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Abstract
Despite significant recent advances in deep neural
networks, training them remains a challenge due
to the highly non-convex nature of the objective
function. State-of-the-art methods rely on error
backpropagation, which suffers from several well-
known issues, such as vanishing and exploding
gradients, inability to handle non-differentiable
nonlinearities and to parallelize weight-updates
across layers, and biological implausibility. These
limitations continue to motivate exploration of al-
ternative training algorithms, including several re-
cently proposed auxiliary-variable methods which
break the complex nested objective function into
local subproblems. However, those techniques
are mainly offline (batch), which limits their ap-
plicability to extremely large datasets, as well
as to online, continual or reinforcement learning.
The main contribution of our work is a novel
online (stochastic/mini-batch) alternating mini-
mization (AM) approach for training deep neural
networks, together with the first theoretical con-
vergence guarantees for AM in stochastic settings
and promising empirical results on a variety of
architectures and datasets.

1. Introduction
Backpropagation (backprop) (Rumelhart et al., 1986) has
been the workhorse of neural net learning for several
decades, and its practical effectiveness is demonstrated by
recent successes of deep learning in a wide range of applica-
tions. Backprop (chain rule differentiation) is used to com-
pute gradients in state-of-the-art learning algorithms such
as stochastic gradient descent (SGD) (Robbins & Monro,
1985) and its variations (Duchi et al., 2011; Tieleman &
Hinton, 2012; Zeiler, 2012; Kingma & Ba, 2014).

However, backprop has several drawbacks as well, including
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the commonly known vanishing gradient issue, resulting
from recursive application of the chain rule through multi-
ple layers of deep and/or recurrent networks (Bengio et al.,
1994; Riedmiller & Braun, 1993; Hochreiter & Schmidhu-
ber, 1997; Pascanu et al., 2013; Goodfellow et al., 2016).
Although several approaches were proposed to address this
issue, including Long Short-Term Memory (Hochreiter &
Schmidhuber, 1997), RPROP (Riedmiller & Braun, 1993),
and rectified linear units (ReLU) (Nair & Hinton, 2010),
the fundamental problem with computing gradients of a
deeply nested objective function remains. Moreover, back-
propagation does not apply directly to non-differentiable
nonlinearities and does not allow parallel weight updates
across the layers (Le et al., 2011; Carreira-Perpiñán & Wang,
2014; Taylor et al., 2016).

Also, besides its computational issues, backprop is often
criticized from a neuroscience perspective as a biologically
implausible learning mechanism (Lee et al., 2015; Bartunov
et al., 2018; Krotov & Hopfield, 2019; Sacramento et al.,
2018; Guerguiev et al., 2017), due to multiple factors includ-
ing the need for "a distinct form of information propagation
(error feedback) that does not influence neural activity, and
hence does not conform to known biological feedback mech-
anisms underlying neural communication" (Bartunov et al.,
2018)1.

The issues mentioned above continue to motivate research
on alternative algorithms for neural net learning. Several
approaches were proposed recently, introducing auxiliary
variables associated with hidden unit activations in order
to decompose the highly coupled problem of optimizing a
nested loss function into multiple, loosely coupled, simpler
subproblems. These include alternating direction method of
multipliers (ADMM) (Taylor et al., 2016; Zhang et al., 2016)
and alternating-minimization or block coordinate descent
(BCD) methods (Carreira-Perpiñán & Wang, 2014; Zhang
& Brand, 2017; Zhang & Kleijn, 2017; Askari et al., 2018;
Zeng et al., 2018; Lau et al., 2018; Gotmare et al., 2018).

A similar formulation, using Lagrange multipliers, was pro-

1Gradient chain computation yields non-local synaptic weight
updates which depend on the activity and computations of all
downstream neurons, rather than only local signals from adjacent
neurons (Whittington & Bogacz, 2019; Krotov & Hopfield, 2019).



Online Alternating Minimization

posed earlier in (LeCun, 1986; 1987; LeCun et al., 1988),
where a constrained formulation involving activations re-
quired the output of the previous layer to be equal to the in-
put of the next layer, leading to the target propagation algo-
rithm and recent extensions (Lee et al., 2015; Bartunov et al.,
2018) (unlike BCD and ADMM, target prop uses layer-
wise inverses of the forward mappings). These methods are
viewed as somewhat more bio-plausible alternatives to back-
prop due to explicit propagation of (noisy/nondeterministic)
neuronal activity and (layer-)local synaptic updates (see
(Bartunov et al., 2018) for details). Note that the above bio-
plausibility arguments are equally applicable to auxiliary-
variable methods based on explicit optimization of (noisy)
neural activations, and breaking the weight update problem
into local, layer-wise optimization subproblems.

