
Random Walks on Hypergraphs with Edge-Dependent Vertex Weights

Uthsav Chitra 1 Benjamin J Raphael 1

Abstract
Hypergraphs are used in machine learning to
model higher-order relationships in data. While
spectral methods for graphs are well-established,
spectral theory for hypergraphs remains an ac-
tive area of research. In this paper, we use ran-
dom walks to develop a spectral theory for hy-
pergraphs with edge-dependent vertex weights:
hypergraphs where every vertex v has a weight
γe(v) for each incident hyperedge e that describes
the contribution of v to the hyperedge e. We de-
rive a random walk-based hypergraph Laplacian,
and bound the mixing time of random walks on
such hypergraphs. Moreover, we give conditions
under which random walks on such hypergraphs
are equivalent to random walks on graphs. As a
corollary, we show that current machine learning
methods that rely on Laplacians derived from ran-
dom walks on hypergraphs with edge-independent
vertex weights do not utilize higher-order relation-
ships in the data. Finally, we demonstrate the
advantages of hypergraphs with edge-dependent
vertex weights on ranking applications using real-
world datasets.

1. Introduction
Graphs are ubiquitous in machine learning, where they are
used to represent pairwise relationships between objects.
For example, social networks, protein-protein interaction
(PPI) networks, and the internet are modeled with graphs.
One limitation of graph models, however, is that they do not
encode higher-order relationships between objects. A social
network can represent a community of users (e.g. a friend
group) as a collection of edges between each user, but this
pairwise representation loses information about the overall
group structure (Yang et al., 2017). In biology, protein
interactions are not only between pairs of proteins, but also

1Department of Computer Science, Princeton University,
Princeton, NJ, USA. Correspondence to: Benjamin Raphael
<braphael@cs.princeton.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

between groups of proteins in protein complexes (Ramadan
et al., 2004; Ritz et al., 2014).

Such higher-order interactions can be modeled using a hy-
pergraph: a generalization of a graph containing hyperedges
that can be incident to more than two nodes. A hypergraph
representation of a social network can model a community
of friends with a single hyperedge. In contrast, the corre-
sponding representation of a community in a graph requires
many edges that connect pairs of individuals within the com-
munity; conversely, it may not be clear which collection of
edges in a graph represents a community (e.g. a clique, an
edge-dense subnetwork, etc). Hypergraphs have been used
in a variety of machine learning tasks, including clustering
(Agarwal et al., 2005; Zhou et al., 2006; Li & Milenkovic,
2017; 2018), ranking keywords in a collection of documents
(Bellaachia & Al-Dhelaan, 2013), predicting customer be-
havior in e-commerce (Li et al., 2018), object classification
(Zhang et al., 2018a;b), and image segmentation (Kim et al.,
2011).

A common approach to incorporate graph information in a
machine learning algorithm is to utilize properties of ran-
dom walks or diffusion processes on the graph. For example,
random walks on graphs underlie algorithms for recommen-
dation systems (Jamali & Ester, 2009), clustering (Harel &
Koren, 2001; Ng et al., 2001), information retrieval (Brin
& Page, 1998), and other applications. In many machine
learning applications, the graph is represented through the
graph Laplacian. Spectral theory includes many key results
regarding the eigenvalues and eigenvectors of the graph
Laplacian, and these results form the foundation of spectral
learning algorithms.

Spectral theory on hypergraphs is much less developed than
on graphs. In seminal work, Zhou et al. (2006) developed
learning algorithms on hypergraphs based on random walks
on graphs. However, at nearly the same time, Agarwal et al.
(2006) showed that the hypergraph Laplacian matrix used
by Zhou et al. is equal to the Laplacian matrix of a closely
related graph, the star graph. A consequence of this equiva-
lence is that the methods introduced by Zhou et al. utilize
only pairwise relationships between objects, rather than the
higher-order relationships encoded in the hypergraph. More
recently, Chan et al. (2018) and Li & Milenkovic (2017;
2018) developed nonlinear Laplacian operators for hyper-

Random Walks on Hypergraphs

graphs that partially address this issue. However, all existing
constructions of linear Laplacian operators utilize only pair-
wise relationships between vertices, as shown by Agarwal
et al. (2006).

In this paper, we develop a spectral theory for hypergraphs
with edge-dependent vertex weights. In such a hypergraph,
each hyperedge e has an edge weight ω(e), and each vertex
v has a collection of vertex weights, with one weight γe(v)
for each hyperedge e incident to v. The edge-dependent ver-
tex weight γe(v) models the contribution of vertex v to hy-
peredge e. Edge-dependent vertex weights have previously
been used in several applications including: image segmen-
tation, where the weights represent the probability of an im-
age pixel (vertex) belonging to a segment (hyperedge) (Ding
& Yilmaz, 2010); e-commerce, where the weights model
the quantity of a product (hyperedge) in a user’s shopping
basket (vertex) (Li et al., 2018); and text ranking, where the
weights represent the importance of a keyword (vertex) to
a document (hyperedge) (Bellaachia & Al-Dhelaan, 2013).
Hypergraphs with edge-dependent vertex weights have also
been used in image search (Zeng et al., 2016; Huang et al.,
2010) and 3D object classification (Zhang et al., 2018a),
where the weights represent contributions of vertices in a
k-nearest-neighbors hypergraph.

Unfortunately, because of a lack of a spectral theory for
hypergraphs with edge-dependent vertex weights, many of
the papers that use these hypergraphs rely on incorrect or
theoretically unsound assumptions. For example, Zhang
et al. (2018a) and Ding & Yilmaz (2010) use a hypergraph
Laplacian with no spectral guarantees, while Li et al. (2018)
derive an incorrect stationary distribution for a random walk
on such a hypergraph (see Supplement for additional de-
tails). The reason such issues arise is because existing
spectral methods are developed for hypergraphs with edge-
independent vertex weights, i.e. hypergraphs where the
γe(v) are identical for all hyperedges e.

