
Neural Joint Source-Channel Coding

Supplementary Material

A. NECST architecture and hyperparameters
A.1. MNIST

For MNIST, we used the static binarized version as provided
in (Burda et al. (2015)) with train/validation/test splits of
50K/10K/10K respectively.

• encoder: MLP with 1 hidden layer (500 hidden units),
ReLU activations

• decoder: 2-layer MLP with 500 hidden units each,
ReLU activations. The final output layer has a
sigmoid activation for learning the parameters of
pnoisy enc(y|x;�, ✏)

• n bits: 100

• n epochs: 200

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.001

A.2. Omniglot

We statically binarize the Omniglot dataset by rounding
values above 0.5 to 1, and those below to 0. The architecture
is the same as that of the MNIST experiment.

• n bits: 200

• n epochs: 500

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.001

A.3. Random bits

We randomly generated length-100 bitstrings by drawing
from a Bern(0.5) distribution for each entry in the bitstring.
The train/validation/test splits are: 5K/1K/1K. The architec-
ture is the same as that of the MNIST experiment.

• n bits: 50

• n epochs: 200

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.001

A.4. SVHN

For SVHN, we collapse the ”easier” additional examples
with the more difficult training set, and randomly partition
10K of the roughly 600K dataset into a validation set.

• encoder: CNN with 3 convolutional layers + fc layer,
ReLU activations

• decoder: CNN with 4 deconvolutional layers, ReLU
activations.

• n bits: 500

• n epochs: 500

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.001

The CNN architecture for the encoder is as follows:

1. conv1 = n filters=128, kernel size=2, strides=2,
padding=”VALID”

2. conv2 = n filters=256, kernel size=2, strides=2,
padding=”VALID”

3. conv3 = n filters=512, kernel size=2, strides=2,
padding=”VALID”

4. fc = 4*4*512 ! n bits, no activation

The decoder architecture follows the reverse, but with a final
deconvolution layer as: n filters=3, kernel size=1, strides=1,
padding=”VALID”, activation=ReLU.

A.5. CIFAR10

We split the CIFAR10 dataset into train/validation/test splits.

• encoder: CNN with 3 convolutional layers + fc layer,
ReLU activations

• decoder: CNN with 4 deconvolutional layers, ReLU
activations.

• n bits: 500

• n epochs: 500

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.001

The CNN architecture for the encoder is as follows:



Neural Joint Source-Channel Coding

1. conv1 = n filters=64, kernel size=3, padding=”SAME”

2. conv2 = n filters=32, kernel size=3, padding=”SAME”

3. conv3 = n filters=16, kernel size=3, padding=”SAME”

4. fc = 4*4*16 ! n bits, no activation

Each convolution is followed by batch normalization, a
ReLU nonlinearity, and 2D max pooling. The decoder ar-
chitecture follows the reverse, where each deconvolution is
followed by batch normalization, a ReLU nonlinearity, and a
2D upsampling procedure. Then, there is a final deconvolu-
tion layer as: n filters=3, kernel size=3, padding=”SAME”
and one last batch normalization before a final sigmoid
nonlinearity.

A.6. CelebA

We use the CelebA dataset with standard train/validation/test
splits with minor preprocessing. First, we align and crop
each image to focus on the face, resizing the image to be
(64, 64, 3).

• encoder: CNN with 5 convolutional layers + fc layer,
ELU activations

• decoder: CNN with 5 deconvolutional layers, ELU
activations.

• n bits: 1000

• n epochs: 500

• batch size: 100

• L2 regularization penalty of encoder weights: 0.001

• Adam optimizer with lr=0.0001

The CNN architecture for the encoder is as follows:

1. conv1 = n filters=32, kernel size=4, strides=2,
padding=”SAME”

2. conv2 = n filters=32, kernel size=4, strides=2,
padding=”SAME”

3. conv3 = n filters=64, kernel size=4, strides=2,
padding=”SAME”

4. conv4 = n filters=64, kernel size=4, strides=2,
padding=”SAME”

5. conv5 = n filters=256, kernel size=4, strides=2,
padding=”VALID”

6. fc = 256 ! n bits, no activation

The decoder architecture follows the reverse, but without the
final fully connected layer and the last deconvolutional layer
as: n filters=3, kernel size=4, strides=2, padding=”SAME”,
activation=sigmoid.