In this paper, we propose a novel activation-propagation
approach, which, similarly to prior BCD and ADMM ap-
proaches, performs alternating minimization of network
weights and auxiliary activation variables. However, unlike
those methods, which all assume an offline (batch) setting
and require the full training dataset at each iteration, our
method is an online, incremental learning approach, that
performs stochastic (minibatch) alternating minimization
(AM). Two variants of AM are proposed, AM-Adam and
AM-mem, which use different approaches for optimizing
local subproblems.

Note that, unlike ADMM-based methods (Taylor et al.,
2016; Zhang et al., 2016) and some previously proposed
BCD methods (Zeng et al., 2018), our approach does not
require Lagrange multipliers and only uses one set of aux-
iliary variables per layer: it is as memory-efficient as
standard SGD, which stores activation values for gradient
computations. The same distinction, along with multiple
others (discussed in Supplementary Material), exists be-
tween our method and another recently proposed alternating-
minimization scheme, ProxProp (Thomas Frerix, 2018).
Also, we assume arbitrary loss functions and nonlinearities
(unlike, for example, (Zhang & Brand, 2017) which assumes
ReLU nonlinearities), and perform extensive empirical eval-
uation beyond the fully-connected networks, commonly
used to evaluate auxiliary-variable methods.

In summary, our contributions include:

• algorithm(s): a novel online (mini-batch) auxiliary-
variable approach for training neural networks without
the gradient chain rule of backprop; unlike prior offline
(batch) auxiliary-variable algorithms, our method can
scale to arbitrarily large datasets and is applicable in
continual and reinforcement learning settings;

• theory: to the best of our knowledge, we propose the
first general theoretical convergence guarantees of al-
ternating minimization in the stochastic setting. We
show that the error of AM decays at the sub-linear rate

O((1/t)3/2 + 1/t) as a function of the iteration t;
• extensive empirical evaluation on a variety of network

architectures and datasets, demonstrating significant
advantages of our method vs. offline counterparts, as
well as somewhat faster initial convergence as com-
pared to SGD and Adam, followed by similar asymp-
totic performance;

• our online method inherits common advantages of sim-
ilar offline auxiliary-variable methods, including (1) no
vanishing gradients, (2) handling of non-differentiable
nonlinearities more easily in local subproblems, and
(3) the possibility for parallelizing weight updates
across layers;

• similarly to target propagation approaches (LeCun,
1986; 1987; Lee et al., 2015; Bartunov et al., 2018), our
method is based on an explicit propagation of neural
activity and local synaptic updates, which is one step
closer to a more biologically plausible credit assign-
ment mechanism than backprop; see (Bartunov et al.,
2018) for a detailed discussion on this topic.

2. Alternating Minimization: Breaking
Gradient Chains with Auxiliary Variables

We denote as (X,Y ) = {(x1,y1), ..., (xn,yn)} a dataset
of n labeled samples, where xt and yt are the sample and
its (vector) label at time t, respectively (e.g., one-hot m-
dimensional vector y encoding discrete labels with m possi-
ble values). We assume x ∈ RN , and y ∈ {0, 1}m. Given
a fully-connected neural network with L hidden layers,W j

denotes the mj ×mj−1 link weight matrix associated with
the links from layer j−1 to layer j, wheremj is the number
of nodes at layer j. WL+1 denotes the mL × m weight
matrix connecting the last hidden layer L with the output.
We denote the set of all weightsW = {W 1, ...,WL+1}.

Optimization problem. Training a fully-connected
neural network with L hidden layers consists of
minimizing, with respect to weights W , the loss
L(y, f(W ,xL)) involving a nested function f(W ,xL) =
fL+1(WL+1, fL(WL, fL−1(WL−1, ...f1(W 1,x)...);
this can be re-written as constrained optimization:

min
W

∑n
t=1 L(yt,a

L
t ,W

L+1), where alt = σl(c
l
t),

s.t. clt = W lal−1
t , l = 1, ..., L, and at

0 = xt.(1)

In the above formulation, we use alt as shorthand (not a
new variable) denoting the activation vector of hidden units
in layer l, where σ is a nonlinear activation function (e.g,
ReLU, tanh, etc) applied to code cl, a new auxiliary vari-
able that must be equal to a linear transformation of the
previous-layer activations.

For classification problems, we use the multinomial loss as
our objective function: L(y,x,W ) = − logP (y|x,W )
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= −
m∑
i=1

yi(w
T
i x) + log (

m∑
l=1

exp (wT
l x)), (2)

where wi is the ith column of W , yi is the ith

entry of the one-hot vector encoding y, and the
class likelihood is modeled as P (yi = 1|x,W ) =
exp (wT

i x)/
∑m
l=1 exp (wT

l x).