In this paper, we derive several results for hypergraphs with
edge-dependent vertex weights. First, we show that ran-
dom walks on hypergraphs with edge-independent vertex
weights are always equivalent to random walks on the clique
graph (Figure 1). This generalizes the results of Agarwal
et al. (2006) and gives the underlying reason why existing
constructions of hypergraph Laplacian matrices (Rodriguez-
Velazquez, 2002; Zhou et al., 2006) do not utilize the higher-
order relations of the hypergraph.

Motivated by this result, we derive a random walk-based
Laplacian matrix for hypergraphs with edge-dependent ver-
tex weights that utilizes the higher-order relations expressed
in the hypergraph structure. This Laplacian matrix satisfies
the typical properties one would expect of a Laplacian ma-
trix, including being positive semi-definite and satisfying
a Cheeger inequality. We also derive a formula for the sta-

tionary distribution of a random walk on a hypergraph with
edge-dependent vertex weights, and give a bound on the
mixing time of the random walk.

Our paper is organized as follows. In Section 2, we de-
fine our notation, and introduce hypergraphs with edge-
dependent vertex weights. In Section 3, we formally define
random walks on hypergraphs with edge-dependent vertex
weights, and show that when the vertex weights are edge-
independent, a random walk on a hypergraph has the same
transition matrix as a random walk on its clique graph. In
Section 4, we derive a formula for the stationary distribution
of a random walk, and use it to bound the mixing time. In
Section 5, we derive a random-walk based Laplacian ma-
trix for hypergraphs with edge-dependent vertex weights
and show some basic properties of the matrix. Finally, in
Section 6, we demonstrate two applications of hypergraphs
with edge-dependent vertex weights: ranking authors in a
citation network and ranking players in a video game. All
proofs are in the Supplementary Material.

2. Graphs, Hypergraphs, and Random Walks
Let G = (V,E,w) be a graph with vertex set V , edge set
E, and edge weights w. For a vertex v, let N(v) = {u ∈
V : (u, v) ∈ E} denote the vertices incident to v. The
adjacency matrix A of a graph is a |V | × |V | matrix where
A(u, v) = w(e) if (u, v) ∈ E and 0 otherwise.

Let H = (V,E, ω) be a hypergraph with vertex set V ;
edge set E ⊂ 2V ; and hyperedge weights ω. A graph is
a special case of a hypergraph, where each hyperedge e
has size |e| = 2. For hypergraphs, the terms “hyperedge”
and “edge” are used interchangeably. A random walk on
a hypergraph is typically defined as follows (Zhou et al.,
2006; Ducournau & Bretto, 2014; Cooper et al., 2013; Avin
et al., 2014). At time t, a “random walker” at vertex vt will:

1. Select an edge e containing vt, with probability propor-
tional to ω(e).

2. Select a vertex v from e, uniformly at random.
3. Move to vertex vt+1 = v at time t+ 1.

A natural extension is to modify Step 2: instead of choosing
v uniformly at random from e, we pick v according to a
fixed probability distribution on the vertices in e. This
motivates the following definition of a hypergraph with
edge-dependent vertex weights.

Definition 2.1. A hypergraph H = (V,E, ω, γ) with edge-
dependent vertex weights is a set of vertices V , a set E ⊂
2V of hyperedges, a weight ω(e) for every hyperedge e ∈ E,
and a weight γe(v) for every hyperedge e ∈ E and every
vertex v incident to e.

We emphasize that a vertex v in a hypergraph with edge-
dependent vertex weights has multiple weights: one weight

Random Walks on Hypergraphs

Figure 1. Example illustrating Theorem 3.1. A hypergraph with edge-independent vertex weights H (left) and a corresponding edge-
weighted clique graph GH (right) such that random walks on H and GH are equivalent. Note that, if one changes the vertex weights of b
to be edge-dependent vertex weights, by setting γe1(b) = 1, γe2(b) = 2, then it is not possible to choose edge weights wu,v on GH such
that random walks on GH and H are equivalent.

γe(v) for each hyperedge e that contains v. Intuitively,
γe(v) measures the contribution of vertex v to hyperedge
e. In a random walk on a hypergraph with edge-dependent
vertex weights, the random walker will pick a vertex v from
hyperedge e with probability proportional to γe(v). Note
that we set γe(u) = 0 if u 6∈ e.

If each vertex has the same contribution to all incident hy-
peredges, i.e. γe(v) = γe′(v) for all hyperedges e and e′

incident to v, then we say that the hypergraph has edge-
independent vertex weights, and we use γ(v) = γe(v) to
refer to the vertex weights ofH . If γe(v) = 1 for all vertices
v and incident hyperedges e, we say the vertex weights are
trivial.

We define E(v) = {e ∈ E : v ∈ e} to be the hyperedges
incident to a vertex v, and E(u, v) = {e ∈ E : u ∈ e, v ∈
e} to be the hyperedges incident to both vertices u and v.
Let d(v) =

∑
e∈E(v) ω(e) denote the degree of vertex v,

and let δ(e) =
∑

v∈e γe(v) denote the degree of hyperedge
e. The vertex-weight matrix R of a hypergraph with edge-
dependent vertex weights H = (V,E, ω, γ) is an |E| × |V |
matrix with entries R(e, v) = γe(v), and the hyperedge
weight matrix W is a |V | × |E| matrix with W (v, e) =
ω(e) if v ∈ e, and W (v, e) = 0 otherwise. The vertex-
degree matrixDV is a |V |×|V | diagonal matrix with entries
DV (v, v) = d(v), and the hyperedge-degree matrix DE is
a |E| × |E| diagonal matrix with entries DE(e, e) = δ(e).

