
Predictor-Corrector Policy Optimization

A. Relationship between PICCOLO and Existing Algorithms
We discuss how the framework of PICCOLO unifies existing online learning algorithms and provides their natural adaptive
generalization. To make the presentation clear, we summarize the effective update rule of PICCOLO when the base algorithm
is mirror descent

πn = arg min
π∈Π

〈wnĝn, π〉+BRn−1
(π||π̂n)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+BRn(π||πn)
(9)

and that when the base algorithm is FTRL,

πn = arg min
π∈Π

〈wnĝn, π〉+

n−1∑
m=1

〈wmgm, π〉+Brm(π||πm)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+Brn(π||πn) + 〈wnĝn, π〉+

n−1∑
m=1

〈wmgm, π〉+Brm(π||πm)

(10)

Because en = gn − ĝn, PICCOLO with FTRL exactly matches the update rule (MOBIL) proposed by Cheng et al. (2018)

πn = arg min
π∈Π

〈wnĝn, π〉+

n−1∑
m=1

〈wmgm, π〉+Brm(π||πm)

π̂n+1 = arg min
π∈Π

n∑
m=1

〈wmgm, π〉+Brm(π||πm)

(11)

As comparisons, we consider existing two-step update rules, which in our notation can be written as follows:

• Extragradient descent (Korpelevich, 1976), mirror-prox (Nemirovski, 2004; Juditsky et al., 2011) or optimistic mirror
descent (Chiang et al., 2012; Rakhlin & Sridharan, 2013a)

πn = arg min
π∈Π

〈ĝn, π〉+BR(π||π̂n)

π̂n+1 = arg min
π∈Π

〈gn, π〉+BR(π||π̂n)
(12)

• FTRL-with-Prediction/optimistic FTRL (Rakhlin & Sridharan, 2013a)

πn = arg min
π∈Π

R(π) + 〈ĝn, π〉+

n−1∑
m=1

〈wmgm, π〉 (13)

Let us first review the previous update rules. Originally extragradient descent (Korpelevich, 1976) and mirror prox (Ne-
mirovski, 2004; Juditsky et al., 2011) were proposed to solve VIs (the latter is an extension to consider general Bregman
divergences). As pointed out by Cheng et al. (2019), when applied to an online learning problem, these algorithms effectively
assign ĝn to be the online gradient as if the learner plays a decision at π̂n. On the other hand, in the online learning literature,
optimistic mirror descent (Chiang et al., 2012) was proposed to use ĝn = gn−1. Later (Rakhlin & Sridharan, 2013a)
generalized it to use some arbitrary sequence ĝn, and provided a FTRL version update rule in (13). However, it is unclear in
(Rakhlin & Sridharan, 2013a) where the prediction ĝn comes from in general, though they provide an example in the form
of learning from experts.

Recently Cheng et al. (2018) generalized the FTRL version of these ideas to design MOBIL, which introduces extra features
1) use of weights 2) non-stationary Bregman divergences (i.e. step size) and 3) the concept of predictive models (Φn ≈ ∇ln).
The former two features are important to speed up the convergence rate of IL. With predictive models, they propose a
conceptual idea (inspired by Be-the-Leader) which solves for πn by the VI of finding πn such that〈

wnΦn(πn) +

n∑
m=1

wmgm, π
′ − πn

〉
≥ 0 ∀π′ ∈ Π (14)

Predictor-Corrector Policy Optimization

and a more practical version (11) which sets ĝn = Φn(πn). Under proper assumptions, they prove that the practical version
achieves the same rate of non-asymptotic convergence as the conceptual one, up to constant factors.

PICCOLO unifies and generalizes the above update rules. We first notice that when the weight is constant, the set Π is
unconstrained, and the Bregman divergence is constant, PICCOLO with mirror descent in (9) is the same as (12), i.e.,

π̂n+1 = arg min
π∈Π

〈en, π〉+BR(π||πn)

= arg min
π∈Π

〈en, π〉+R(π)− 〈∇R(πn), π〉

= arg min
π∈Π

〈gn − ĝn, π〉+R(π)− 〈∇R(π̂n)− ĝn, π〉

= arg min
π∈Π

〈gn, π〉+R(π)− 〈∇R(π̂n), π〉

= arg min
π∈Π

〈gn, π〉+BR(π||π̂n)

Therefore, PICCOLO with mirror descent includes previous two-step algorithms with proper choices of ĝn. On the other
hand, we showed above that PICCOLO with FTRL (10) recovers exactly (11).

PICCOLO further generalizes these updates in two important aspects. First, it provides a systematic way to make these
mirror descent and FTRL algorithms adaptive, by the reduction that allows reusing existing adaptive algorithm designed for
adversarial settings. By contrast, all the previous update schemes discussed above (even MOBIL) are based on constant
or pre-scheduled Bregman divergences, which requires the knowledge of several constants of problem properties that are
usually unknown in practice. The use of adaptive schemes more amenable to hyperparameter tuning in practice.

Second, PICCOLO generalize the use of predictive models from the VI formulation in (14) to the fixed-point formulation
in (8). One can show that when the base algorithm is FTRL and we remove the Bregman divergence11, (8) is the same
as (14). In other words, (14) essentially can be viewed as a mechanism to find ĝn for (11). But importantly, the fixed-point
formulation is method agnostic and therefore applies to also the mirror descent case. In particular, in Section 4.2.3, we
point out that when Φn is a gradient map, the fixed-point problem reduces to finding a stationary point12 of a non-convex
optimization problem. This observation makes implementation of the fixed-point idea much easier and more stable in
practice (as we only require the function associated with Φn to be lower bounded to yield a stable problem).

B. Proof of Lemma 3
Without loss of generality we suppose w1 = 1 and J(π) ≥ 0 for all π. And we assume the weighting sequence {wn}
satisfies, for all n ≥ m ≥ 1 and k ≥ 0, wn+k

wn
≤ wm+k

wm
. This means {wn} is an non-decreasing sequence and it does not

grow faster than exponential (for which wn+k

wn
= wm+k

wm
). For example, if wn = np with p ≥ 0, it easy to see that

(n+ k)p

np
≤ (m+ k)p

mp
⇐=

n+ k

n
≤ m+ k

m
⇐=

k

n
≤ k

m

For simplicity, let us first consider the case where ln is deterministic. Given this assumption, we bound the performance in
terms of the weighted regret below. For ln defined in (5), we can write

N∑
n=1

wnJ(πn)

=

N∑
n=1

wnJ(πn−1) + wnEdπnEπn [Aπn−1]

=

N∑
n=1

wnJ(πn−1) + wnln(πn)

11Originally the conceptual MOBIL algorithm is based on the assumption that ln is strongly convex and therefore does not require
extra Bregman divergence. Here PICCOLO with FTRL provides a natural generalization to online convex problems.

12Any stationary point will suffice.

Predictor-Corrector Policy Optimization

= w1J(π0) +

N−1∑
n=1

wn+1J(πn) +

N∑
n=1

wnln(πn)

= w1J(π0) +

N−1∑
n=1

wn+1J(πn−1) +

N−1∑
n=1

wn+1ln(πn) +

N∑
n=1

wnln(πn)

= (w1 + w2)J(π0) +

N−2∑
n=1

wn+2J(πn) +

N−1∑
n=1

wn+1ln(πn) +

N∑
n=1

wnln(πn)

= w1:NJ(π0) +

(
wN l1(π1) +

2∑
n=1

wn+N−2ln(πn) + · · ·+
N−1∑
n=1

wn+1ln(πn) +

N∑
n=1

wnln(πn)

)

= w1:NJ(π0) +

(
wN l1(π1) +

2∑
n=1

wn+N−2

wn
wnln(πn) + · · ·+

N−1∑
n=1

wn+1

wn
wnln(πn) +

N∑
n=1

wnln(πn)

)

≤ w1:NJ(π0) +

(
wN l1(π1) +

wN−1

w1

2∑
n=1

wnln(πn) + · · ·+ w2

w1

N−1∑
n=1

wnln(πn) +

N∑
n=1

wnln(πn)

)

= w1:NJ(π0) +

(
wN l1(π1) + wN−1

2∑
n=1

wnln(πn) + · · ·+ w2

N−1∑
n=1

wnln(πn) +

N∑
n=1

wnln(πn)

)
where the inequality is due to the assumption on the weighting sequence.