Offline Alternating Minimization. We start with an of-
fline optimization problem formulation, for a given dataset
of n samples, which is similar to (Carreira-Perpiñán &
Wang, 2014) but uses multinomial instead of quadratic loss,
and a different set of auxiliary variables. Namely, we use
the following relaxation of the constrained formulation in
eq. 1:

f(W ,C) =

n∑
t=1

L(yt, σL(cLt ),WL+1)

+ µ

n∑
t=1

L∑
l=1

||clt −W
lσl−1(cl−1

t )||22.
(3)

This problem can be solved by alternating minimization
(AM), or block-coordinate descent (BCD), over weights
W = {W 1, ...,WL+1} and codes C = {c1

1, ..., c
L
1 ,

...c1
n, ..., c

L
n , }. Each iteration involves optimizing W for

fixed C, followed by fixing W and optimizing C. The
parameter µ > 0 acts as a regularization weight. As in
(Carreira-Perpiñán & Wang, 2014), we use an adaptive
scheme for gradually increasing µ over iterations2

Online Alternating Minimization. The offline alternating
minimization outlined above is not scalable to extremely
large datasets (even data-parallel methods, such as (Tay-
lor et al., 2016), are inherently limited by the number
of cores available), and not suitable for incremental, con-
tinual/lifelong (Ring, 1994; Thrun, 1995; 1998) or rein-
forcement learning scenarios with potentially infinite data
streams. To overcome those limitations, we propose a gen-
eral online AM algorithmic scheme and present two specific
algorithms which differ in optimization approaches used
for updating W ; both algorithms are later evaluated and
compared empirically.

Our approach is outlined in Algorithms 2.1, 2.2, and 2.3,
omitting implementation details such as the adaptive µ
schedule, hyperparameters controlling the number of iter-
ations in optimization subroutines, and several others; we
will make our code available online. As an input, the method
takes an initialW (e.g., random), initial penalty weight µ,
learning rate for the predictive layer, η, and a Boolean vari-
able Mem, indicating which optimization method to use
for W updates; if Mem = 1, a memory-based approach

2 Note that sparsity (l1 regularization) on both c and W could
be easily added to the objective in eq. 3 and would not change the
computational complexity of the algorithms detailed below (we
can use proximal instead of gradient methods).

(discussed below) is selected, and initial memory matrices
A0, B0 (described below) will be provided (typically, both
are initialized to all zeros unless we want to retain the mem-
ory of some prior learning experience, e.g. in a continual
learning scenario). The algorithm processes samples one at
a time (but can easily be generalized to mini-batches); the
current sample is encoded in its representations at each layer
(encodeInput procedure, Algorithm 2.2), and an output pre-
diction is made based on such encodings. The prediction
error is computed, and the backward code updates follow as
shown in the updateCodes procedure, where the code vec-
tor at layer l is optimized with respect to the only two parts
of the global objective that the code variables participate in.
Once the codes are updated, the weights can be optimized
in parallel across the layers (in updateWeights procedure,
Algorithm 2.3) since fixing codes breaks the weight opti-
mization problem into layer-wise independent subproblems.
We next discuss each step in detail.

Algorithm 2.1 Online Alternating Minimization (AM)
Require: (x,y) ∼ p(x, y) (data stream sampled from distri-

bution p(x,y); initial weights W 0; µ ∈ R+ (quadratic
penalty weight); η ∈ R+ (top-layer weight update step size);
Mem (indicates the type of optimization method for up-
dateWeights; if "yes", input initial memory matrices A0

and B0).

1: while more samples do
2: Input (xt, yt)
3: C ← encodeInput( xt, W t−1) % forward: compute lin-

ear activations at layers 1, ..., L
4: C ← updateCodes( C, yt, W t−1, µ) % backward: error

propagation by activation (code) changes
5: W t ← updateWeights(W t−1, xt, yt, C, µ, η, Mem)
6: end while
7: return W t

Algorithm 2.2 Activation Propagation (Code Update) Steps
encodeInput( x,W )

1: c0 = x
2: for l = 1 to L do
3: cl = W lσl−1(c

l−1)
% σ0(x) = x, σl(x) = ReLU(x) for l = 1, ..., L

4: end for
5: return C

updateCodes(C, y,W , λC , µ)
1: cL ← Solve Problem (4), c0 = x
2: for l = L− 1 to 1 do
3: cl ← Solve Problem (5)
4: end for
5: return C