Given H = (V,E, ω, γ), the clique graph of H , GH , is
an unweighted graph with vertices V , and edges E′ =
{(v, w) ⊂ V × V : v, w ∈ e for some e ∈ E}. In other
words, GH turns all hyperedges into cliques.

We say a hypergraph H is connected if its clique graph GH

is connected. In this paper, we assume all hypergraphs are
connected.

For a Markov chain with states S transition probabilities p,
we use pu,v to denote the probability of going from state u
to state v.

3. Random Walks on Hypergraphs with
Edge-Dependent Vertex Weights

Let H = (V,E, ω, γ) be a hypergraph with edge-dependent
vertex weights. We first define a random walk on H . At
time t, a random walker at vertex vt will do the following:

1. Pick an edge e containing v, with probability
ω(e)/d(v).

2. Pick a vertex w from e, with probability γe(w)/δ(e).
3. Move to vertex vt+1 = w, at time t+ 1.

Formally, we define a random walk on H by writing out the
transition probabilities according to the above steps.
Definition 3.1. A random walk on a hypergraph with edge-
dependent vertex weights H = (V,E, ω, γ) is a Markov
chain on V with transition probabilities

pv,w =
∑

e∈E(v)

(
ω(e)

d(v)

)(
γe(w)

δ(e)

)
. (1)

The probability transition matrix P of a random walk on H
is the |V |× |V |matrix with entries P (v, w) = pv,w and can
be written in matrix form as P = D−1V WD−1E R. (We use
the convention that probability transition matrices have row
sum 1.) Using the probability transition matrix P , we can
also define a random walk with restart on H (Tong et al.,
2006). The random walk with restart is useful when it is
unknown whether the random walk is irreducible.

Note that our definition allows self-loops, i.e. pv,v > 0, and
thus the random walk is lazy. While one can define a non-

Random Walks on Hypergraphs

lazy random walk (i.e. pv,v = 0 for all v), the analysis of
such walks is significantly more difficult, as the probability
transition matrix cannot be factored as easily. In the Supple-
ment, we show that a weaker version of Theorem 3.1 below
holds for a non-lazy random walk. Cooper et al. (2013)
also studies the cover time of a non-lazy random walk on a
hypergraph with edge-independent vertex weights.

Next, we define what it means for two random walks to be
equivalent. Because random walks are Markov chains, we
define equivalence in terms of Markov chains.

Definition 3.2. Let M and N be Markov chains with the
same (countable) state space, and let PM and PN be their
respective probability transition matrices. We say that M
and N are equivalent if

PM
x,y = PN

x,y

for all states x and y.

Using this definition, we state our first main theorem: a
random walk on a hypergraph with edge-independent vertex
weights is equivalent to a random walk on its clique graph,
for some choice of weights on the clique graph.

Theorem 3.1. Let H = (V,E, ω, γ) be a hypergraph with
edge-independent vertex weights. There exist weights wu,v

on the clique graph GH such that a random walk on H is
equivalent to a random walk on GH .

Theorem 3.1 generalizes the result by Agarwal et al. (2006)
who showed that the two hypergraph Laplacian matrices
constructed in Zhou et al. (2006) and Rodriguez-Velazquez
(2002) are equal to the Laplacian matrix of either the clique
graph or the star graph, another graph constructed from a
hypergraph. Agarwal et al. (2006) also showed that the
Laplacians of the clique graph and the star graph are equal
when H is k-uniform (i.e. when all hyperedges have size
k), and are very close otherwise. Since the Laplacian matri-
ces in Zhou et al. (2006) and Rodriguez-Velazquez (2002)
are derived from random walks on edge-independent ver-
tex weights, Theorem 3.1 implies that both Laplacians are
equal to the Laplacian of the clique graph – even when the
hypergraph is not k-uniform – thus strengthening the result
in Agarwal et al. (2006).

The proof of Theorem 3.1 relies on the fact that a random
walk on H satisfies a property known as time-reversibility:
πupu,v = πvpv,u for all vertices u, v ∈ V , where π is
the stationary distribution of the random walk (Aldous &
Fill, 2002). It is well-known that a Markov chain can be
represented as a random walk on a graph if and only if
it is time-reversible. Moreover, time-reversiblility allows
us to derive a formula for the weights wu,v on GH . Let
γ(v) = γe(v) be the edge-independent weight for vertex v.

Then,

wu,v = πupu,v =
∑

e∈E(u,v)

ω(e)γ(u)γ(v)

δ(e)
. (2)

Conversely, the caption of Figure 1 describes a simple ex-
ample of a hypergraph with edge-dependent vertex weights
that is not time-reversible. This proves the following result.

Theorem 3.2. There exists a hypergraph with edge-
dependent weights H = (V,E, ω, γ) such that a random
walk on H is not equivalent to a random walk on its clique
graph GH for any choice of edge weights on GH .

Anecdotally, we find from simulations that most random
walks on hypergraphs with edge-dependent vertex weights
are not time-reversible, and therefore satisfy Theorem 3.2.
However, it is not clear how to formalize this observation.

Theorem 3.2 says that random walks on graphs with vertex
set V are a strict subset of Markov chains on V . A natural
follow-up question is whether all Markov chains on V can
be described as a random walk on some hypergraph H with
vertex set V and edge-dependent vertex weights. In the
Supplement, we show that the answer to this question is no
and provide a counterexample.

In addition, we show in the Supplement that hypergraphs
with edge-dependent vertex weights create a rich hierar-
chy of Markov chains, beyond the division between time-
reversible and time-irreversible Markov chains. In particu-
lar, we show that random walks on hypergraphs with edge
dependent vertex weights and at least one hyperedge of car-
dinality k cannot in general be reduced to a random walk on
a hypergraph with hyperedges of cardinality at most k − 1.