We can further rearrange the second term in the final expression as

wN l1(π1) + wN−1

2∑
n=1

wnln(πn) + · · ·+ w2

N−1∑
n=1

wnln(πn) +

N∑
n=1

wnln(πn)

=wN

(
l1(π1)−min

π∈Π
l1(π) + min

π∈Π
l1(π)

)
+ wN−1

(
2∑

n=1

wnln(πn)−min
π∈Π

2∑
n=1

wnln(π) + min
π∈Π

2∑
n=1

wnln(π)

)

+ · · ·+
N∑
n=1

wnln(πn)−min
π∈Π

N∑
n=1

wnln(π) + min
π∈Π

N∑
n=1

wnln(π)

=

N∑
n=1

wN−n+1 (Regretn(f) + w1:nεn(f))

where the last equality is due to the definition of static regret and εn.

Likewise, we can also write the above expression in terms of dynamic regret

wN l1(π1) + wN−1

2∑
n=1

wnln(πn) + · · ·+ w2

N−1∑
n=1

wnln(πn) +

N∑
n=1

wnln(πn)

=wN

(
l1(π1)−min

π∈Π
l1(π) + min

π∈Π
l1(π)

)
+ wN−1

(
2∑

n=1

wnln(πn)−
2∑

n=1

wn min
π∈Π

ln(π) +

2∑
n=1

min
π∈Π

wnln(π)

)

+ · · ·+
N∑
n=1

wnln(πn)−
N∑
n=1

min
π∈Π

wnln(π) +

N∑
n=1

min
π∈Π

wnln(π)

=

N∑
n=1

wN−n+1

(
Regretdn(l) + w1:nε

d
n(l)

)

Predictor-Corrector Policy Optimization

in which we define the weighted dynamic regret as

Regretdn(l) =

n∑
m=1

wmlm(πm)−
n∑

m=1

wm min
π∈Π

lm(π)

and an expressive measure based on dynamic regret

εdn =
1

w1:n

n∑
m=1

wm min
π∈Π

lm(π) ≤ 0

For stochastic problems, because πn does not depends on l̃n, the above bound applies to the performance in expectation.
Specifically, let hn−1 denote all the random variables observed before making decision πn and seeing l̃n. As πn is made
independent of l̃n, we have, for example,

E[ln(πn)|hn−1] = E[ln(πn)|hn−1]− E[ln(π∗n)|hn−1] + E[ln(π∗n)|hn−1]

= E[l̃n(πn)|hn−1]− E[l̃n(π∗n)|hn−1] + E[ln(π∗n)|hn−1]

≤ E[l̃n(πn)−min
π∈Π

l̃n(π)|hn−1] + E[ln(π∗n)|hn−1]

where π∗n = arg minπ∈Π ln(π). By applying a similar derivation as above recursively, we can extend the previous
deterministic bounds to bounds in expectation (for both the static or the dynamic regret case), proving the desired statement.

C. The Basic Operations of Base Algorithms
We provide details of the abstract basic operations shared by different base algorithms. In general, the update rule of any
base mirror-descent or FTRL algorithm can be represented in terms of the three basic operations

h← update(h,H, g, w), H ← adapt(h,H, g, w), π ← project(h,H) (15)

where update and project can be identified standardly, for mirror descent as,

update(h,H, g, w) = arg minπ′∈Π 〈wg, π′〉+BH(π||h), project(h,H) = h (16)

and for FTRL as,

update(h,H, g, w) = h+ wg, project(h,H) = arg minπ′∈Π 〈h, π′〉+H(π′) (17)

We note that in the main text of this paper the operation project is omitted for simplicity, as it is equal to the identify map
for mirror descent. In general, it represents the decoding from the abstract representation of the decision h to π. The main
difference between and h and π is that h represents the sufficient information that defines the state of the base algorithm.

While update and project are defined standardly, the exact definition of adapt depends on the specific base algorithm.
Particularly, adapt may depend also on whether the problem is weighted, as different base algorithms may handle weighted
problems differently. Based on the way weighted problems are handled, we roughly categorize the algorithms (in both
mirror descent and FTRL families) into two classes: the stationary regularization class and the non-stationary regularization
class. Here we provide more details into the algorithm-dependent adapt operation, through some commonly used base
algorithms as examples.

Please see also Appendix A for connection between PICCOLO and existing two-step algorithms, like optimistic mirror
descent (Rakhlin & Sridharan, 2013b).

C.1. Stationary Regularization Class

The adapt operation of these base algorithms features two major functions: 1) a moving-average adaptation and 2) a
step-size adaption. The moving-average adaptation is designed to estimate some statistics G such that ‖g‖∗ = O(G) (which
is an important factor in regret bounds), whereas the step-size adaptation updates a scalar multiplier η according to the
weight w to ensure convergence.

Predictor-Corrector Policy Optimization

This family of algorithms includes basic mirror descent (Beck & Teboulle, 2003) and FTRL (McMahan & Streeter, 2010;
McMahan, 2017) with a scheduled step size, and adaptive algorithms based on moving average e.g. RMSPROP (Tieleman &
Hinton, 2012) ADADELTA (Zeiler, 2012), ADAM (Kingma & Ba, 2015), AMSGRAD (Reddi et al., 2018), and the adaptive
NATGRAD we used in the experiments. Below we showcase how adapt is defined using some examples.

C.1.1. BASIC MIRROR DESCENT (BECK & TEBOULLE, 2003)

We define G to be some constant such that G ≥ sup ‖gn‖∗ and define

ηn =
η

1 + cw1:n/
√
n
, (18)

as a function of the iteration counter n, where η > 0 is a step size multiplier and c > 0 determines the decaying rate of the
step size. The choice of hyperparameters η, c pertains to how far the optimal solution is from the initial condition, which is
related to the size of Π. In implementation, adapt updates the iteration counter n and updates the multiplier ηn using wn
in (18).

Together (n,G, ηn) defines Hn = Rn in the mirror descent update rule (6) through setting Rn = G
ηn
R, where R is a

strongly convex function. That is, we can write (6) equivalently as

πn+1 = arg min
π∈Π

〈wngn, π〉+
G

ηn
BR(π||πn)

= arg min
π∈Π

〈wngn, π〉+BHn(π||πn)

= update(hn, Hn, gn, wn)

When the weight is constant (i.e. wn = 1), we can easily see this update rule is equivalent to the classical mirror descent
with a step size η/G

1+c
√
n

, which is the optimal step size (McMahan, 2017). For general wn = Θ(np) with some p > −1, it
can viewed as having an effective step size wnηn

G = O(1
G
√
n

), which is optimal in the weighted setting. The inclusion of the
constant G makes the algorithm invariant to the scaling of loss functions. But as the same G is used across all the iterations,
the basic mirror descent is conservative.

C.1.2. BASIC FTRL (MCMAHAN, 2017)

We provide details of general FTRL

πn+1 = arg min
π∈Π

n∑
m=1

〈gm, π〉+Brm(π||πm) (19)

where Brm(·||πm) is a Bregman divergence centered at πm.