Activation propagation: forward and backward passes.
In an online setting, we only have access to the current
sample xt at time t, and thus can only compute the cor-
responding codes clt using the weights computed so far.
Namely, given input xt, we compute the last-layer activa-
tions aLt = σL(cLt ) in a forward pass, propagating activa-
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Algorithm 2.3 Weight and Memory Update Steps
updateWeights(W , x, y, C, µ, η, Mem)

1: WL+1 = WL+1 − η∇WL(y, σL(c
L),WL+1)

2: for l = 1 to L do
3: if Mem then
4: (Al

t,B
l
t)← updateMemory( Al

t−1, Bl
t−1, Cl)

5: % f̂ l(W l) ≡ Tr(W TWAl)− 2Tr(W TBl)

6: W l = argminW f̂ l(W )
7: else
8: %(parallel) local update of each layer weights,
9: %(independently of other layers (unlike backprop)

10: W l ← SGD(W l, x, y, Cl, µ, η)
11: end if
12: end for
13: return W

updateMemory(A, B, C)
1: for l = 1 to L do
2: a = σl−1(c

l−1), Al ← Al + aaT , Bl ← Bl + claT

3: end for
4: return A,B

tions from input to the last layer, and make a prediction
about yt, incurring the loss L(yt,a

L
t ,W

L+1). We now
propagate this error back to all activations. This is achieved
by solving a sequence of optimization problems:

cL = arg minc L(y, σL(c),WL+1)

+ µ||c−WLσL−1(cL−1)||22
(4)

cl = arg minc µ||cl+1 −W l+1σl(c)||22
+ µ||c−W lσl−1(cl−1)||22,

(5)

for l = L− 1, ..., 1.
Weights Update Step. Different online (stochastic) opti-
mization methods can be applied to update the weights at
each layer, using a surrogate objective function defined
more generally than in (Mairal et al., 2009) as follows:
f̂[t′:t](W ) = f(W ,C [t′:t]), where f is defined in eq. 3
and C [t′:t] denotes codes for all samples from time t′ to
time t, computed at previous iterations. When t′ = 1, we
simplify the notation to f̂t(W ), and when t′ = t, the sur-
rogate is the same as the true objective on the current-time
codes f(W ,Ct). The surrogate objective decomposes into
L+ 1 independent terms, f̂t(W ) =

∑L+1
l=1 f̂ lt(W

l), which
allows for parallel weight optimization across all layers:

WL+1 = arg min
W

{
f̂L+1
t (W ) ≡

t∑
i=1

L(yi, σL(cLi ),W )

}
.

For layers l = 1, ..., L, we have

W l = arg min
W

{
f̂ lt(W ) ≡ µ

t∑
i=1

‖cli −Wσl−1(cl−1
i )‖22

}
.

(6)

In general, computing a surrogate function with t′ < t
would require storing all samples and codes in that time
interval. Thus, for theWL+1 update, we always use t′ = t
(current sample), and optimize fL+1(W ) via stochastic gra-
dient descent (SGD) (step 1 in updateWeights, Algorithm
2.3). However, in case of quadratic loss (intermediate lay-
ers), we have more options. One is to use SGD again, or its
adaptive-rate version such as Adam. This option is selected
when Mem = False is passed to updateWeights function
in Algorithm 2.3. We call that method AM-Adam.

Alternatively, we can use the memory-efficient surrogate-
function computation as in (Mairal et al., 2009), where
t′ = 1, i.e. the surrogate function accumulates the memory
of all previous samples and codes, as described below; we
hypothesize that such an approach, here called AM-mem,
can be useful in continual learning as a potential mechanism
to alleviate the catastrophic forgetting issue.

Co-Activation Memory. We now summarize the memory-
based approach. Denoting activation in layer l as al =
σl(c

l), and following (Mairal et al., 2009), we can rewrite
the above objective in eq. 6 using the following:
t∑
i=1

||cli −Wali||22 = Tr(W TWAl
t)− 2Tr(W TBl

t), (7)

where Al
t =

∑t
i=1 a

l−1
i (al−1

i )T and Bl
t =∑t

i=1 c
l
i(a

l−1
i )T are the “memory” matrices (i.e. co-

activation memories), compactly representing the
accumulated strength of co-activations in each layer
(matrices Alt, i.e. covariances) and across consecutive
layers (matricesBlt, or cross-covariances). At each iteration
t, once the new input sample xt is encoded, the matrices
are updated (updateMemory function, Algorithm 2.3) as

At ← At + al−1
t (al−1

t )T andB ← Bt + clt(a
l−1
t )T .

