
Supplementary Material for Probability Functional Descent

A. Proofs and Computations
Lemma 1. Let J : P(X) → R. Then Ψ : X → R is an
influence function of J at µ if and only if

d

dε
J(µ+ εχ)

∣∣∣
ε=0+

=

∫
X

Ψ(x)χ(dx).

Proof. The left-hand side equals (1), which equals (2).

Theorem 1 (Chain rule). Let J : P(X) → R be continu-
ously differentiable, in the sense that the influence function
Ψµ exists and (µ, ν) 7→ Ex∼ν [Ψµ(x)] is continuous. Let
the parameterization θ 7→ µθ be differentiable, in the sense
that 1

||h|| (µθ+h − µθ) converges to a weak limit as h→ 0.
Then

∇θJ(µθ) = ∇θEx∼µθ [Ψ̂(x)],

where Ψ̂ = Ψµθ is treated as a function X → R that is not
dependent on θ.

Proof. Without loss of generality, assume θ ∈ R, as the
gradient is simply a vector of one-dimensional derivatives.
Let χε = 1

ε (µθ+ε − µθ), and let χ = limε→0 χε (weakly).
Then

d

dθ
J(µθ) =

d

dε
J(µθ+ε)

∣∣∣
ε=0

=
d

dε
J(µθ + εχε)

∣∣∣
ε=0

.

Assuming for now that

d

dε
J(µθ + εχε)

∣∣∣
ε=0

=
d

dε
J(µθ + εχ)

∣∣∣
ε=0

,

we have by Lemma 1 that

d

dθ
J(µθ) =

∫
X

Ψ̂ dχ

=

∫
X

Ψ̂ d
(

lim
ε→0

1

ε
(µθ+ε − µθ)

)
= lim
ε→0

∫
X

Ψ̂ d
(1

ε
(µθ+ε − µθ)

)
=

d

dθ

∫
X

Ψ̂ dµθ,

where the interchange of limits is by the definition of weak
convergence (recall we assumed that X is compact, so Ψ̂ is
continuous and bounded by virtue of being continuous).

The equality we assumed is the definition of a stronger
notion of differentiability called Hadamard differentiabil-
ity of J . Our conditions imply Hadamard differentiability
via Proposition 2.33 of Penot (2012), noting that the map
(µ, χ) 7→

∫
X

Ψµ dχ is continuous by assumption.

Theorem 2 (Fenchel–Moreau representation). Let J :
M(X) → R be proper, convex, and lower semicontinu-
ous. Then the maximizer of ϕ 7→ Ex∼µ[ϕ(x)]− J?(ϕ), if it
exists, is an influence function for J at µ. With some abuse
of notation, we have that

Ψµ = arg max
ϕ∈C(X)

[
Ex∼µ[ϕ(x)]− J?(ϕ)

]
.

Proof. We will exploit the Fenchel–Moreau theorem, which
applies in the setting of locally convex, Hausdorff topolog-
ical vector spaces (see e.g. Zalinescu (2002)). The space
we consider isM(X), the space of signed, finite measures
equipped with the topology of weak convergence, of which
P(X) is a convex subset.M(X) is indeed locally convex
and Hausdorff, and its dual space is C(X) (see e.g. Alipran-
tis & Border (2006), section 5.14).

We now show that a maximizer ϕ∗ is an influence function.
By the Fenchel–Moreau theorem,

J(µ) = J??(µ) = sup
ϕ∈C(X)

[ ∫
X

ϕdµ− J?(ϕ)
]
,

and

J(µ+ εχ) = sup
ϕ∈C(X)

[ ∫
X

ϕdµ+ ε

∫
X

ϕdχ− J?(ϕ)
]
.

Because J is differentiable, ε 7→ J(µ+ εχ) is differentiable,
so by the envelope theorem (Milgrom & Segal, 2002),

d

dε
J(µ+ εχ)

∣∣∣
ε=0

=

∫
X

ϕ∗ dχ,

so that ϕ∗ is an influence function by Lemma 1.