Finally, note that our definition of equivalent random walks
(Definition 3.2) requires the probability transition matrices
to be equal. Thus, another natural question is: given H =
(V,E, ω, γ), do there exist weights on the clique graph GH

such that random walks on H and GH are “close”? We
provide a partial answer to this question in Section 5, where
we show that, for a specific choice of weights on GH , the
second-smallest eigenvalues of the Laplacian matrices of H
and GH are close.

4. Stationary Distribution and Mixing Time
4.1. Stationary Distribution

Recall the formula for the stationary distribution of a random
walk on a graph. If G = (V,E,w) is a graph, then the
stationary distribution π of a random walk on G is

πv = ρ
∑

e∈E(v)

w(e), (3)

Random Walks on Hypergraphs

where ρ =
(
2
∑

e∈E w(e)
)−1

. We derive a formula for the
stationary distribution for a random walk on a hypergraph
with edge-dependent vertex weights; the formula is analo-
gous to equation (3) above with two important changes: first,
the proportionality constant ρ depends on the hyperedge,
and second, each term in the sum is multiplied by the vertex
weight γe(v).
Theorem 4.1. Let H = (V,E, ω, γ) be a hypergraph with
edge-independent vertex weights. There exist positive con-
stants ρe such that the stationary distribution π of a random
walk on H is

πv =
∑

e∈E(v)

ρeω(e)γe(v). (4)

Moreover, ρe can be computed in time O
(
|E|3 + |E|2 · |V |

)
.

Note that while the vertex weights γe(v) can be scaled
arbitrarily without affecting the properties of the random
walk, Theorem 4.1 suggests that ρe is the “correct” scaling
factor.

When the hypergraph has edge-independent vertex weights
(i.e. γe(v) = γ(v) for all incident hyperedges e), ρe =(∑

v∈V γ(v)d(v)
)−1

, leading to the following formula for
the stationary distribution:

πv =
d(v)γ(v)∑

v∈V d(v)γ(v)
. (5)

Furthermore, if the vertex weights are trivial (i.e. γ(v) =
1) then πv = d(v)/

∑
v∈V d(v), recovering the formula

derived in Zhou et al. (2006) for the stationary distribution
of hypergraphs with trivial vertex weights.

4.2. Mixing Time

In this section, we derive a bound on the mixing time of
a random walk on H = (V,E, ω, γ). First, we recall the
definition of the mixing time of a Markov chain.
Definition 4.1. Let M be a Markov chain with states S and
probability transition matrix P . The mixing time of M is

tmix(ε) = min{t ≥ 0 : ||P t(s, ·)− π||TV ≤ ε,∀s ∈ S},

where || · ||TV is the total variation distance.

We derive the following bound on the mixing time for a
random walk on a hypergraph with edge-dependent vertex
weights.
Theorem 4.2. Let H = (V,E, ω, γ) be a hypergraph with
edge-dependent vertex weights. Without loss of generality,
assume ρe = 1 (i.e. by multiplying the vertex weights in
hyperedge e by ρe). Then,

tHmix(ε) ≤
⌈

8β1
Φ2

log

(
1

2ε
√
dminβ2

)⌉
, (6)

where

• Φ is the Cheeger constant of a random walk on H
(Montenegro & Tetali, 2006; Jerison, 2013)
• dmin is the minimum degree of a vertex in H , i.e.
dmin = minv d(v),

• β1 = min
e∈E,v∈e

(
γe(v)

δ(e)

)
,

• β2 = min
e∈E,v∈e

(
γe(v)

)
.

This bound on the mixing time of the hypergraph random
walk has a similar form to the bound on the mixing time
bound for a random walk on a graph (Jerison, 2013). For a
graph G with edge weights w(e) satisfying

∑
v d(v) = 1,

we have,

tGmix(ε) ≤
⌈

2

Φ2
log

(
1

2ε
√
dmin

)⌉
. (7)

Note that both tHmix(ε) and tGmix(ε) have the same depen-
dence on 1/Φ2, log(1/ε), and log(1/

√
dmin). Intuitively,

the additional dependence of tHmix(ε) on β1 and β2 is be-
cause small values of β1 and β2 correspond to the hyper-
graph having vertices that are hard to reach, and the presence
of such vertices increases the mixing time.

5. Hypergraph Laplacian
Let H = (V,E, ω, γ) be a hypergraph with edge-dependent
vertex weights. Since a random walk on H is a Markov
chain, we can model the transition probabilities pHu,v of
the random walk using a weighted directed graph G with
the same vertex set V . Specifically, let G = (V,E′, w′)
be a directed graph with directed edges E′ = {(u, v) :
∃ e ∈ E with u, v ∈ e}, and edge weights w′u,v = pHu,v.
Extending the definition of the Laplacian matrix for directed
graphs (Chung, 2005), we define a Laplacian matrix L for
the hypergraph H as follows.

Definition 5.1 (Random walk-based hypergraph Laplacian).
Let H = (V,E, ω, γ) be a hypergraph with edge-dependent
vertex weights. Let P be the probability transition matrix of
a random walk on H with stationary distribution π. Let Π
be a |V | × |V | diagonal matrix with Πv,v = πv. Then, the
random walk-based hypergraph Laplacian matrix L is

L = Π− ΠP + PT Π

2
. (8)

At first glance, one might hypothesize that the hypergraph
Laplacian L defined above does not model higher-order re-
lations between vertices, since L is defined using a directed
graph containing edges only between pairs of vertices. In-
deed, if H has edge-independent vertex weights, then it is

Random Walks on Hypergraphs

true that L does not model higher-order relations between
vertices. This is because the transition probabilities pHu,v
are completely determined by the edge weights of the undi-
rected clique graph GH (Theorem 3.1). Thus, for each pair
(u, v) of vertices in H , only a single quantity wu,v, which
encodes a pairwise relation between u and v, is required to
define the random walk. As such, the Laplacian matrix L
defined in Equation (8) is equal to the Laplacian matrix of
an undirected graph, showing that L only encodes pairwise
relationships between vertices.