We define, in the nth iteration, hn, Hn, and project of FTRL in (17) as

hn =

n∑
m=1

wmgm, Hn(π) =

n∑
m=1

Brm(π||πn), project(h,H) = arg min
π′∈Π

〈h, π′〉+H(π′)

Therefore, we can see that πn+1 = project(hn, Hn) indeed gives the update (19):

πn+1 = project(hn, Hn)

= project(

n∑
m=1

wmgm,

n∑
m=1

Brm(π||πn))

= arg min
π∈Π

n∑
m=1

〈wmgm, π〉+Brm(π||πm)

For the basic FTRL, the adapt operator is similar to the basic mirror descent, which uses a constant G and updates the
memory (n, ηn) using (18). The main differences are how (G, ηn) is mapped to Hn and that the basic FTRL updates Hn

Predictor-Corrector Policy Optimization

also using hn (i.e. πn). Specifically, it performs Hn ← adapt(hn, Hn−1, gn, wn) through the following:

Hn(·) = Hn−1(·) +Brn(·||πn)

where following (McMahan, 2017) we set

Brn(π||πn) = G(
1

ηn
− 1

ηn−1
)BR(π||πn)

and ηn is updated using some scheduled rule.

One can also show that the choice of ηn scheduling in (18) leads to an optimal regret. When the problem is uniformly
weighted (i.e. wn = 1), this gives exactly the update rule in (McMahan, 2017). For general wn = Θ(np) with p > −1, a
proof of optimality can be found, for example, in the appendix of (Cheng et al., 2019).

C.1.3. ADAM (KINGMA & BA, 2015) AND AMSGRAD (REDDI ET AL., 2018)

As a representing mirror descent algorithm that uses moving-average estimates, ADAM keeps in the memory of the statistics
of the first-order information that is provided in update and adapt. Here we first review the standard description of ADAM
and then show how it is summarized in

Hn = adapt(hn, Hn−1, gn, wn), hn+1 = update(hn, Hn, gn, wn) (7)

using properly constructed update, adapt, and project operations.

The update rule of ADAM proposed by Kingma & Ba (2015) is originally written as, for n ≥ 1,13

mn = β1mn−1 + (1− β1)gn

vn = β2vn−1 + (1− β2)gn � gn
m̂n = mn/(1− βn1)

v̂n = vn/(1− βn2)

πn+1 = πn − ηnm̂n � (
√
v̂n + ε)

(20)

where ηn > 0 is the step size, β1, β2 ∈ [0, 1) (default β1 = 0.9 and β2 = 0.999) are the mixing rate, and 0 < ε� 1 is some
constant for stability (default ε = 10−8), and m0 = v0 = 0. The symbols � and � denote element-wise multiplication
and division, respectively. The third and the forth steps are designed to remove the 0-bias due to running moving averages
starting from 0.

The above update rule can be written in terms of the three basic operations. First, we define the memories hn = (mn, πn)
for policy and (vn, ηn, n) for regularization that is defined as

Hn(π) =
1

2ηn
π>(diag(

√
v̂n) + εI)π (21)

where v̂n is defined in the original ADAM equation in (20).

The adapt operation updates the memory to (vn, ηn, n) in the step

Hn ← adapt(hn, Hn−1, gn, wn)

It updates the iteration counter n and ηn in the same way in the basic mirror descent using (18), and update vn (which along
with n defines v̂n used in (21)) using the original ADAM equation in (20).

For update, we slightly modify the definition of update in (16) (replacing gn with m̂n) to incorporate the moving average
and write

update(hn, Hn, gn, wn) = arg min
π′∈Π

〈wnm̂n, π
′〉+BHn(π′||π) (22)

13We shift the iteration index so it conforms with our notation in online learning, in which π1 is the initial policy before any update.

Predictor-Corrector Policy Optimization

wheremn and m̂n are defined the same as in the original ADAM equations in (20). One can verify that, with these definitions,
the update rule in (7) is equivalent to the update rule (20), when the weight is uniform (i.e. wn = 1).

Here the
√
v̂n plays the role of G as in the basic mirror descent, which can be viewed as an estimate of the upper bound of

‖gn‖∗. ADAM achieves a better performance because a coordinate-wise online estimate is used. With this equivalence in
mind, we can easily deduct that using the same scheduling of ηn as in the basic mirror descent would achieve an optimal
regret (cf. (Kingma & Ba, 2015; Reddi et al., 2018)). We note that ADAM may fail to converge in some particular problems
due to the moving average (Reddi et al., 2018). AMSGRAD (Reddi et al., 2018) modifies the moving average and uses
strictly increasing estimates. However in practice AMSGRAD behaves more conservatively.

For weighted problems, we note one important nuance in our definition above: it separates the weight wn from the moving
average and considers wn as part of the ηn update, because the growth of wn in general can be much faster than the rate the
moving average converges. In other words, the moving average can only be used to estimate a stationary property, not a
time-varying one like wn. Hence, we call this class of algorithms, the stationary regularization class.

C.1.4. ADAPTIVE NATGRAD

Given first-order information gn and weight wn, we consider an update rule based on Fisher information matrix:

πn+1 = arg min
π∈Π

〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (23)

where Fn is the Fisher information matrix of policy πn (Amari, 1998) and Ĝn is an adaptive multiplier for the step size
which we will describe. When Ĝn = 1, the update in (23) gives the standard natural gradient descent update with step size
ηn (Kakade, 2002) .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N
n=1

ηn√
Gn
‖gn‖2Fn,∗, which plays an important

part in the regret bound (see Section 5, Appendix F, and e.g. (McMahan, 2017) for details). Following the idea in ADAM,
we update Ĝn by setting (with G0 = 0)

Gn = β2Gn + (1− β2)
1

2
g>n F

−1
n gn

Ĝn = Gn/(1− βn2)
(24)

similar to the concept of updating vn and v̂n in ADAM in (20), and update ηn in the same way as in the basic mirror descent
using (18). Consequently, this would also lead to a regret like ADAM but in terms of a different local norm.

The update operation of adaptive NATGRAD is defined standardly in (6) (as used in the experiments). The adapt operation
updates n and ηn like in ADAM and updates Gn through (24).

C.2. Non-Stationary Regularization Class

The algorithms in the non-stationary regularization class maintains a regularization that is increasing over the number of
iterations. Notable examples of this class include ADAGRAD (Duchi et al., 2011) and ONLINE NEWTON STEP (Hazan
et al., 2007), and its regularization function is updated by applying BTL in a secondary online learning problem whose
loss is an upper bound of the original regret (see (Gupta et al., 2017) for details). Therefore, compared with the previous
stationary regularization class, the adaption property of ηn and Gn exchanges: ηn here becomes constant and Gn becomes
time-varying. This will be shown more clearly in the ADAGRAD example below. We note while these algorithms are
designed to be optimal in the convex, they are often too conservative (e.g. decaying the step size too fast) for non-convex
problems.

C.2.1. ADAGRAD

The update rule of the diagonal version of ADAGRAD in (Duchi et al., 2011) is given as

Gn = Gn−1 + diag(gn � gn)

πn+1 = arg min
π∈Π

〈gn, π〉+
1

2η
(π − πn)>(εI +Gn)1/2(π − πn)

(25)

Predictor-Corrector Policy Optimization

where G0 = 0 and η > 0 is a constant. ADAGRAD is designed to be optimal for online linear optimization problems.
Above we provide the update equations of its mirror descent formulation in (25); a similar FTRL is also available (again the
difference only happens when Π is constrained).