The abuse of notation stems from the fact that not all in-
fluence functions are maximizers. This is true, though, if
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J(µ) =∞ if µ 6∈ P(X):∫
X

Ψµ dµ− J?(Ψµ)

=

∫
X

Ψµ dµ− sup
ν∈P(X)

[ ∫
X

Ψµ dν − J(ν)
]

= inf
ν∈P(X)

[
−
∫
X

Ψµ d(ν − µ) + J(ν)
]

= inf
ν∈P(X)

[
− d

dε
J(µ+ ε(ν − µ))

∣∣∣
ε=0

+ J(ν)
]

≥ J(µ),

since the convex function f(ε) = J(µ+ε(ν−µ)) lies above
its tangent line:

f(1) ≥ f(0) + 1 · f ′(0).

Since J(µ) = J??(µ), we have that∫
X

Ψµ dµ− J?(Ψµ) ≥ sup
ϕ∈C(X)

[ ∫
X

ϕdµ− J?(ϕ)
]
.

The following lemma will come in handy in our computa-
tions.

Lemma 2. Suppose J :M(X)→ R has a representation

J(µ) = sup
ϕ∈C(X)

[ ∫
X

ϕdµ−K(ϕ)
]
,

where K : C(X) → R is proper, convex, and lower semi-
continuous. Then J? = K.

Proof. By definition of the convex conjugate, J = K?.
Then J? = K?? = K, by the Fenchel–Moreau theorem.

We note that when applying this lemma, we will often im-
plicitly define the appropriate extension of J toM(X) to be
J(µ) = supϕ∈C(X)[

∫
ϕdµ −K(ϕ)]. The exact choice of

extension can certainly affect the exact form of the convex
conjugate; see Ruderman et al. (2012) for one example of
this phenomenon.

Proposition 2. Suppose µ has density p(x) and ν has den-
sity q(x). Then the influence function for JJS is

ΨJS(x) =
1

2
log

p(x)

p(x) + q(x)
.

Proof. The result follows from Lemma 1:

d

dε
JJS(µ+ εχ)

∣∣∣
ε=0

=
1

2

∫
X

d

dε

[
(p+ εχ) log

p+ εχ
1
2 (p+ εχ) + 1

2q

+ q log
q

1
2 (p+ εχ) + 1

2q

]
ε=0

dx

=
1

2

∫
X

[
log

p
1
2p+ 1

2q
+ 1− p

p+ q
− q

p+ q

]
χdx

=
1

2

∫
X

[
log

p

p+ q
+ log 2

]
χdx.

Proposition 3. The convex conjugate of JJS is

J?JS(ϕ) = − 1
2Ex∼ν [log(1− e2ϕ(x)+log 2)]− 1

2 log 2.

Proof.

J?JS(ϕ) = sup
µ∈M(X)

[ ∫
X

ϕdµ− JJS(µ)
]

= sup
p

∫
X

[
ϕp− 1

2
p log

p
1
2p+ 1

2q
− 1

2
q log

q
1
2p+ 1

2q

]
dx.

Setting the integrand’s derivative w.r.t. p to 0, we find that
pointwise, the optimal p satisfies

ϕ =
1

2
log

p
1
2p+ 1

2q
.

We eliminate p in the integrand. Notice that the first two
terms in the integrand cancel after plugging in p. Since

q
1
2p+ 1

2q
= 2
(

1− p

p+ q

)
= 2(1− 2e2ϕ),

we obtain that

J?JS(ϕ) = −1

2

∫
X

q log(1− 2e2ϕ) dx− 1

2
log 2.

Proposition 5. Suppose µ has density p(x) and ν has den-
sity q(x). The influence function for JNS is

ΨNS(x) = log
p(x)

q(x)
.
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Proof. The result follows from Lemma 1:

d

dε
JNS(µ+ εχ)

∣∣∣
ε=0

=
d

dε

∫
X

(p+ εχ) log
p+ εχ

q
dx
∣∣∣
ε=0

=

∫
X

[
χ log

p

q
+ χ

]
dx

=

∫
X

[
log

p

q
+ 1
]
dχ

=

∫
X

[
log

p

q

]
dχ.

Proposition 7. The influence function for JW is the Kan-
torovich potential corresponding to the optimal transport
from µ to ν.