It is important to note that, using memory matrices, we are
effectively optimizing the weights at iteration t with respect
to all previous samples and their previous linear activations
at all layers, without the need for an explicit storage of these
examples. Clearly, AM-SGD is even more memory-efficient
since it does not require any memory matrices. Finally, to
optimize the quadratic surrogate in eq. 7, we follow (Mairal
et al., 2009) and use block-coordinate descent, iterating over
the columns of the corresponding weight matrices; however,
rather than always iterating until convergence, we make the
number of such iterations an additional hyperparameter.

3. Theoretical analysis
We will next provide theoretical convergence analysis for a
general stochastic alternating minimization (AM) scheme.
Under certain assumptions that we will discuss, the algo-
rithms proposed in the previous section fall into the category
of approaches that comply with these guarantees, although
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our theory is applicable to a wider family of AM algorithms.
To the best of our knowledge, we provide the first theoretical
convergence guarantees of AM in the stochastic setting.

Setting. Let in general f(θ1,θ2, . . . ,θK) denote the func-
tion to be optimized using AM, where in the ith step of the
algorithm, we optimize f with respect to θi and keep other
arguments fixed. Let K denote total number of arguments.
For the theoretical analysis, we consider a smooth approxi-
mation to f as done in the literature (Schmidt et al., 2007;
Lange et al., 2014).

Let {θ∗1,θ
∗
2, . . . ,θ

∗
K} denote the global optimum of f com-

puted on the entire data population. For the sake of the
theoretical analysis we assume that the algorithm knows the
lower-bound on the radii of convergence r1, r2, . . . , rK for
θ1,θ2, . . . ,θK .3 Let ∇if1 denote the gradient of f com-
puted for a single data sample (x,y) and taken with respect
to the ith argument of the function f (weights or codes from
Algorithm 2.1). In the next section, we refer to ∇if(·) as
the gradient of f with respect to θi computed for the entire
data population, i.e. an infinite number of samples (“oracle
gradient”). We assume in the ith step (i = 1, 2, . . . ,K), the
AM algorithm performs the update:

θt+1
i =Πi(θ

t
i−ητ∇if1(θt+1

1 , . . . ,θt+1
i−1,θ

t
i,θ

t
i+1, . . . ,θ

t
K)),
(8)

where t denotes time, Πi denotes the projection onto the
Euclidean ball B2( ri2 ,θ

0
i ) of some given radius ri

2 centered
at the initial iterate θ0

i . Thus, given any initial vector θ0
i

in the ball of radius ri
2 centered at θ∗i , we are guaranteed

that all iterates remain within an ri-ball of θ∗i . This is
true for all i = 1, 2, . . . ,K. The re-projection step of eq. 8
implies that starting close enough to the optimum and taking
small steps leads to convergence rate of Theorem 3.1. The
radiuses dictate how convergence is affected if the iterates
stray further from the optimum through the variable σ2

defined before that theorem.

Remark 3.1. The difference between the AM scheme we an-
alyze and the Algorithm 2.1 can be summarized as follows:
i) only a single SGD step is taken with respect to weights
and then codes (while Algorithm 2.1 can optimize codes till
convergence at each iteration); ii) gradient direction is ap-
proximated with respect to a single data sample (in practice,
Algorithm 2.1 uses mini-batches), and iii) re-projection step
is included, unlike in Algorithm 2.1.

We argue that the general AM scheme analyzed here leads
to the worst-case theoretical guarantees with respect to the
original setting from Algorithm 2.1, i.e. we expect the con-
vergence rate for the original setting to be no worse than
the one dictated by the obtained guarantees. This is because
we allow only a single stochastic update (i.e. computed on a

3This assumption is potentially easy to eliminate with a more
careful choice of the step size in the first iterations.

single data point) with respect to an appropriate argument
(when keeping other arguments fixed) in each step of AM,
whereas in Algorithm 2.1 and related schemes in the liter-
ature, one may increase the size of the data mini-batch in
each AM step (semi-stochastic setting). The convergence
rate in the latter case is typically better (Nesterov, 2014).
Finally, note that the analysis does not consider running the
optimizer more than once before changing the argument of
an update, e.g., when obtaining sparse code c for a given
data point (x,y) and fixed weights. We expect this to have
a minor influence on the convergence rate as our analysis
specifically considers a local convergence regime, where
we expect that running the optimizer once produces good
enough parameter approximations. Moreover, note that by
preventing each AM step to be performed multiple times, we
analyze a more stochastic (noisier) version of parameter
updates.

Statistical guarantees for AM algorithms. The theoret-
ical analysis we provide here is an extension to the AM
setting of recent work on statistical guarantees for the EM
algorithm (Balakrishnan et al., 2017).

We first discuss necessary assumptions that we make.
Let L(θ1,θ2, . . . ,θK) = −f(θ1,θ2, . . . ,θK) and denote
L∗d(θd) = L(θ∗1,θ

∗
2, . . . ,θ

∗
d−1,θd,θ

∗
d+1, . . . ,θ

∗
K−1,θ

∗
K).