In contrast, when H has edge-dependent vertex weights, the
transition probabilities pHu,v generally cannot be computed
from a single quantity wu,v defined for each pair (u, v) of
vertices (Theorem 3.2). The absence of such a reduction
implies that the transition probabilities pHu,v, which are the
edge weights of the directed graph G′, encode higher-order
relations between vertices. Thus, the Laplacian matrix L
also encodes these higher-order relations.

From Chung (2005), the hypergraph Laplacian matrix L
given in equation (8) is positive semi-definite and has a
Rayleigh quotient for computing its eigenvalues. L can be
used in developing spectral learning algorithms for hyper-
graphs with edge-dependent vertex weights, or to study the
properties of random walks on such hypergraphs. For ex-
ample, the following Cheeger inequality for hypergraphs
follows directly from the Cheeger inequality for directed
graphs (Chung, 2005).

Theorem 5.1 (Cheeger inequality for hypergraphs). Let
H = (V,E, ω, γ) be a hypergraph with edge-dependent
vertex weights. Let L be the Laplacian matrix given in
equation (8), and let Φ be the Cheeger constant of a random
walk on H . Let λi be the non-zero eigenvalues of L, and let
λ = mini λi. We have

Φ2

2
≤ λ ≤ 2Φ. (9)

5.1. Approximating the Hypergraph Laplacian with a
Graph Laplacian

In Section 3, we posed the following question: given a
hypergraph H with edge-dependent vertex weights, can we
find weights on the clique graph GH such that the random
walks of H and G are close? We prove the following result.

Theorem 5.2. Let H = (V,E, ω, γ) be a hypergraph, with
the edge-dependent vertex weights normalized so that ρe =
1 for all hyperedges e. Let GH be the clique graph of H ,
with edge weights

wu,v =
∑

e∈E(u,v)

ω(e)γe(u)γe(v)

δ(e)
. (10)

Let LH , LG be the Laplacians of H and GH , respec-
tively, and let λH1 , λ

G
1 be the second-smallest eigenvalues of

LH , LG, respectively. Then

1

c(H)
λH1 ≤ λG1 ≤ c(H)λH1 , (11)

where c(H) = max
v∈V

(
maxe∈E γe(v)

mine∈E γe(v)

)
.

This theorem says that there exist edge weights wu,v on
GH such that second smallest eigenvalues of the Laplacians
of H and GH are within a constant factor c(H) of each
other, where c(H) is determined by the vertex weights. We
do not know if the edge weights in Equation (10) give the
tightest bound, or if another choice of edge weights on GH

will yield a Laplacian LG that is “closer” to the hypergraph
Laplacians LH .

Interestingly, Zhang et al. (2018a) use a variant of LG as the
Laplacian matrix of a hypergraph with edge-dependent ver-
tex weights, and obtain state-of-the-art results on an object
classification task. Theorem 5.2 provides some theoretical
evidence for why Zhang et al. (2018a) are able to obtain
good results, even with the “wrong” Laplacian.

6. Experiments
We demonstrate the utility of hypergraphs with edge-
dependent vertex weights in two different ranking appli-
cations: ranking authors in an academic citation network,
and ranking players in a video game.

6.1. Citation Network

We construct a citation network of all machine learning
papers from NIPS, ICML, KDD, IJCAI, UAI, ICLR, and
COLT published on or before 10/27/2017, and extracted
from the ArnetMiner database (Tang et al., 2008). We rep-
resent the network as a hypergraph whose vertices V are
authors and whose hyperedges E are papers, such that each
hyperedge e connects the authors of a paper. The hypergraph
has |V | = 28551 vertices and |E| = 25423 hyperedges.

We consider two vertex weighted hypergraphs: HT =
(V,E, ω,1) has trivial vertex weights with γe(v) = 1
for all for all vertices v and incident hyperedges e, and
HD = (V,E, ω, γe) has edge-dependent vertex weights

γe(v) =

{
2 if vertex v is the first or last author of paper,
1 if vertex v is a middle author of paper.

The edge-dependent vertex weights γe(v) model unequal
contributions by different authors. For papers whose authors
are in alphabetical order (as is common in theory papers), we
set vertex weights γe(v) = 1 for all v ∈ e. We set the hyper-
edge weights ω(e) = (number of citations for paper e) + 1
in both hypergraphs.

Random Walks on Hypergraphs

We calculate the stationary distribution of a random walk
with restart on bothHT andHD (restart parameter β = 0.4),
and rank authors v in each hypergraph by their value in the
stationary distribution. This yields two different rankings
of authors: one with edge-independent vertex weights, and
one with edge-dependent vertex weights.

The two rankings have a Kendall τ correlation coefficient
(Kendall, 1938) of 0.77, indicating modest similarity. Ex-
amining individual authors, we typically see that authors
who are first/last authors on their most cited papers have
higher rankings in HD compared to HT , e.g. Ian Good-
fellow (Goodfellow et al., 2014). In contrast, authors who
are middle authors on their most cited papers have lower
rankings in HD relative to their rankings in HT . Table 1
shows the authors with rank above 700 in at least one of the
two hypergraphs, and with the largest gain in rank in HD

relative to HT .

Table 1. Highly ranked authors with the largest increase in rank
when edge-dependent vertex weights are used in the hypergraph
citation network.