In terms of our notation, its update and project are defined standardly as in (16), i.e.

update(hn, Hn, gn, wn) = arg minπ′∈Π 〈wngn, π′〉+BHn(π′||πn) (26)

and its adapt essentially only updates Gn:

adapt(hn, Hn−1, gn, wn) : Gn = Gn−1 + diag(wngn � wngn)

where the regularization is defined the updated Gn and the constant η as

Hn(π) =
1

2η
π>(εI +Gn)1/2π.

One can simply verify the above definitions of update and adapt agrees with (25).

D. A Practical Variation of PICCOLO
In Section 4.2.2, we show that, given a base algorithm in mirror descent/FTRL, PICCOLO generates a new first-order update
rule by recomposing the three basic operations into

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction] (27)

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (28)

where en = gn − ĝn and ĝn is an estimate of gn given by a predictive model Φn.

Here we propose a slight variation which introduces another operation shift inside the Prediction Step. This leads to the
new set of update rules:

Ĥn = shift(ĥn, Hn−1)

hn = update(ĥn, Ĥn, ĝn, wn)
[Prediction] (29)

Hn = adapt(hn, Ĥn, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (30)

The new shift operator additionally changes the regularization based on ĥn the current representation of the policy in the
Prediction Step, independent of the predicted gradient ĝn and weight wn. The main purpose of including this additional
step is to deal with numerical difficulties, such as singularity of Hn. For example, in natural gradient descent, the Fisher
information of some policy can be close to being singular along the direction of the gradients that are evaluated at different
policies. As a result, in the original Prediction Step of PICCOLO, Hn−1 which is evaluated at πn−1 might be singular in the
direction of ĝn which is evaluated π̂n.

The new operator shift brings in an extra degree of freedom to account for such issue. Although from a theoretical point
of view (cf. Appendix F) the use of shift would only increase regrets and should be avoided if possible, in practice, its
merits in handling numerical difficulties can out weight the drawback. Because shift does not depend on the size of ĝn
and wn, the extra regrets would only be proportional to O(

∑N
n=1 ‖πn − π̂n‖n), which can be smaller than other terms in

the regret bound (see Appendix F).

E. Example: PICCOLOing Natural Gradient Descent
We give an alternative example to illustrate how one can use the above procedure to “PICCOLO” a base algorithm into a
new algorithm. Here we consider the adaptive natural gradient descent rule in Appendix C as the base algorithm, which

Predictor-Corrector Policy Optimization

(given first-order information gn and weight wn) updates the policy through

πn+1 = arg minπ∈Π 〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (31)

where Fn is the Fisher information matrix of policy πn (Amari, 1998), ηn a scheduled learning rate, and Ĝn is an adaptive
multiplier for the step size which we will shortly describe. When Ĝn = 1, the update in (31) gives the standard natural
gradient descent update with step size ηn (Kakade, 2002) .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N
n=1

ηn√
Gn
‖gn‖2Fn,∗, which plays an important

part in the regret bound (see Section 5, Appendix F, and e.g. (McMahan, 2017) for details). To this end, we update Ĝn by
setting (with G0 = 0)

Gn = β2Gn−1 + (1− β2) 1
2g
>
n F
−1
n gn, Ĝn = Gn/(1− βn2) (32)

similar to the moving average update rule in ADAM, and update ηn in the same way as in the basic mirror descent algorithm
(e.g. ηn = O(1/

√
n)). As a result, this leads to a similar regret like ADAM with β1 = 0, but in terms of a local norm

specified by the Fisher information matrix.

Now, let’s see how to PICCOLO the adaptive natural gradient descent rule above. First, it is easy to see that the adaptive

natural gradient descent rule is an instance of mirror descent (with hn = πn and Hn(g) =

√
Ĝn

2ηn
g>Fng), so the update

and project operations are defined in the standard way, as in Section 4.2.2. The adapt operation updates the iteration
counter n, the learning rate ηn, and updates Ĝn through (32).

To be more specific, let us explicitly write out the Prediction Step and the Correction Step of the PICCOLOed adaptive
natural gradient descent rule in closed form as below: e.g. if ηn = 1√

n
, then we can write them as

[Prediction] πn = arg minπ∈Π 〈wnĝn, π〉+

√
Ĝn−1

2ηn−1
(π − π̂n)>Fn−1(π − π̂n)

[Correction]

ηn = 1/
√
n

Gn = β2Gn−1 + (1− β2) 1
2g
>
n F
−1
n gn

Ĝn = Gn/(1− βn2)

π̂n+1 = arg minπ∈Π 〈wnen, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn)

F. Regret Analysis of PICCOLO
The main idea of PICCOLO is to achieve optimal performance in predictable online learning problems by reusing existing
adaptive, optimal first-order algorithms that are designed for adversarial online learning problems. This is realized by the
reduction techniques presented in this section.

Here we prove the performance of PICCOLO in general predictable online learning problems, independent of the context of
policy optimization. In Appendix F.1, we first show an elegant reduction from predictable problems to adversarial problems.
Then we prove Theorem 1 in Appendix F.2, showing how the optimal regret bound for predictable linear problems can
be achieved by PICCOLOing mirror descent and FTRL algorithms. Note that we will abuse the notation ln to denote the
per-round losses in this general setting.

F.1. Reduction from Predictable Online Learning to Adversarial Online Learning

Consider a predictable online learning problem with per-round losses {ln}. Suppose in round n, before playing πn and
revealing ln, we have access to some prediction of ln, called l̂n. In particular, we consider the case where l̂n(π) = 〈ĝn, π〉
for some vector ĝn. Running an (adaptive) online learning algorithm designed for the general adversarial setting is not
optimal here, as its regret would be in O(

∑N
n=1 ‖∇ln‖2n,∗), where ‖ · ‖n is some local norm chosen by the algorithm and

‖ · ‖n,∗ is its dual norm. Ideally, we would only want to pay for the information that is unpredictable. Specifically, we wish
to achieve an optimal regret in O(

∑N
n=1 ‖∇ln −∇l̂n‖2n,∗) instead (Rakhlin & Sridharan, 2013a).

Predictor-Corrector Policy Optimization

To achieve the optimal regret bound yet without referring to specialized, nested two-step algorithms (e.g. mirror-prox (Judit-
sky et al., 2011), optimistic mirror descent (Rakhlin & Sridharan, 2013b), FTRL-prediction (Rakhlin & Sridharan, 2013a)),
we consider decomposing a predictable problem with N rounds into an adversarial problem with 2N rounds:

N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + δn(πn) (33)

where δn = ln − l̂n. Therefore, we can treat the predictable problem as a new adversarial online learning problem with a
loss sequence l̂1, δ1, l̂2, δ2, . . . , l̂N , δN and consider solving this new problem with some standard online learning algorithm
designed for the adversarial setting.

Before analysis, we first introduce a new decision variable π̂n and denote the decision sequence in this new problem as
π̂1, π1, π̂2, π2, . . . , π̂N , πN , so the definition of the variables are consistent with that in the problem before. Because this
new problem is unpredictable, the optimal regret of this new decision sequence is

N∑
n=1

l̂n(π̂n) + δn(πn)−min
π∈Π

N∑
n=1

l̂n(π) + δn(π) = O(

N∑
n=1

‖∇l̂n‖2n,∗ + ‖∇δn‖2n+1/2,∗) (34)

where the subscript n+ 1/2 denotes the extra round due to the reduction.