Let Ω1,Ω2, . . . ,ΩK denote non-empty compact convex
sets such that for any i = {1, 2, . . . ,K},θi ∈ Ωi. The
following three assumptions are made on L∗d(θd) (d =
1, 2, . . . ,K) and the objective function L(θ1,θ2, . . . ,θK).

Assumption 3.1 (Strong concavity). The function L∗d(θd)
is strongly concave for all pairs (θd,1,θd,2) in the neigh-
borhood of θ∗d. That is

L∗d(θd,1)− L∗d(θd,2)− 〈∇dL∗d(θd,2),θd,1 − θd,2〉

≤ −λd
2
‖θd,1 − θd,2‖22,

where λd > 0 is the strong concavity modulus.

Assumption 3.2 (Smoothness). The function L∗d(θd) is µd-
smooth for all pairs (θd,1,θd,2). That is

L∗d(θd,1)− L∗d(θd,2)− 〈∇dL∗d(θd,2),θd,1 − θd,2〉

≥ −µd
2
‖θd,1 − θd,2‖22,

where µd > 0 is the smoothness constant.

Next, we introduce the gradient stability (GS) condition that
holds for any d from 1 to k.

Assumption 3.3 (Gradient stability (GS)). We assume
L(θ1,θ2 . . . ,θK) satisfies GS (γd) condition, where γd ≥
0, over Euclidean balls θ1 ∈ B2(r1,θ

∗
1), . . . ,θd−1 ∈

B2(rd−1,θ
∗
d−1),θd+1 ∈ B2(rd+1,θ

∗
d+1), . . . ,θK ∈

B2(rK , θ
∗
K) of the form
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‖∇dL∗d(θd)−∇dL(θ1,θ2, . . . ,θK)‖2 ≤ γd
K∑
i=1
i 6=d

‖θi−θ∗i ‖2.

We also define the following bound σ on the expected value
of the norm of the gradients of our objective function (com-
monly done in the stochastic gradient descent convergence

theorems as well). Define σ =
√∑K

d=1 σ
2
d where

σ2
d = sup{E[‖∇dL1(θ1,θ2, . . . ,θK)‖22] :

θ1 ∈ B2(r1,θ
∗
1) . . .θK ∈ B2(rk,θ

∗
k)}

The following theorem then gives a recursion on the ex-
pected error obtained at each iteration of Algorithm 1.

Theorem 3.1. Given the stochastic AM gradient iterates of
the version of Algorithm 2.1 given in eq. 8 with decaying
step size {ηt}∞t=0 and γ < 2ξ

3(K−1) , the error at iteration
t+ 1 satisfies recursion

E

[
K∑
d=1

‖∆t+1
d ‖

2
2

]
≤ (1− qt)E

[
K∑
d=1

‖∆t
d‖22

]

+
(ηt)2

1− (K − 1)ηtγ
σ2, (9)

where ∆t+1
d := θt+1

d − θ∗d for d = 1, 2, . . . ,K, γ :=

maxi=1,2,...,K γi, qt = 1 − 1−2ηtξ+2ηtγ(K−1)
1−(K−1)ηtγ , and ξ :=

mini=1,2,...,K
2µiλi

µi+λi
.

The recursion in Theorem 3.1 is expanded in the Supple-
mentary Material to prove the final convergence theorem
stated as follows:

Theorem 3.2. Given the stochastic AM gradient iterates of
the version of Algorithm 2.1 given in eq. 8 with decaying
step size ηt = 3/2

[2ξ−3γ(K−1)](t+2)+ 3
2 (K−1)γ

and assuming

that γ < 2ξ
3(K−1) , the error at iteration t+ 1 satisfies

E

[
K∑
d=1

‖∆t+1
d ‖

2
2

]
≤ E

[
K∑
d=1

‖∆0
d‖22

](
2

t+ 3

) 3
2

+σ2 9

[2ξ − 3γ(K − 1)]2(t+ 3)
, (10)

where ∆t+1
d := θt+1

d − θ∗d for d = 1, 2, . . . ,K, γ :=

maxi=1,2,...,K γi, and ξ := mini=1,2,...,K
2µiλi

µi+λi
.