Name Rank in HT Rank in HD

Richard Socher 687 382
Zhongzhi Shi 543 304

Daniel Rueckert 619 391
Lars Schmidt-Thieme 673 454

Tat-Seng Chua 650 435
Ian J. Goodfellow 612 413

We emphasize that this example is intended to illustrate how
a straightforward application of vertex weights leads to alter-
native author rankings. We do not anticipate that our simple
scheme for choosing edge-dependent vertex weights will al-
ways yield the best results in practice. For example, Christo-
pher Manning drops in rank when edge-dependent vertex
weights are added, but this is because he is the second-to-
last, and co-corresponding, author on his most cited papers
in the database. A more robust vertex weighting scheme
would include knowledge of such equal-contribution au-
thors, and would also incorporate different relative contribu-
tions of first, middle, and corresponding authors.

6.2. Rank Aggregation

We illustrate the usage of hypergraphs with edge-dependent
vertex weights on the rank aggregation problem. The rank
aggregation problem aims to combine many partial rank-
ings into one complete ranking. Formally, given a universe
{1, 2, ..., n} of items and a collection of partial rankings
τ1, ..., τk (e.g. τi = (3, 1, 5) is a partial ranking expressing
item 3 < item 1 < item 5), a rank aggregation algorithm
should find a permutation σ on {1, 2, ..., n} that is “close”
to the partial rankings τi.

We consider a particular application of rank aggregation:
ranking players in a multiplayer game. Here, the outcome
of a game/match gives a partial ranking τ of the players par-
ticipating in the match. In addition to the ranking, one may
also have additional information such as the scores of each
player in the match. The latter setting has been extensively
studied; classic ranking methods are the ELO (Elo, 1978),
and Glicko (Glickman, 1995) systems that are used to rank
chess players. More recently, online multiplayer games such
as Halo have led to the development of alternative ranking
systems such as Microsoft’s TrueSkill (Herbrich et al., 2006)
and TrueSkill 2 (Minka et al., 2018).

We develop a rank aggregation algorithm that uses random
walks on hypergraphs with edge-dependent vertex weights,
and evaluate the performance of this algorithm on a real-
world datasets of Halo 2 games. In the Supplement, we also
include results on experiments with synthetic data.

Data. We analyze the Halo 2 dataset from the TrueSkill
paper (Herbrich et al., 2006). This dataset contains two
kinds of matches: free-for-all matches with up to 8 players,
and 1-v-1 matches. There are 31028 free-for-all matches
and 5093 1-v-1 matches among 5507 players. Using the
free-for-all matches as partial rankings, we construct rank-
ings of all players in the dataset, and evaluate those rankings
on the 1-v-1 matches.

Methods. A well-known class of rank aggregation algo-
rithms are Markov chain-based algorithms, first developed
by Dwork et al. (2001). Markov-chain based algorithms
create a Markov chain M whose states are the players and
whose the transition probabilities depend in some way on
the partial rankings. The final ranking of players is deter-
mined by sorting the values in the stationary distribution
π of M . In our experiments, we use a random walk with
restart (β = 0.4) instead of just a random walk, so that the
stationary distribution always exists (Tong et al., 2006).

Using the free-for-all matches, we construct rankings of the
players using four algorithms. The first three algorithms use
Markov chains: a random walk on hypergraph H with edge-
dependent vertex weights; a random walk on a clique graph;
and MC3, a Markov chain-based rank aggregation algorithm
designed by Dwork et al. (2001). The fourth algorithm is
TrueSkill (Herbrich et al., 2006).

First, we derive a rank aggregation algorithm using a ran-
dom walk on a hypergraph H = (V,E, ω, γ) with edge-
dependent vertex weights. The vertices V are the players,
and the hyperedgesE correspond to the free-for-all matches.
We set the hyperedge and vertex weights to be

ω(e) = (standard deviation of scores in match e) + 1,

γe(v) = exp[(score of player v in match e)].

This choice of hyperedge weights are inspired by Ding &

Random Walks on Hypergraphs

Yilmaz (2010), who also use variance to define the hyper-
edge weights of their hypergraph. For vertex weights, we
use exp(score). We choose these vertex weights instead of
raw scores for two reasons: first, scores in Halo 5 can be
negative, but vertex weights should be positive, and second,
exponentiating the score gives more importance to the win-
ner of a match. We chose to use relatively simple formulas
for the hyperedge and vertex weights to evaluate the po-
tential benefits of utilizing edge-dependent vertex weights;
further optimization of vertex and edge weights may yield
better performance.

Second, we derive a rank aggregation algorithm using a
random walk on the clique graph GH of hypergraph H
described above, with the edge weights of GH given by
Equation 10. Specifically, if H = (V,E, ω, γ) is the hyper-
graph defined above, then GH is a graph with vertex set V
and edge weights wu,v defined by

wu,v =
∑

e∈E(u,v)

ω(e)γe(u)γe(v)

δ(e)
. (12)

In contrast to Equation 10, here we do not normalize vertex
weights on H so that ρe = 1 for each hyperedge e, since
computing ρe is computationally infeasible on our large
dataset. Instead, we normalize vertex weights so that δ(e) =
1 for all hyperedges e.

Third, we use MC3, a Markov chain-based rank aggregation
algorithm designed by Dwork et al. (2001). MC3 uses the
partial rankings in each match; it does not use the score
information. MC3 is very similar to a random walk on
a hypergraph with edge-independent vertex weights. We
convert the scores from each player in match i into a partial
ranking τi of the players, and use the τi as input to MC3.