At first glance, our reduction does not meet the expectation of achieving regret in O(
∑N
n=1 ‖∇ln − ∇l̂n‖2n,∗) =

O(
∑N
n=1 ‖∇δn‖2n,∗). However, we note that the regret for the new problem is too loose for the regret of the original

problem, which is

N∑
n=1

l̂n(πn) + δn(πn)−min
π∈Π

N∑
n=1

l̂n(π) + δn(π)

where the main difference is that originally we care about l̂n(πn) rather than l̂n(π̂n). Specifically, we can write

N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + δn(πn)

=

(
N∑
n=1

l̂n(π̂n) + δn(πn)

)
+

(
N∑
n=1

l̂n(πn)− l̂n(π̂n)

)
Therefore, if the update rule for generating the decision sequence π̂1, π1, π̂2, π2, . . . , π̂N , πN contributes sufficient negativity
in the term l̂n(πn)− l̂n(π̂n) compared with the regret of the new adversarial problem, then the regret of the original problem
can be smaller than (34). This is potentially possible, as πn is made after l̂n is revealed. Especially, in the fixed-point
formulation of PICCOLO, πn and l̂n can be decided simultaneously.

In the next section, we show that when the base algorithm, which is adopted to solve the new adversarial problem given by
the reduction, is in the family of mirror descent and FTRL. Then the regret bound of PICCOLO with respect to the original
predictable problem is optimal.

F.2. Optimal Regret Bounds for Predictable Problems

We show that if the base algorithm of PICCOLO belongs to the family of optimal mirror descent and FTRL designed for
adversarial problems, then PICCOLO can achieve the optimal regret of predictable problems. In this subsection, we assume
the loss sequence is linear, i.e. ln(π) = 〈gn, π〉 for some gn, and the results are summarized as Theorem 1 in the main paper
(in a slightly different notation).

F.2.1. MIRROR DESCENT

First, we consider mirror descent as the base algorithm. In this case, we can write the PICCOLO update rule as

πn = arg min
π∈Π

〈
∇l̂n(π̂n), x

〉
+BHn−1

(π||π̂n) [Prediction]

Predictor-Corrector Policy Optimization

π̂n+1 = arg min
π∈Π

〈∇δn(πn), π〉+BHn(π||πn) [Correction]

where Hn can be updated based on en := ∇δn(πn) = ∇ln(πn) − ∇l̂n(π̂n) (recall by definition ∇ln(πn) = gn and
∇l̂n(π̂n) = ∇l̂n(πn) = ĝn). Notice that in the Prediction Step, PICCOLO uses the regularization from the previous
Correction Step.

To analyze the performance, we use a lemma of the mirror descent’s properties. The proof is a straightforward application of
the optimality condition of the proximal map (Nesterov, 2013). We provide a proof here for completeness.

Lemma 4. Let K be a convex set. Suppose R is 1-strongly convex with respect to norm ‖ · ‖. Let g be a vector in some
Euclidean space and let

y = arg min
z∈K

〈g, z〉+
1

η
BR(z||x)

Then for all z ∈ K

η 〈g, y − z〉 ≤ BR(z||x)−BR(z||y)−BR(y||x) (35)

which implies

η 〈g, x− z〉 ≤ BR(z||x)−BR(z||y) +
η2

2
‖g‖2∗ (36)

Proof. Recall the definition BR(z||x) = R(z) − R(x) − 〈∇R(x), z − x〉. The optimality of the proximal map can be
written as

〈ηg +∇R(y)−∇R(x), y − z〉 ≤ 0, ∀z ∈ K

By rearranging the terms, we can rewrite the above inequality in terms Bregman divergences as follows and derive the first
inequality (35):

〈ηg, y − z〉 ≤ 〈∇R(x)−∇R(y), y − z〉
= BR(z||x)−BR(z||y) + 〈∇R(x)−∇R(y), y〉 − 〈∇R(x), x〉+ 〈∇R(y), y〉+R(x)−R(y)

= BR(z||x)−BR(z||y) + 〈∇R(x), y − x〉+R(x)−R(y)

= BR(z||x)−BR(z||y)−BR(y||x)

The second inequality is the consequence of (35). First, we rewrite (35) as

〈ηg, x− z〉 = BR(z||x)−BR(z||y)−BR(y||x) + 〈ηg, x− y〉

Then we use the fact that BR is 1-strongly convex with respect to ‖ · ‖, which implies

−BR(y||x) + 〈ηg, x− y〉 ≤ −1

2
‖x− y‖2 + 〈ηg, x− y〉 ≤ η2

2
‖g‖2∗

Combining the two inequalities yields (36). �

Lemma 4 is usually stated with (36), which concerns the decision made before seeing the per-round loss (as in the standard
adversarial online learning setting). Here, we additionally concern l̂n(πn), which is the decision made after seeing l̂n, so we
need a tighter bound (35).

Now we show that the regret bound of PICCOLO in the predictable linear problems when the base algorithm is mirror
descent.

Proposition 1. Assume the base algorithm of PICCOLO is mirror descent satisfying the Assumption 1. Let gn = ∇ln(πn)
and en = gn − ĝn. Then it holds that, for any π ∈ Π,

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

Predictor-Corrector Policy Optimization

Proof. Suppose Rn, which is defined by Hn, is 1-strongly convex with respect to ‖ · ‖n. Then by Lemma 4, we can write,
for all π ∈ Π,

wn 〈gn, πn − π〉 = wn 〈ĝn, πn − π〉+ wn 〈en, πn − π〉
≤ BRn−1(π||π̂n)−BRn−1(π||πn)−BRn−1(πn||π̂n)

+BRn(π||πn)−BRn(π||π̂n+1) +
w2
n

2
‖en‖2∗,n (37)

where we use (35) for ĝn and (36) for the loss en.

To show the regret bound of the original (predictable) problem, we first notice that

N∑
n=1

BRn−1(π||π̂n)−BRn−1(π||πn) +BRn(π||πn)−BRn(π||π̂n+1)

= BR0
(π||π̂1)−BRN (π||π̂N+1) +

N∑
n=1

BRn−1
(π||π̂n)−BRn−1

(π||πn) +BRn(π||πn)−BRn−1
(π||π̂n)

= BR0
(π||π̂1)−BRN (π||π̂N+1) +

N∑
n=1

BRn(π||πn)−BRn−1
(π||πn) ≤MN

where the last inequality follows from the assumption on the base algorithm. Therefore, by telescoping the inequality in (37)
and using the strong convexity of Rn, we get

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −BRn−1(πn||π̂n)

≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1 �

F.2.2. FOLLOW-THE-REGULARIZED-LEADER

We consider another type of base algorithm, FTRL, which is mainly different from mirror descent in the way that constrained
decision sets are handled (McMahan, 2017). In this case, the exact update rule of PICCOLO can be written as

πn = arg min
π∈Π

〈wnĝn, π〉+

n−1∑
m=1

〈wmgm, π〉+Brm(π||πm) [Prediction]

π̂n+1 = arg min
π∈Π

n∑
m=1

〈wmgm, π〉+Brm(π||πm) [Correction]

From the above equations, we verify that MOBIL (Cheng et al., 2019) is indeed a special case of PICCOLO, when the base
algorithm is FTRL.

We show PICCOLO with FTRL has the following guarantee.

Proposition 2. Assume the base algorithm of PICCOLO is FTRL satisfying the Assumption 1. Then it holds that, for any
π ∈ Π,

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

We show the above results of PICCOLO using a different technique from (Cheng et al., 2019). Instead of developing a
specialized proof like they do, we simply use the properties of FTRL on the 2N -step new adversarial problem!

To do so, we recall some facts of the base algorithm FTRL. First, FTRL in (19) is equivalent to Follow-the-Leader (FTL)
on a surrogate problem with the per-round loss is 〈gn, π〉+ Brn(π||πn). Therefore, the regret of FTRL can be bounded

Predictor-Corrector Policy Optimization

by the regret of FTL in the surrogate problem plus the size of the additional regularization Brn(π||πn). Second, we recall
a standard techniques in proving FTL, called Strong FTL Lemma (see e.g. (McMahan, 2017)), which is proposed for
adversarial online learning.

