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1. Proof of Theorem 6
Proof. Recall the estimated gradient:
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where L2 means the partial derivative of L with regard to its first value, while L12 and L22 are the second-order partial
derivatives of L. Note that the last line of (S1) equals 0 because that each pairwise interaction in the RaFM will not contain
vectors from different FMs. Therefore,
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where H is a (|Fp|Dp−1)× 1 matrix:
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Note that λ is the multiplication of a 1× |Fp|Dp−1 matrix, a |Fp|Dp−1 × |Fp|Dp−1 matrix, and a |Fp|Dp−1 × 1 matrix,
and thus is a scalar. Moreover, the derivative of B1,m and B1,p with respect to v(p)
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2. Performance Bound of the Learning Algorithm
Theorem S1. Assume there exist two nonnegative functions d(·) and ∆(·, ·) such that d is monotonically increasing, and
for all f1(·), f2(·) we have
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then regarding the training error of the k-th FM model, i.e. Bk,k, we have
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where B∗1,m is the optimal B1,m, and B∗1,p is defined in the same way.

Remark: In practice, ∆ represents the error of expressing f2 by f1. Eq. (S2) is an extension to the triangle inequality, and
can be applied to both regression tasks and classification tasks. In regression tasks, L is the square loss, then we can set d as
the square root function and ∆ = L. In classification tasks, L is the logarithm loss, then we can let d be an identity function,
and define ∆ as

∆(f1(x), f2(x)) = Cθ,δDKL [f1(x)‖f2(x)] + log δ (S4)

where δ > 1, Cθ,δ = log δ

θ log δ+(1−θ) log 1−θ
1−θ/δ

, and θ = minx [yf2(x) + (1− y)(1− f2(x))]. DKL is the KL divergence

of two bimonial variables. The readers can refer to Section 3 in the supplementary material for the proof of Eq. (S2) for
logarithm loss.

In order to prove Theorem S1, we first provide the following lemma:

Lemma S2. The following inequalities hold

d

(
1

N

∑
x

l(B∗l,k, y)

)
≤ d

(
1

N

∑
x

L(B∗l−1,k, y)

)
(S5)

Proof. Note that we have Bl,k = Bl−1,k provided that
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And such solution also satisfies the constraint (12) in the main body of the paper. Therefore Bl−1,k is a submodel of Bl,k,
and thus the optimal training error of Bl,k is smaller than Bl−1,k, and (S5) follows.

Proof of Theorem S1. According to (S5) we have
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Moreover, according to (S2) we have
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Therefore we have
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3. Quasi-Triangle Inequality for Logarithmic Loss
The following proposition is an extension of the triangle inequality for log loss.

Proposition S3. Suppose y ∈ {0, 1}, 0 < ŷ1, ŷ2 < 1, and define the log loss function L(ŷi, y) and the KL divergence
DKL(ŷ1‖ŷ2) as

L(ŷi, y) = −y log ŷi − (1− y) log(1− ŷi)
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then ∀δ > 1, 0 < θ ≤ yŷ1 + (1− y)(1− ŷ1), we have
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Before proving Proposition S3, we first provide some lemmas.

Lemma S4. ∀θ > 0, δ > 1, we have Cθ,δ > 0, and Cθ,δ monotonically decreases when θ increases.
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here we use the fact that log x < (x− 1) unless x = 1. Due to that log δ > 0, we have g′(θ) ≥ 0, thus g(θ) is an increasing
function. Moreover we have

g(θ) > g(0) = 0

Therefore, Cθ,δ = 1/g(θ) is a decreasing function with respect to θ, and Cθ,δ > 0.



Lemma S5. For 0 < ŷ1, ŷ2 < 1, we have

log
ŷ1
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≤ Cŷ1,δDKL(ŷ1‖ŷ2) + log δ (S8)

Proof. When ŷ1 < δŷ2, we have log(ŷ1/ŷ2) ≤ log δ, thus (S8) holds due to the nonnegativity of the KL divergence. Now
we discuss the case when ŷ1 ≥ δŷ2. Consider the ratio between DKL(ŷ1‖ŷ2) and log(ŷ1/ŷ2):
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= ŷ1 + (1− ŷ1)
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Therefore (S8) also holds when ŷ1 ≥ δŷ2.

Proof of Proposition S3. We first prove the case when y = 1. In this case, we have θ ≤ ŷ1, and

L(ŷ2, y)− L(ŷ1, y) = log
ŷ1
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≤ Cŷ1,δDKL(ŷ1‖ŷ2) + log δ

≤ Cθ,δDKL(ŷ1‖ŷ2) + log δ

where the first and second inequalities are according to Lemmas S5 and S4. For y = 0, we can let y′ = 1− y, ŷ′1 = 1− ŷ1,
and ŷ′2 = 1− ŷ2, and use the same discussion for y′, ŷ′1 and ŷ′2.


