =-\log \left(\frac{1}{\delta} \frac{1-\theta}{1-\theta / \delta}\right)+\left(\frac{1}{\delta} \frac{1-\theta}{1-\theta / \delta}-1\right)>0
\end{aligned}
$$

here we use the fact that $\log x<(x-1)$ unless $x=1$. Due to that $\log \delta>0$, we have $g^{\prime}(\theta) \geq 0$, thus $g(\theta)$ is an increasing function. Moreover we have

$$
g(\theta)>g(0)=0
$$

Therefore, $C_{\theta, \delta}=1 / g(\theta)$ is a decreasing function with respect to θ, and $C_{\theta, \delta}>0$.

Lemma S5. For $0<\hat{y}_{1}, \hat{y}_{2}<1$, we have

$$
\begin{equation*}
\log \frac{\hat{y}_{1}}{\hat{y}_{2}} \leq C_{\hat{y}_{1}, \delta} \mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)+\log \delta \tag{S8}
\end{equation*}
$$

Proof. When $\hat{y}_{1}<\delta \hat{y}_{2}$, we have $\log \left(\hat{y}_{1} / \hat{y}_{2}\right) \leq \log \delta$, thus (S8) holds due to the nonnegativity of the KL divergence. Now we discuss the case when $\hat{y}_{1} \geq \delta \hat{y}_{2}$. Consider the ratio between $\mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)$ and $\log \left(\hat{y}_{1} / \hat{y}_{2}\right)$:

$$
\frac{\mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)}{\log \left(\hat{y}_{1} / \hat{y}_{2}\right)}=\hat{y}_{1}+\left(1-\hat{y}_{1}\right) \frac{\log \left(1-\hat{y}_{1}\right)-\log \left(1-\hat{y}_{2}\right)}{\log \hat{y}_{1}-\log \hat{y}_{2}}=\hat{y}_{1}+\left(1-\hat{y}_{2}\right) h\left(\hat{y}_{1}, \hat{y}_{2}\right)
$$

where $h\left(\hat{y}_{1}, \hat{y}_{2}\right)=\log \frac{1-\hat{y}_{1}}{1-\hat{y}_{2}} / \log \frac{\hat{y}_{1}}{\hat{y}_{2}}$. It is easy to show that

$$
\frac{\partial h}{\partial \hat{y}_{2}}=-\frac{\mathcal{D}_{K L}\left(\hat{y}_{2} \| \hat{y}_{1}\right)}{\left(\log \hat{y}_{1}-\log \hat{y}_{2}\right)^{2} \hat{y}_{2}\left(1-\hat{y}_{2}\right)} \leq 0
$$

Therefore according to $\hat{y}_{1} \geq \delta \hat{y}_{2}$, we have $h\left(\hat{y}_{1}, \hat{y}_{2}\right) \geq h\left(\hat{y}_{1}, \hat{y}_{1} / \delta\right)$, and

$$
\frac{\mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)}{\log \left(\hat{y}_{1} / \hat{y}_{2}\right)} \geq \hat{y}_{1}+\left(1-\hat{y}_{1}\right) \frac{\log \left(1-\hat{y}_{1}\right)-\log \left(1-\hat{y}_{1} / \delta\right)}{\log \hat{y}_{1}-\log \left(\hat{y}_{1} / \delta\right)}=\frac{1}{C_{\hat{y}_{1}, \delta}}
$$

Therefore (S8) also holds when $\hat{y}_{1} \geq \delta \hat{y}_{2}$.
Proof of Proposition S3. We first prove the case when $y=1$. In this case, we have $\theta \leq \hat{y}_{1}$, and

$$
\begin{aligned}
L\left(\hat{y}_{2}, y\right)-L\left(\hat{y}_{1}, y\right) & =\log \frac{\hat{y}_{1}}{\hat{y}_{2}} \\
& \leq C_{\hat{y}_{1}, \delta} \mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)+\log \delta \\
& \leq C_{\theta, \delta} \mathcal{D}_{K L}\left(\hat{y}_{1} \| \hat{y}_{2}\right)+\log \delta
\end{aligned}
$$

where the first and second inequalities are according to Lemmas S5 and S4. For $y=0$, we can let $y^{\prime}=1-y, \hat{y}_{1}^{\prime}=1-\hat{y}_{1}$, and $\hat{y}_{2}^{\prime}=1-\hat{y}_{2}$, and use the same discussion for $y^{\prime}, \hat{y}_{1}^{\prime}$ and \hat{y}_{2}^{\prime}.