Lemma 5 (Strong FTL Lemma (McMahan, 2017)). For any sequence {πn ∈ Π} and {ln},

RegretN (l) :=

N∑
n=1

ln(πn)−min
π∈Π

N∑
n=1

ln(π) ≤
N∑
n=1

l1:n(πn)− l1:n(π?n)

where π?n ∈ arg minπ∈Π l1:n(π).

Using the decomposition idea above, we show the performance of PICCOLO following sketch below: first, we show a
bound on the regret in the surrogate predictable problem with per-round loss 〈gn, π〉+Brn(π||πn); second, we derive the
bound for the original predictable problem with per-round loss 〈gn, π〉 by considering the effects of Brn(π||πn). We will
prove the first step by applying FTL on the transformed 2N -step adversarial problem of the original N -step predictable
surrogate problem and then showing that PICCOLO achieves the optimal regret in the original N -step predictable surrogate
problem. Interestingly, we recover the bound in the stronger FTL Lemma (Lemma 6) by Cheng et al. (2019), which they
suggest is necessary for proving the improved regret bound of their FTRL-prediction algorithm (MOBIL).

Lemma 6 (Stronger FTL Lemma (Cheng et al., 2019)). For any sequence {πn} and {ln},

RegretN (l) =

N∑
n=1

l1:n(πn)− l1:n(π?n)−∆n

where ∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0 and π?n ∈ arg minπ∈Π l1:n(π).

Our new reduction-based regret bound is presented below.

Proposition 3. Let {ln} be a predictable loss sequence with predictable information {l̂n}. Suppose the decision sequence
π̂1, π1, π̂2, . . . , π̂N , πN is generated by running FTL on the transformed adversarial loss sequence l̂1, δ1, l̂2, . . . , l̂N , δN ,
then the bound in the Stonger FTL Lemma holds. That is, RegretN (l) ≤

∑N
n=1 l1:n(πn) − l1:n(π?n) − ∆n, where

∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0 and π?n ∈ arg minπ∈Π l1:n(π).

Proof. First, we transform the loss sequence and write

N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + δn(πn) =

(
N∑
n=1

l̂n(π̂n) + δn(πn)

)
+

(
N∑
n=1

l̂n(πn)− l̂n(π̂n)

)
Then we apply standard Strong FTL Lemma on the new adversarial problem in the left term.

N∑
n=1

l̂n(π̂n) + δn(πn)

≤
N∑
n=1

(l̂ + δ)1:n(πn)−min
π∈Π

(l̂ + δ)1:n(π) +

N∑
n=1

((l̂ + δ)1:n−1 + l̂n)(π̂n)−min
π∈Π

((l̂ + δ)1:n−1 + l̂n)(π)

=

N∑
n=1

l1:n(πn)−min
π∈Π

l1:n(π) +

N∑
n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn)

where the first inequality is due to Strong FTL Lemma and the second equality is because FTL update assumption.

Now we observe that if we add the second term above and
∑N
n=1 l̂n(πn)− l̂n(π̂n) together, we have

N∑
n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn) + (l̂n(πn)− l̂n(π̂n))

=

N∑
n=1

(l1:n−1)(π̂n)− l1:n−1(πn) = ∆n

Predictor-Corrector Policy Optimization

Thus, combing previous two inequalities, we have the bound in the Stronger FTL Lemma:

N∑
n=1

ln(πn) ≤
N∑
n=1

l1:n(πn)−min
π∈Π

l1:n(π)−∆n �

Using Proposition 3, we can now bound the regret of PICCOLO in Proposition 2 easily.

Proof of Proposition 2. Suppose
∑n
m=1Brm(·||πm) is 1-strongly convex with respect to some norm ‖ · ‖n. Let fn =

〈wngn, πn〉+Brn(π||πm). Then by a simple convexity analysis (see e.g. see (McMahan, 2017)) and Proposition 3, we can
derive

RegretN (f) ≤
N∑
n=1

(f1:n(πn)−min
π∈Π

f1:n(π))− (f1:n−1(πn)− f1:n−1(π̂n))

≤
N∑
n=1

w2
n

2
‖en‖2n,∗ −

1

2
‖πn − π̂n‖2n−1

Finally, because rn is proximal (i.e. Brn(πn||πn) = 0), we can bound the original regret: for any π ∈ Π, it satisfies that

N∑
n=1

wn 〈gn, πn − π〉 ≤
N∑
n=1

fn(πn)− fn(π) +Brn(π||πn)

≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

where we use Assumption 1 and the bound of RegretN (f) in the second inequality. �

G. Policy Optimization Analysis of PICCOLO
In this section, we discuss how to interpret the bound given in Theorem 1

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

in the context of policy optimization and show exactly how the optimal bound

E

[
N∑
n=1

〈wngn, πn − π〉

]
≤ O(1) + CΠ,Φ

w1:N√
N

(38)

is derived. We will discuss how model learning can further help minimize the regret bound later in Appendix G.4.

G.1. Assumptions

We introduce some assumptions to characterize the sampled gradient gn. Recall gn = ∇l̃n(πn).

Assumption 2. ‖E[gn]‖2∗ ≤ G2
g and ‖gn − E[gn]‖2∗ ≤ σ2

g for some finite constants Gg and σg .

Similarly, we consider properties of the predictive model Φn that is used to estimate the gradient of the next per-round loss.
Let P denote the class of these models (i.e. Φn ∈ P), which can potentially be stochastic. We make assumptions on the size
of ĝn and its variance.

Assumption 3. ‖E[ĝn]‖2∗ ≤ G2
ĝ and E[‖ĝn − E[ĝn]‖2∗] ≤ σ2

ĝ for some finite constants Gĝ and σĝ .

Additionally, we assume these models are Lipschitz continuous.

Predictor-Corrector Policy Optimization

Assumption 4. There is a constant L ∈ [0,∞) such that, for any instantaneous cost ψ and any Φ ∈ P , it satisfies
‖E[Φ(π)]− E[Φ(π′)]‖∗ ≤ L‖π − π′‖.

Lastly, as PICCOLO is agnostic to the base algorithm, we assume the local norm ‖ · ‖n chosen by the base algorithm at
round n satisfies ‖ · ‖2n ≥ αn‖ · ‖2 for some αn > 0. This condition implies that ‖ · ‖2n,∗ ≤ 1

αn
‖ · ‖2∗. In addition, we

assume αn is non-decreasing so that MN = O(αN) in Assumption 1, where the leading constant in the bound O(αN) is
proportional to |Π|, as commonly chosen in online convex optimization.

G.2. A Useful Lemma

We study the bound in Theorem 1 under the assumptions made in the previous section. We first derive a basic inequality,
following the idea in (Cheng et al., 2019, Lemma 4.3).

Lemma 7. Under Assumptions 2, 3, and 4, it holds

E[‖en‖2∗,n] = E[‖gn − ĝn‖2∗,n] ≤ 4

αn

(
σ2
g + σ2

ĝ + L2
n‖πn − π̂n‖2n + En(Φn)

)
where En(Φn) = ‖E[gn]− E[Φn(πn, ψn)]‖2∗ is the prediction error of model Φn.