Proof. See Santambrogio (2015), Proposition 7.17.

Proposition 8. The convex conjugate of JW is

J?W(ϕ) = Ex∼ν [ϕ(x)] + {||ϕ||L ≤ 1}.

Proof. Using Kantorovich–Rubinstein duality, we have that

JW(µ) = sup
||ϕ||L≤1

[ ∫
X

ϕdµ−
∫
X

ϕdν
]

= sup
ϕ

[ ∫
X

ϕdµ−
∫
X

ϕdν − {||ϕ||L ≤ 1}
]
,

where we use the notation

{A} =

{
0 A is true,
∞ A is false.

By Lemma 2,

J?W(ϕ) =

∫
X

ϕdν + {||ϕ||L ≤ 1}.

Proposition 10. The influence function for JVI is

ΨVI(z) = log
q(z)

p(x|z)p(z)
.

Proof. The result follows from Lemma 1:

d

dε
JVI(q + εχ)

∣∣∣
ε=0

=
d

dε

∫
(q(z) + εχ(z)) log

q(z) + εχ(z)

p(z|x)
dz
∣∣∣
ε=0

=

∫ [
χ(z) log

q(z) + εχ(z)

p(z|x)
+ χ(z)

]
dz
∣∣∣
ε=0

=

∫ [
log

q(z)

p(z|x)
+ 1
]
χ(z) dz

=

∫ [
log

q(z)

p(x|z)p(z)
+ log p(x) + 1

]
χ(z) dz

=

∫
log

q(z)

p(x|z)p(z)
χ(z) dz.

Proofs continue on the following page.
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Proposition 13. The influence function for JRL is

ΨRL(s, a) = −
∑∞
t=0 γ

tpπt (s)

π(s)
(Qπ(s, a)− V π(s)),

where Qπ is the state-action value function, V π is the state value function, and pπt is the marginal distribution of states after
t steps, all under the policy π.

Proof. First, we note that

d

dε
(π + εχ)(a|s)

∣∣∣
ε=0

=
d

dε

π(a, s) + εχ(s, a)

π(s) + εχ(s)

∣∣∣
ε=0

=
χ(s, a)− χ(s)π(a|s)

π(s)
,

where we abuse notation to denote χ(s) =
∫
χ(s, a′) da′.

We have

−JRL = E
[ ∞∑
t=1

γt−1rt

]
,

or, plugging in the measure,

−JRL =

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)
∞∏
k=1

π(ak|sk−1).

The integral is over all free variables; we omit them here and in the following derivation for conciseness.

In computing d
dεJRL(π + εχ)|ε=0, the product rule dictates that a term appear for every k, in which π(ak|sk−1) is replaced

with d
dε (π + εχ)(ak|sk−1)|ε=0. Hence:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

×
∞∑
k=1

χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
`=1
` 6=k

π(a`|s`−1)

=

∞∑
k=1

∫ ∞∑
t=1

γt−1rt p0(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
`=1
` 6=k

π(a`|s`−1),
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reordering the summations. Note that for t < k, the summand vanishes:∫ ∞∏
j=k

p(sj , rj |sj−1, aj)

×
(
χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

) ∞∏
`=k+1

π(a`|s`−1)

=

∫ (
χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

)
=

∫ (
χ(sk−1)− χ(sk−1)

)
= 0,

since all the variables ak, rk, sk, ak+1, rk+1, sk+1, . . . integrate away to 1. This yields:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=k

γt−1rt p0(s0)
∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
`=1
` 6=k

π(a`|s`−1).

Then, substituting the marginal distribution (note sk−1 is not integrated)

pπk−1(sk−1) =

∫ k−1∏
j=1

p(sj , rj |sj−1, aj)
k−1∏
`=1

π(a`|s`−1),

we obtain

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=k

γt−1rt p
π
k−1(sk−1)

∞∏
j=k

p(sj , rj |sj−1, aj)

× χ(sk−1, ak)− χ(sk−1)π(ak|sk−1)

π(sk−1)

∞∏
`=k+1

π(a`|s`−1).