4. Experiments
We compare on several datasets (MNIST, CIFAR10,
HIGGS) our online alternating minimization algorithms,
AM-mem and AM-Adam (using mini-batches instead of sin-
gle samples at each time point), against backrop-based on-
line methods, SGD and Adam (Kingma & Ba, 2014), as
well as against the offline auxiliary-variable ADMM method

of (Taylor et al., 2016), using code provided by the authors4,
and against the two offline versions of our methods, AM-
Adam-off and AM-mem-off, which simply treat the train-
ing dataset as a single minibatch, i.e. one AM iteration
is equivalent to one epoch over the training dataset. All
our algorithms were implemented in PyTorch (Paszke et al.,
2017); we also used PyTorch implementation of SGD and
Adam. Hyperparameters used for each method were opti-
mized by grid search on a validation subset of training data.
Most results were averaged over at least 5 different weight
initializations.

Note that most of the prior auxiliary-variable methods
were evaluated only on fully-connected networks (Carreira-
Perpiñán & Wang, 2014; Taylor et al., 2016; Zhang et al.,
2016; Zhang & Brand, 2017; Zeng et al., 2018; Askari et al.,
2018), while we also experiment with RNNs and CNNs, as
well as with discrete (nondifferentiable) networks.

Fully-connected nets: MNIST, CIFAR10, HIGGS. We
experiment with fully-connected networks on the standard
MNIST (LeCun, 1998) dataset, consisting of 28× 28 gray-
scale images of hand-drawn digits, with 50K samples, and
a test set of 10K samples. We evaluate two different 2-
hidden-layer architectures, with equal hidden layer sizes
of 100 and 500, and ReLU activations. Figure 1 zooms
in on the performance of the online methods, AM-Adam,
AM-mem, SGD and Adam, over 50 minibatches of size 200
each. We observe that, on both architectures, AM-Adam is
comparable to (in early stages, even slightly better than)
SGD and Adam, while AM-mem is comparable with them
on the larger architecture, and falls between SGD and Adam
on the smaller one. Next, Figure 2 continues to 50 epochs,
now including the offline methods (which require at least 1
epoch over the full dataset, by definition). Our AM-Adam
method matches SGD and Adam, reaching 0.98 accuracy.
Our second method, AM-mem only yields 0.91 and 0.96
on the 100-node and 500-node networks, respectively. All
offline methods are significantly outperformed by the online
ones; e.g., Taylor’s ADMM learns very slowly until about
10 epochs, being greatly outperformed even by our offline
versions, but later catches up with offline AM-mem on the
100-node network; it is still inferior to all other methods on
the 500-node architecture.

Figures 3 and 4 show similar results for the same experiment
setting, on the CIFAR10 dataset (5000 training and 10000
test samples). Again, our AM-Adam performs slightly better
than SGD and Adam on the first 50 minibatches (same size
200 as before), and even on 50 epochs for the 1-100 archi-

4We choose Taylor’s ADMM among several auxiliary meth-
ods proposed recently, since it was the only one capable of han-
dling very large datasets due to massive data parallelization; also,
some other methods were not designed for classification task, e.g.
(Carreira-Perpiñán & Wang, 2014) trained autoencoders, (Zhang
et al., 2016) learned hashing.
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Figure 1. MNIST (fully-connected nets, 2 layers): online methods,
first epoch; 50 mini-batches, 200 samples each.
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Figure 2. MNIST (fully-connected nets, 2 layers): online vs. of-
fline methods vs. Taylor’s ADMM, 50 epochs.
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Figure 3. CIFAR10 (fully-connected nets): online methods, 1st
epoch. 2 hidden layers with 100 (top) and 500 (bottom) units each;
250 mini-batches, 200 samples each.
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Figure 4. CIFAR10 (fully-connected networks): online vs. offline,
50 epochs. Similar experiments to Figure 2.

tecture, reaching 0.53 vs 0.49 accuracy of SGD and Adam,
but falls a bit behind on the larger 1-500 architecture with
0.51 vs 0.53 and 0.56, respectively. Our second algorithm,
AM-mem, is clearly dominated by all the three methods
above. Also, we ran the two offline AM versions, which
were again greatly outperformed by the online methods. In
the remaining experiments, we focus on our best-performing
method, online AM-Adam.

HIGGS, fully-connected, 1-300 ReLU network. In Fig-
ure 5, we compare our online AM-Adam approach against
SGD, Adam and the offline ADMM method of Taylor, on a
very large HIGGS dataset, containing 10,500,000 training
samples (28 features each) and 500,000 test samples. Each
datapoint is labeled as either a signal process producing a
Higgs boson or a background process which does not. We

use the same architecture (a single-hidden layer network
with ReLU activations and 300 hidden nodes) as in (Taylor
et al., 2016), and the same training/test data sets. For all
online methods, we use minibatches of size 200, so one
epoch over the 10.5M samples equals 52,500 iterations.