Proof. Recall ĝn = Φn(π̂n, ψn). Using the triangular inequality, we can simply derive

E[‖gn − ĝn‖2∗,n]

≤ 4
(
E[‖gn − E[gn]‖2∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2∗,n + ‖E[Φn(πn, ψn)]− E[ĝn]‖2∗,n + E[‖E[ĝn]− ĝn‖2∗,n]

)
= 4

(
E[‖gn − E[gn]‖2∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2∗,n + ‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2∗,n + E[‖E[ĝn]− ĝn‖2∗,n]

)
≤ 4

(
1

αn
σ2
g +

1

αn
En(Φn) + ‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2∗,n +

1

αn
σ2
ĝ

)
≤ 4

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2n + En(Φn)
)

where the last inequality is due to Assumption 4. �

G.3. Optimal Regret Bounds

We now analyze the regret bound in Theorem 1

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1 (39)

We first gain some intuition about the size of

MN + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n

]
. (40)

Because when adapt(hn, Hn−1, en, wn) is called in the Correction Step in (28) with the error gradient en as input, an
optimal base algorithm (e.g. all the base algorithms listed in Appendix C) would choose a local norm sequence ‖ · ‖n such
that (40) is optimal. For example, suppose ‖en‖2∗ = O(1) and wn = np for some p > −1. If the base algorithm is basic
mirror descent (cf. Appendix C), then αn = O(w1:n√

n
). By our assumption that MN = O(αN), it implies (40) can be upper

bounded by

MN + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n

]
≤ O

(
w1:N√
N

)
+

[
N∑
n=1

w2
n

√
n

2w1:n
‖en‖2∗

]

≤ O

(
w1:N√
N

+

N∑
n=1

w2
n

√
n

w1:n

)
= O

(
Np+1/2

)

Predictor-Corrector Policy Optimization

which will lead to an optimal weighted average regret in O(1√
N

).

PICCOLO actually has a better regret than the simplified case discussed above, because of the negative term− 1
2‖πn−π̂n‖

2
n−1

in (39). To see its effects, we combine Lemma 7 with (39) to reveal some insights:

E

[
N∑
n=1

wn 〈gn, πn − π〉

]
≤ O(αN) + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

]
(41)

≤ O(αN) + E

[
N∑
n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2n + En(Φn)
)
− αn−1

2
‖πn − π̂n‖2

]

=

(
O(αN) + E

[
N∑
n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + En(Φn)
)])

+

(
E

[
N∑
n=1

(
2w2

n

αn
L2 − αn−1

2
)‖πn − π̂n‖2

])
(42)

The first term in (42) plays the same role as (40); when the base algorithm has an optimal adapt operation and wn = np

for some p > −1, it would be in O
(
Np+1/2

)
. Here we see that the constant factor in this bound is proportional to

σ2
g + σ2

ĝ + En(Φn). Therefore, if the variances σ2
g , σ2

ĝ of the gradients are small, the regret would mainly depend on the
prediction error En(Φn) of Φn. In the next section (Appendix G.4), we will show that when Φn is learned online (as the
authors in (Cheng et al., 2019) suggest), on average the regret is close to the regret of using the best model in the hindsight.
The second term in (42) contributes to O(1) in the regret, when the base algorithm adapts properly to wn. For example,
when αn = Θ(w1:n√

n
) and wn = np for some p > −1, then

N∑
n=1

2w2
n

αn
L2 − αn−1

2
=

N∑
n=1

O(np−1/2 − np+1/2) = O(1)

In addition, because ‖πn − π̂n‖ would converge to zero, the effects of the second term in (42) becomes even minor.

In summary, for a reasonable base algorithm and wn = np with p > −1, running PICCOLO has the regret bound

E

[
N∑
n=1

wn 〈gn, πn − π〉

]
= O(αN) +O

(
w1:N√
N

(σ2
g + σ2

ĝ)

)
+O(1) + E

[
N∑
n=1

2w2
n

αn
En(Φn)

]
(43)

Suppose αn = Θ(|Π|w1:n√
n

) and wn = np for some p > −1, This implies the inequality

E

[
N∑
n=1

〈wngn, πn − π〉

]
≤ O(1) + CΠ,Φ

w1:N√
N

(38)

where CΠ,Φ = O(|Π|+ σ2
g + σ2

ĝ + supnEn(Φn)). The use of non-uniform weights can lead to a faster on average decay
of the standing O(1) term in the final weighted average regret bound, i.e.

1

w1:N
E

[
N∑
n=1

〈wngn, πn − π〉

]
≤ O

(
1

w1:N

)
+
CΠ,Φ√
N

In general, the authors in (Cheng et al., 2018; 2019) recommend using p� N (e.g. in the range of [0, 5]) to remove the
undesirable constant factor, yet without introducing large multiplicative constant factor.

G.4. Model Learning

The regret bound in (43) reveals an important factor that is due to the prediction error E
[∑N

n=1
2w2

n

αn
En(Φn)

]
, where we

recall En(Φn) = ‖E[gn]−E[Φn(πn)]‖2∗. Cheng et al. (2019) show that, to minimize this error sum through model learning,
a secondary online learning problem with per-round loss En(·) can be considered. Note that this is a standard weighted
adversarial online learning problem (weighted by 2w2

n

αn
), because En(·) is revealed after one commits to using model Φn.

Predictor-Corrector Policy Optimization

While in implementation the exact function En(·) is unavailable (as it requires infinite data), we can adopt an unbiased
upper bound. For example, Cheng et al. (2019) show that En(·) can be upper bounded by the single- or multi-step prediction
error of a transition dynamics model. More generally, we can learn a neural network to minimize the gradient prediction
error directly. As long as this secondary online learning problem is solved by a no-regret algorithm, the error due to online
model learning would contribute a term in O(w1:N εP,N/

√
N) + o(w1:N/

√
N) in (43), where εP,N is the minimal error

achieved by the best model in the model class P (see (Cheng et al., 2019) for details).

H. Experimental Details
H.1. Algorithms

Base Algorithms In the experiments, we consider three commonly used first-order online learning algorithms: ADAM,
NATGRAD, and TRPO, all of which adapt the regularization online to alleviate the burden of learning rate tuning. We
provide the decomposition of ADAM into the basic three operations in Appendix C, and that of NATGRAD in Appendix E. In
particular, the adaptivity of NATGRAD is achieved by adjusting the step size based on a moving average of the dual norm
of the gradient. TRPO adjusts the step size to minimize a given cost function (here it is a linear function defined by the
first-order oracle) within a pre-specified KL divergence centered at the current decision. While greedily changing the step
size in every iteration makes TRPO an inappropriate candidate for adversarial online learning. Nonetheless, it can still be
written in the form of mirror descent and allows a decomposition using the three basic operators; its adapt operator can be
defined as the process of finding the maximal scalar step along the natural gradient direction such that the updated decision
stays within the trust region. For all the algorithms, a decaying step size multiplier in the form η/(1 + α

√
n) is also used;

for TRPO, it is used to specify the size of trust regions. The values chosen for the hyperparameters η and α can be found in
Table 2. To the best of our knowledge, the conversion of these approaches into unbiased model-based algorithms is novel.

Reinforcement Learning Per-round Loss In iteration n, in order to compute the online gradient (5), GAE (Schulman
et al., 2016) is used to estimate the advantage function Aπn−1 . More concretely, this advantage estimate utilizes an estimate
of value function Vπn−1 (which we denote V̂πn−1) and on-policy samples. We chosen λ = 0.98 in GAE to reduce influence
of the error in Vπn−1 , which can be catastrophic. Importance sampling can be used to estimate Aπn−1 in order to leverage
data that are collected on-policy by running πn. However, since we select a large λ, importance sampling can lead to
vanishing importance weights, making the gradient extremely noisy. Therefore, in the experiments, importance sampling is
not applied.

Gradient Computation and Control Variate The gradients are computed using likelihood-ratio trick and the associated
advantage function estimates described above. A scalar control variate is further used to reduce the variance of the sampled
gradient, which is set to the mean of the advantage estimates evaluated on newly collected data.