Let us rename the integration variables by decreasing their indices by k − 1:

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫ ∞∑
t=1

γt+k−2rt p
π
k−1(s0)

∞∏
j=1

p(sj , rj |sj−1, aj)

× χ(s0, a1)− χ(s0)π(a1|s0)

π(s0)

∞∏
`=2

π(a`|s`−1).

Substituting in

V π(s0) =

∫ ∞∑
t=1

γt−1rt

∞∏
j=1

p(sj , rj |sj−1, aj)
∞∏
`=1

π(a`|s`−1),

Qπ(s0, a1) =

∫ ∞∑
t=1

γt−1rt

∞∏
j=1

p(sj , rj |sj−1, aj)
∞∏
`=2

π(a`|s`−1),
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we obtain

− d

dε
JRL(π + εχ)

∣∣∣
ε=0

=

∞∑
k=1

∫
γk−1 pπk−1(s0)

Qπ(s0, a1)χ(s0, a1)− V π(s0)χ(s0)

π(s0)
.

Finally, by Lemma 1, we obtain that

ΨRL(s, a) = −
∑∞
k=0 γ

kpπk (s)

π(s)
(Qπ(s, a)− V π(s)).

Proposition 16. The convex conjugate of JRL is

J?RL(ϕ) = (1− γ)Ep0(s)Vϕ(s) + {Vϕ exists},

where Vϕ is the unique solution to ϕ = −AVϕ, if it exists.

Proof. As mentioned in the text, we set the arbitrary distribution π(s) = (1 − γ)
∑∞
t=0 γ

tpπt (s). In doing so, π(s, a)
becomes a state-action occupancy measure that describes the frequency of encounters of the state-action pair (s, a) over
trajectories governed by the policy π(a|s). It is known that there is a bijection between occupancy measures π(s, a) and
policies π(a|s) (Syed et al., 2008; Ho & Ermon, 2016).

We can enforce this setting by redefining

JRL(π) = −E
∞∑
t=1

γt−1rt +
{
∀s : π(s) = (1− γ)

∞∑
t=0

γtpπt (s)
}
,

where again {·} is the convex indicator function. This equation can be rewritten as

JRL(π) = −Eπ(s,a)R(s, a) +
{
∀s′ : π(s′) = (1− γ)p0(s′) + γEπ(s,a)p(s′|s, a)

}
,

where R(s, a) = Ep(s′,r|s,a)[r]. The constraint is known as the Bellman flow equation. This formulation is convex, as it is
the sum of an affine function and an indicator of a convex set (indeed, an affine subspace).

We recall −ϕ = AVϕ, where AV (s, a) = Ep(s′,r|s,a)[r + γV (s′)]− V (s). Now, Vϕ is uniquely defined by ϕ if a solution
to the equation exists. To see this, note that Vϕ is the fixed point of the Bellman operator T a defined by

(T aV )(s) = (R+ ϕ)(s, a) + γEp(s′|s,a)V (s′),

which is contractive and therefore has a unique fixed point. A representation of Vϕ may be obtained via fixed point iteration
using T a for an arbitrary action a:

Vϕ(s) = lim
k→∞

(T a)k0 = Ea
∞∑
t=1

γt−1(R+ ϕ)(st, a),

where the expectation is taken under the deterministic policy a.

We rewrite JRL using a Lagrange multiplier V (s)

JRL(π) = −Eπ(s,a)R(s, a) + sup
V

∫
V (s′)

[
π(s′)− (1− γ)p0(s′)− γEπ(s,a)p(s′|s, a)

]
ds′

= sup
V
−Eπ(s,a)R(s, a) + Eπ(s)V (s)− (1− γ)Ep0(s)V (s)− γEπ(s,a)Ep(s′|s,a)V (s′)

= sup
ϕ

Eπ(s,a)ϕ(s, a)− (1− γ)Ep0(s)Vϕ(s)− {Vϕ exists}.
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Note that (1− γ)Ep0(s)Vϕ(s) + {Vϕ exists} is convex in ϕ; this stems from the fact that

Vαϕ+(1−α)ϕ′ = αVϕ + (1− α)Vϕ′ .

The result follows from Lemma 2.