While Taylor’s method was reported to achieve 0.64 ac-
curacy on the whole dataset (using data parallelization on
7200 cores to handle the whole dataset as a batch) (Taylor
et al., 2016), the online methods achieve the same accuracy
much faster (less than 1000 iterations/200K samples for our
AM-Adam, and less than 2000 iterations for SGD and Adam;
within only 20,000 iterations (less than a half of training
samples), AM-Adam, SGD and Adam 0.70, 0.69 and 0.71,
respectively, and continue to improve slowly, reaching after
one epoch, 0.71, 0,71 and 0.72, respectively. (Our AM-mem



Online Alternating Minimization

Figure 5. HIGGS dataset. Figure 6. RNN-15, Sequential MNIST. Figure 7. CNN: LeNet5, MNIST.

version quickly reached 0.6 together with AM-Adam, but
then slowed down, reaching only 0.61 on the 1st epoch).

In summary, on HIGGS dataset, AM-Adam, SGD and Adam
clearly outperform Taylor’s offline ADMM, while using less
than a half of the 1st epoch, and quickly reaching Taylor’s
0.64 accuracy benchmark after observing only a tiny frac-
tion (less than 0.01%) of the 10.5M dataset. Both Adam and
AM-Adam perform very closely, both outperforming SGD.

RNN on MNIST. Next, we evaluate our method on Se-
quential MNIST (Le et al., 2015), where each image is
vectorized and fed to the RNN as a sequence of T = 784
pixels. We use the standard Elman RNN architecture with
tanh activations among hidden states and ReLU applied
to the output sequence before making a prediction (we use
larger minibatches of 1024 samples to reduce training time).
AM-Adam was adapted to work on such RNN architecture
(see Appendix for details). Figure 6 shows the results using
d = 15 hidden units (see Appendix for d = 50), averaged
over N weight initializations, for 10 epochs, with a zoom-in
on the first epoch inset. AM-Adam performs similarly to
Adam in the 1st epoch, and outperforms SGD up to epoch 6,
matching SGD’s performance afterwards.

CNN (LeNet-5), MNIST. Next, we experiment with CNNs,
using LeNet-5 (LeCun et al., 1998) on MNIST (Figure 7).
Similarly to RNN result, AM-Adam clearly outperforms
SGD, while being somewhat outperformed by Adam.

Binary nets (nondifferentiable activations), MNIST. Fi-
nally, to investigate the ability of our method to handle
non-differentiable networks, we consider an architecture
originally investigated in (Lee et al., 2015) to evaluate an-
other type of auxiliary-variable approach, called Difference
Target Propagation (DTP). The model is a 2-hidden layer
fully-connected network (784-500-500-10), whose first hid-
den layer uses the non-differentiable sign transfer function
(while the second hidden layer uses tanh). Target propaga-
tion approaches were motivated by the goal of finding more
biologically plausible mechanisms for credit assignment in
the brain’s neural networks as compared to standard back-
prop, which, among multiple other biologically-implausible
aspects, does not model the neuronal activation propagation

explicitly, and does not handle non-differentiable binary
activations (spikes) (Lee et al., 2015; Bartunov et al., 2018).

Figure 8. Binary net, MNIST.

In (Lee et al., 2015),
DTP was applied to
the above discrete net-
work, and compared
to a backprop-based
straight-through estima-
tor (STE), which simply
ignores the derivative of
the step function (which
is 0 or infinite) in the
back-propagation phase. While DTP took about 200 epochs
to reach 0.2 error, matching the STE performance (Figure 3
in (Lee et al., 2015)), our AM-Adam with binary activations
reaches the same error in less than 20 epochs (Figure 8).

5. Conclusions
We proposed a novel online alternating-minimization ap-
proach for neural network training; it builds upon previously
proposed offline methods that break the nested objective
into easier-to-solve local subproblems via inserting auxil-
iary variables corresponding to activations in each layer.
Such methods avoid gradient chain computation and po-
tential issues associated with it, including vanishing gra-
dients, lack of cross-layer parallelization, and difficulties
handling non-differentiable nonlinearities. However, unlike
prior art, our approach is online (mini-batch), and thus can
handle arbitrarily large datasets and continual learning set-
tings. We proposed two variants, AM-mem and AM-Adam,
and found that AM-Adam works better. Also, AM-Adam
greatly outperforms offline methods on several datasets and
architectures; when compared to state-of-the-art backprop
methods such as (standard) SGD and Adam, AM-Adam
typically matches their performance over multiple epochs,
and may even learn somewhat faster initially, in small-data
regimes. AM-Adam also converged faster than another re-
lated method, difference target propagation, on a discrete
(non-differentiable) network. Finally, to the best of our
knowledge, we are the first to provide theoretical guaran-
tees for a wide class of online alternating minimization
approaches including ours.
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