Fourth, we use TrueSkill (Herbrich et al., 2006). TrueSkill
models each player’s skill with a normal distribution. We
rank players according to the mean of this distribution. We
also implemented the probabilistic decision procedure for
ranking players from the TrueSkill paper, and found no
difference in performance between ranking by the mean of
the distribution and the probabilistic decision procedure.

Evaluation and Results: We evaluate the rankings of each
algorithm by using them to predict the outcomes of the 1-
v-1 matches. Specifically, given a ranking π of players, we
predict that the winner of a match between two players is
the player with the higher ranking in π. Table 2 shows the
fraction of 1-v-1 matches correctly predicted by each of the
four algorithms. Random walks on the hypergraph with
edge-dependent vertex weights have significantly better per-
formance than both MC3 and random walks on the clique
graphGH , and comparable performance to TrueSkill. More-
over, on 8.9% of 1-v-1 matches, the hypergraph method
correctly predicts the outcome of the match, while TrueSkill

incorrectly predicts the outcome—suggesting that the hy-
pergraph model is capturing some information about the
players that TrueSkill is missing. Unfortunately, we are un-
able to identify any specific pattern in the matches where the
hypergraph predicted the outcome correctly and TrueSkill
predicted incorrectly.

Table 2. Result of ranking players for Halo 2 Dataset.

Correctly Predicted
TrueSkill 73.4%

Hypergraph 71.1%
Clique Graph 61.1%

MC3 52.3%

7. Conclusion
In this paper, we use random walks to develop a spectral
theory for hypergraphs with edge-dependent vertex weights.
We demonstrate both theoretically and experimentally how
edge-dependent vertex weights model higher-order infor-
mation in hypergraphs and improve the performance of
hypergraph-based algorithms. At the same time, we show
that random walks on hypergraphs with edge-independent
vertex weights are equivalent to random walks on graphs,
generalizing earlier results tha showed this equivalence in
special cases (Agarwal et al., 2006).

There are numerous directions for future work. It would be
desirable to evaluate additional applications where hyper-
graphs with edge-dependent vertex weights have previously
been used (e.g. (Zhang et al., 2018a; Li et al., 2018)), re-
placing the Laplacian used in some of these works with
the hypergraph Laplacian introduced in Section 5. Sharper
bounds on the approximation of the hypergraph Laplacian
by a graph Laplacian are also desirable. Another direction
is to examine the relationship between the linear hypergraph
Laplacian matrix introduced here and the nonlinear Lapla-
cian operators that were recently introduced in the case of
trivial vertex weights (Chan et al., 2018) or submodular
vertex weights (Li & Milenkovic, 2017; 2018).

Another interesting direction is in extending graph convo-
lutional neural networks (GCNs) to hypergraphs. Recent
approaches to GCNs implement the graph convolution oper-
ator as a non-linear function of the graph Laplacian (Kipf
& Welling, 2016; Defferrard et al., 2016). GCNs have also
been generalized to hypergraph convolutional neural net-
works (HGCNs), where the convolution layer operates on a
hypergraph with edge-independent vertex weights instead
of a graph (Yadati et al., 2018; Feng et al., 2018). The hyper-
graph Laplacian matrix introduced in this paper would allow
one to extend HGCNs to hypergraphs with edge-dependent
vertex weights.

Random Walks on Hypergraphs

References
Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Krieg-

man, D., and Belongie, S. Beyond pairwise clustering. In
2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pp.
838–845 vol. 2, June 2005.

Agarwal, S., Branson, K., and Belongie, S. Higher order
learning with graphs. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, ICML ’06,
pp. 17–24, New York, NY, USA, 2006. ACM. ISBN
1-59593-383-2. doi: 10.1145/1143844.1143847.

Aldous, D. and Fill, J. A. Reversible Markov Chains and
Random Walks on Graphs. 2002.

Avin, C., Lando, Y., and Lotker, Z. Radio cover time in
hyper-graphs. Ad Hoc Networks, 12:278 – 290, 2014.
ISSN 1570-8705. doi: http://doi.org/10.1016/j.adhoc.
2012.08.010.

Bellaachia, A. and Al-Dhelaan, M. Random walks in hyper-
graph. In Proceedings of the 2013 International Confer-
ence on Applied Mathematics and Computational Meth-
ods, Venice Italy, pp. 187–194, 2013.

Brin, S. and Page, L. The anatomy of a large-scale hy-
pertextual web search engine. In Seventh International
World-Wide Web Conference (WWW 1998), 1998.

Chan, T.-H. H., Louis, A., Tang, Z. G., and Zhang, C. Spec-
tral properties of hypergraph laplacian and approxima-
tion algorithms. J. ACM, 65(3):15:1–15:48, March 2018.
ISSN 0004-5411. doi: 10.1145/3178123.

Chung, F. Laplacians and the cheeger inequality for directed
graphs. Annals of Combinatorics, 9(1):1–19, Apr 2005.
ISSN 0219-3094. doi: 10.1007/s00026-005-0237-z.

Cooper, C., Frieze, A., and Radzik, T. The cover times of
random walks on random uniform hypergraphs. Theoret-
ical Computer Science, 509:51 – 69, 2013. ISSN 0304-
3975. doi: http://dx.doi.org/10.1016/j.tcs.2013.01.020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. CoRR, abs/1606.09375, 2016.

Ding, L. and Yilmaz, A. Interactive image segmentation
using probabilistic hypergraphs. Pattern Recognition, 43
(5):1863 – 1873, 2010. ISSN 0031-3203.

Ducournau, A. and Bretto, A. Random walks in directed
hypergraphs and application to semi-supervised image
segmentation. Comput. Vis. Image Underst., 120:91–102,
March 2014. ISSN 1077-3142. doi: 10.1016/j.cviu.2013.
10.012.

Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank
aggregation methods for the web. In Proceedings of
the 10th International Conference on World Wide Web,
WWW ’01, pp. 613–622, New York, NY, USA, 2001.
ACM. ISBN 1-58113-348-0. doi: 10.1145/371920.
372165.

Elo, A. E. The rating of chessplayers, past and present.
Arco Pub., New York, 1978. ISBN 0668047216
9780668047210.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. CoRR, abs/1809.09401, 2018.

Glickman, M. E. The glicko system. Boston University,
1995.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Harel, D. and Koren, Y. On clustering using random walks.
In Proceedings of the 21st Conference on Foundations
of Software Technology and Theoretical Computer Sci-
ence, FST TCS ’01, pp. 18–41, Berlin, Heidelberg, 2001.
Springer-Verlag. ISBN 3-540-43002-4.

Herbrich, R., Minka, T., and Graepel, T. TrueskillTM: A
bayesian skill rating system. In Proceedings of the 19th
International Conference on Neural Information Process-
ing Systems, NIPS’06, pp. 569–576, Cambridge, MA,
USA, 2006. MIT Press.

Huang, Y., Liu, Q., Zhang, S., and Metaxas, D. N. Image
retrieval via probabilistic hypergraph ranking. In 2010
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 3376–3383, June 2010. doi:
10.1109/CVPR.2010.5540012.

Jamali, M. and Ester, M. Trustwalker: A random walk
model for combining trust-based and item-based recom-
mendation. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pp. 397–406, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-495-9. doi:
10.1145/1557019.1557067.

Jerison, D. General mixing time bounds for finite markov
chains via the absolute spectral gap, October 2013.

Kendall, M. G. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. ISSN 00063444.

Kim, S., Nowozin, S., Kohli, P., and Yoo, C. D. Higher-
order correlation clustering for image segmentation. In
Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F.,

Random Walks on Hypergraphs

and Weinberger, K. Q. (eds.), Advances in Neural Infor-
mation Processing Systems 24, pp. 1530–1538. Curran
Associates, Inc., 2011.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. CoRR,
abs/1609.02907, 2016.

Li, J., He, J., and Zhu, Y. E-tail product return prediction
via hypergraph-based local graph cut. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’18, pp.
519–527, New York, NY, USA, 2018. ACM. ISBN 978-
1-4503-5552-0.

Li, P. and Milenkovic, O. Inhomogeneous hypergraph clus-
tering with applications. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30, pp. 2308–2318. Curran Asso-
ciates, Inc., 2017.

Li, P. and Milenkovic, O. Submodular hypergraphs: p-
laplacians, Cheeger inequalities and spectral clustering.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 3014–
3023, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

Minka, T., Cleven, R., and Zaykov, Y. Trueskill 2: An
improved bayesian skill rating system. March 2018.

Montenegro, R. and Tetali, P. Mathematical aspects of
mixing times in markov chains. Found. Trends Theor.
Comput. Sci., 1(3):237–354, May 2006. ISSN 1551-305X.
doi: 10.1561/0400000003.

Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clus-
tering: Analysis and an algorithm. In Proceedings of
the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, pp.
849–856, Cambridge, MA, USA, 2001. MIT Press.

Ramadan, E., Tarafdar, A., and Pothen, A. A hypergraph
model for the yeast protein complex network. In 18th
International Parallel and Distributed Processing Sym-
posium, 2004. Proceedings., pp. 189–, April 2004. doi:
10.1109/IPDPS.2004.1303205.

Ritz, A., Tegge, A. N., Kim, H., Poirel, C. L., and Murali, T.
Signaling hypergraphs. Trends in Biotechnology, 32(7):
356 – 362, 2014. ISSN 0167-7799. doi: http://doi.org/10.
1016/j.tibtech.2014.04.007.

Rodriguez-Velazquez, J. A. On the laplacian eigenvalues
and metric parameters of hypergraphs. Linear and Multi-
linear Algebra, 50:1–14, 03 2002.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z.
Arnetminer: Extraction and mining of academic social
networks. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’08, pp. 990–998, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-193-4. doi: 10.
1145/1401890.1402008.

Tong, H., Faloutsos, C., and Pan, J. Fast random walk
with restart and its applications. In Sixth International
Conference on Data Mining (ICDM’06), pp. 613–622,
Dec 2006. doi: 10.1109/ICDM.2006.70.

Yadati, N., Nimishakavi, M., Yadav, P., Louis, A., and Taluk-
dar, P. Hypergcn: Hypergraph convolutional networks for
semi-supervised classification. CoRR, abs/1809.02589,
2018.

Yang, W., Wang, G., Bhuiyan, M. Z. A., and Choo, K.-K. R.
Hypergraph partitioning for social networks based on
information entropy modularity. Journal of Network and
Computer Applications, 86:59 – 71, 2017. ISSN 1084-
8045. Special Issue on Pervasive Social Networking.

Zeng, K., Wu, N., Sargolzaei, A., and Yen, K. Learn to
rank images: A unified probabilistic hypergraph model
for visual search. Mathematical Problems in Engineering,
2016:1–7, 01 2016. doi: 10.1155/2016/7916450.

Zhang, Z., Lin, H., and Gao, Y. Dynamic hypergraph struc-
ture learning. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 3162–3169. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2018a.

Zhang, Z., Lin, H., Zhao, X., Ji, R., and Gao, Y. Inductive
multi-hypergraph learning and its application on view-
based 3d object classification. IEEE Transactions on
Image Processing, 27(12):5957–5968, Dec 2018b.

Zhou, D., Huang, J., and Schölkopf, B. Learning with
hypergraphs: Clustering, classification, and embedding.
In Proceedings of the 19th International Conference on
Neural Information Processing Systems, NIPS’06, pp.
1601–1608, Cambridge, MA, USA, 2006. MIT Press.