B. Additional experimental details and results
B.1. WebP/JPEG-Ideal Channel Code System

For the BSC channel, we can compute the theoretical chan-
nel capacity with the formula C = 1 � Hb(✏), where ✏

denotes the bit-flip probability of the channel and Hb de-
notes the binary entropy function. Note that the commu-
nication rate of C is achievable in the asymptotic scenario
of infinitely long messages; in the finite bit-length regime,
particularly in the case of short blocklengths, the highest
achievable rate will be much lower.

For each image, we first obtain the target distortion d per
channel noise level by using a fixed bit-length budget with
NECST. Next we use the JPEG compressor to encode the
image at the distortion level d. The resulting size of the
compressed image f(d) is used to get an estimate f(d)/C
for the number of bits used for the image representation
in the ideal channel code scenario. While measuring the
compressed image size f(d), we ignore the header size of
the JPEG image, as the header is similar for images from
the same dataset.

The plots compare f(d)/C with m, the fixed bit-length
budget for NECST.

B.2. Fixed Rate: JPEG-LDPC system

We first elaborate on the usage of the LDPC software. We
use an optimized C implementation of LDPC codes to run
our decoding time experiments:
(http://radfordneal.github.io/LDPC-codes/).
The procedure is as follows:

• make-pchk to create a parity check matrix for a reg-
ular LDPC code with three 1’s per column, eliminat-
ing cycles of length 4 (default setting). The number
of parity check bits is: total number of bits
allowed - length of codeword.

• make-gen to create the generator matrix from the
parity check matrix. We use the default dense setting
to create a dense representation.

• encode to encode the source bits into the LDPC en-
coding

• transmit to transmit the LDPC code through a bsc
channel, with the appropriate level of channel noise
specified (e.g. 0.1)



Neural Joint Source-Channel Coding

(a) BinaryMNIST (b) Omniglot (c) random

Figure 5. Theoretical m required for JPEG + ideal channel code to match NECST’s distortion.

• extract to obtain the actual decoded bits, or
decode to directly obtain the bit errors from the
source to the decoding.

LDPC-based channel codes require larger blocklengths to
be effective. To perform an end-to-end experiment with the
JPEG compression and LDPC channel codes, we form the
input by concatenating multiple blocks of images together
into a grid-like image. In the first step, the fixed rate of
m is scaled by the total number of images combined, and
this quantity is used to estimate the target f(d) to which we
compress the concatenated images. In the second step, the
compressed concatenated image is coded together by the
LDPC code into a bit-string, so as to correct for any errors
due to channel noise.

Finally, we decode the corrupted bit-string using the LDPC
decoder. The plots compare the resulting distortion of the
compressed concatenated block of images with the average
distortion on compressing the images individually using
NECST. Note that, the experiment gives a slight disadvan-
tage to NECST as it compresses every image individually,
while JPEG compresses multiple images together.

We report the average distortions for sampled images from
the test set.

Unfortunately, we were unable to run the end-to-end for
some scenarios and samples due to errors in the decoding
(LDPC decoding, invalid JPEGs etc.).

B.3. VAE-LDPC system

For the VAE-LDPC system, we place a uniform prior over
all the possible latent codes and compute the KL penalty
term between this prior p(y) and the random variable
qnoisy enc(y|x;�, ✏). The learning rate, batch size, and choice
of architecture are data-dependent and fixed to match those
of NECST as outlined in Section C. However, we use half
the number of bits as allotted for NECST so that during
LDPC channel coding, we can double the codeword length
in order to match the rate of our model.

B.4. Interpolation in Latent Space

We show results from latent space interpolation for two
additional datasets: SVHN and celebA. We used 500 bits
for SVHN and 1000 bits for celebA across channel noise
levels of [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].

B.5. Markov chain image generation

We observe that we can generate diverse samples from the
data distribution after initializing the chain with both: (1)
examples from the test set and (2) random Gaussian noise
x0 ⇠ N (0, 0.5).

B.6. Downstream classification

Following the setup of (Grover & Ermon (2019)), we used
standard implementations in sklearn with default param-
eters for all 8 classifiers with the following exceptions:

1. KNN: n neighbors=3

2. DF: max depth=5

3. RF: max depth=5, n estimators=10,
max features=1

4. MLP: alpha=1

5. SVC: kernel=linear, C=0.025



Neural Joint Source-Channel Coding

Figure 6. Latent space interpolation of 5 ! 2 for SVHN, 500 bits at noise=0.1

Figure 7. Latent space interpolation for celebA, 1000 bits at noise=0.1

(a) MNIST, initialized from ran-
dom noise

(b) celebA, initialized from data (c) SVHN, initialized from data

Figure 8. Markov chain image generation after 9000 timesteps, sampled per 1000 steps