Policies and Value Networks Simple feed-forward neural networks are used to construct all of the function approximators
(policy and value function) in the tasks. They have 1 hidden layer with 32 tanh units for all policy networks, and have 2
hidden layers with 64 tanh units for value function networks. Gaussian stochastic policies are considered, i.e., for any state
s ∈ S, πs is Gaussian, and the mean of πs is modeled by the policy network, whereas the diagonal covariance matrix is
state independent (which is also learned). Initial value of log σ of the Gaussian policies −1.0, the standard deviation for
initializing the output layer is 0.01, and the standard deviation for initialization hidden layer is 1.0. After the policy update, a
new value function estimate V̂πn is computed by minimizing the mean of squared difference between V̂πn and V̂πn−1 + Âπn ,
where Âπn is the GAE estimate using V̂πn−1 and λ = 0.98, through ADAM with batch size 128, number of batches 2048,
and learning rate 0.001. Value function is pretrained using examples collected by executing the randomly initialized policy.

Computing Model Gradients We compute ĝn in two ways. The first approach is to use the simple heuristic that sets
ĝn = Φn(π̂n), where Φn is some predictive models depending on the exact experimental setup. The second approach is
to use the fixed-point formulation (8). This is realized by solving the equivalent optimization problem mentioned in the
paper. In implementation, we only solves this problem approximately using some finite number of gradient steps; though
this is insufficient to yield a stationary point as desired in the theory, we experimentally find that it is sufficient to yield
improvement over the heuristic ĝn = Φn(π̂n).

Predictor-Corrector Policy Optimization

Approximate Solution to Fixed-Point Problems of PICCOLO PICCOLO relies on the predicted gradient ĝn in the
Prediction Step. Recall ideally we wish to solve the fixed-point problem that finds h∗n such that

h∗n = update(ĥn, Hn−1,Φn(πn(h∗n)), wn) (44)

and then apply ĝn = Φn(πn(h∗n)) in the Prediction Step to get hn, i.e.,

hn = update(ĥn, Hn−1, ĝn, wn)

Because h∗n is the solution to the fixed-point problem, we have hn = h∗n. Such choice of ĝn will fully leverage the
information provided by Φn, as it does not induce additional linearization due to evaluating Φn at points different from hn.

Exactly solving the fixed-point problem is difficult. In the experiments, we adopt a heuristic which computes an approxima-
tion to h∗n as follows. We suppose Φn = ∇fn for some function fn, which is the case e.g. when Φn is the simulated gradient
based on some (biased) dynamics model. This restriction makes the fixed-point problem as finding a stationary point of
the optimization problem minπ∈Π fn(π) +BRn−1

(π||π̂n). In implementation, we initialize the iterate in this subproblem
as update(ĥn, Hn−1,Φn(π̂n), wn), which is the output of the Prediction Step if we were to use ĝn = Φn(π̂n). We made
this choice in initializing the subproblem, as we know that using ĝn = Φn(π̂n) in PICCOLO already works well (see the
experiments) and it can be viewed as the solution to the fixed-point problem with respect to the linearized version of Φn at
π̂n. Given the this initialization point, we proceed to compute the approximate solution to the fixed-point by applying the
given base algorithm for 5 iterations and then return the last iterate as the approximate solution. For example, if the base
algorithm is natural gradient descent, we fixed the Bregman divergence (i.e. its the Fisher information matrix as π̂n) and
only updated the scalar stepsize adaptively along with the policy in solving this regularized model-based RL problem (i.e.
minπ∈Π fn(π) +BRn−1

(π||π̂n)). While such simple implementation is not ideal, we found it works in practice, though we
acknowledge that a better implementation of the subproblem solver would improve the results.

H.2. Tasks

The robotic control tasks that are considered in the experiments are CartPole, Hopper, Snake, and Walker3D from OpenAI
Gym (Brockman et al., 2016) with the DART physics engine (Lee et al., 2018)14. CartPole is a classic control problem, and
its goal is to keep a pole balanced in a upright posture, by only applying force to the cart. Hopper, Snake, and Walker3D are
locomotion tasks, of which the goal is to control an agent to move forward as quickly as possible without falling down (for
Hopper and Walker3D) or deviating too much from moving forward (for Snake). Hopper is monopedal and Walker3D is
bipedal, and both of them are subjected to significant contact discontinuities that are hard or even impossible to predict.

H.3. Full Experimental Results

In Figure 3, we empirically study the properties of PICCOLO that are predicted by theory on CartPole environment. In
Figure 4, we “PICCOLO ” three base algorithms: ADAM, NATGRAD, TRPO, and apply them on four simulated environments:
Cartpole, Hopper, Snake, and Walker3D.

H.4. Experiment Hyperparameters

The hyperparameters used in the experiments and the basic attributes of the environments are detailed in Table 2.

14The environments are defined in DartEnv, hosted at https://github.com/DartEnv.
15α and η appear in the decaying step size multiplier for all the algorithms in the form η/(1 + α

√
n). α influences how fast the step

size decays. We chose α in the experiments based on the number of iterations.

Predictor-Corrector Policy Optimization

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(a) Adv. model, NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(b) Adv. model, TRPO

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(c) Diff. fidelity, NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(d) Diff. fidelity, TRPO

Figure 3: Performance of PICCOLO with different predictive models on CartPole. x axis is iteration number and y axis is
sum of rewards. The curves are the median among 8 runs with different seeds, and the shaded regions account for 25%
percentile. The update rule, by default, is PICCOLO. For example TRUEDYN in (a) refers to PICCOLO with TRUEDYN
predictive model. (a), (b): Comparison of PICCOLO and DYNA with adversarial model using NATGRAD and TRPO as base
algorithms. (c), (d): PICCOLO with the fixed-point setting (8) with dynamics model in different fidelities. BIASEDDYN0.8
indicates that the mass of each individual robot link is either increased or decreased by 80% with probablity 0.5 respectively.

CartPole Hopper Snake Walker3D

Observation space dimension 4 11 17 41
Action space dimension 1 3 6 15
State space dimension 4 12 18 42
Number of samples from env. per iteration 4k 16k 16k 32k
Number of samples from model dyn. per iteration 4k 16k 16k 32k
Length of horizon 1,000 1,000 1,000 1,000
Number of iterations 100 200 200 1,000
Number of iterations of samples for REPLAY buffer 5 4 3 2 (3 for ADAM)
α 15 0.1 0.1 0.1 0.01
η in ADAM 0.005 0.005 0.002 0.01
η in NATGRAD 0.05 0.05 0.2 0.2
η in TRPO 0.002 0.002 0.01 0.04

Table 2: Tasks specifics and hyperparameters.

Predictor-Corrector Policy Optimization

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

(a) CartPole ADAM

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(b) Hopper ADAM

0 50 100 1500

1000

2000

3000

4000 Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(c) Snake ADAM

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(d) Walker3D ADAM

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

TRUEDYN

(e) CartPole NATGRAD

0 50 100 1500

1000

2000

3000

4000

5000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(f) Hopper NATGRAD

0 50 100 1500

1000

2000

3000

4000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(g) Snake NATGRAD

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(h) Walker3D NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

TRUEDYN

(i) CartPole TRPO

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(j) Hopper TRPO

0 50 100 1500

1000

2000

3000

4000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(k) Snake TRPO

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(l) Walker3D TRPO

Figure 4: The performance of PICCOLO with different predictive models on various tasks, compared to base algorithms.
The rows use ADAM, NATGRAD, and TRPO as the base algorithms, respectively. x axis is iteration number and y axis is sum
of rewards. The curves are the median among 8 runs with different seeds, and the shaded regions account for 25% percentile.

