Supplementary Material for "Dimensionality Reduction for Tukey Regression"

A. Preliminaries

For two real numbers a and b, we use the notation $a=(1 \pm \varepsilon) b$ if $a \in[(1-\varepsilon) b,(1+\varepsilon) b]$.
We use $\|\cdot\|_{p}$ to denote the ℓ_{p} norm of a vector, and $\|\cdot\|_{p, w}$ to denote the weighted ℓ_{p} norm, i.e.,

$$
\|y\|_{p, w}=\left(\sum_{i=1}^{n} w_{i}\left|y_{i}\right|^{p}\right)^{1 / p}
$$

For a vector $y \in \mathbb{R}^{n}$, a weight vector $w \in \mathbb{R}^{n}$ whose entries are all non-negative and a loss function $M: \mathbb{R} \rightarrow \mathbb{R}^{+}$that satisfies Assumption 1, $\|y\|_{M, w}$ is defined to be

$$
\|y\|_{M, w}=\sum_{i=1}^{n} w_{i} \cdot M\left(y_{i}\right)
$$

We also define $\|y\|_{M}$ to be

$$
\|y\|_{M}=\sum_{i=1}^{n} M\left(y_{i}\right)
$$

For a vector $y \in \mathbb{R}^{n}$ and a real number $\tau \geq 0$, we define H_{y} to be the set $H_{y}=\left\{i \in[n]| | y_{i} \mid>\tau\right\}$, and L_{y} to be the set $L_{y}=\left\{i \in[n]| | y_{i} \mid \leq \tau\right\}$.

A.1. Tail Inequalities

Lemma A. 1 (Bernstein's inequality). Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables taking values in $[-b, b]$. Let $X=\sum_{i=1}^{n} X_{i}$ and $\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]$ be the variance of X. For any $t>0$ we have

$$
\operatorname{Pr}[|X-\mathrm{E}[X]|>t] \leq 2 \exp \left(-\frac{t^{2}}{2 \operatorname{Var}[X]+2 b t / 3}\right)
$$

A.2. Facts Regarding the Loss Function

Lemma A.2. Under Assumption 1, there is a constant $C>0$ that depends only on p, for which for any a, b with $|b| \leq \varepsilon|a|$, we have $M(a+b)=(1 \pm C \varepsilon) M(a)$.

Proof. Without loss of generality we assume $a>0$. When $b \geq 0$, by Assumption 1.3, we have

$$
M(a) \leq M(a+b) \leq(1+\varepsilon)^{p} \cdot M(a) \leq(1+C \varepsilon) M(a)
$$

When $b<0$, we have

$$
M(a) \geq M(a+b) \geq\left(\frac{a}{a+b}\right)^{p} M(a) \geq(1-C \varepsilon) M(a)
$$

Lemma A.3. Under Assumption 1, there is a constant $C^{\prime}>0$ that depends only on p, for which for any $e, y \in \mathbb{R}^{n}$ and any weight vector w with $\|e\|_{M, w} \leq \varepsilon^{2 p+1}\|y\|_{M, w}$,

$$
\|y+e\|_{M, w}=\left(1 \pm C^{\prime} \varepsilon\right)\|y\|_{M, w}
$$

Proof. Clearly, by Assumption 1.3,

$$
\left\|e / \varepsilon^{2}\right\|_{M, w} \leq \varepsilon^{-2 p}\|e\|_{M, w} \leq \varepsilon\|y\|_{M, w}
$$

Let $S=\left\{i \in n| | e_{i}|\leq \varepsilon| y_{i} \mid\right\}$. By Lemma A.2, for all $i \in S$ we have $M\left(y_{i}+e_{i}\right)=(1 \pm C \varepsilon) M\left(y_{i}\right)$. For all $i \in[n] \backslash S$, we have $\left|e_{i}\right|>\varepsilon\left|y_{i}\right|$. For sufficiently small ε, by Assumption 1.2 and Lemma A.2,

$$
M\left(e_{i}+y_{i}\right) \leq M\left(e_{i} / \varepsilon^{2}+y_{i}\right) \leq(1+C \varepsilon) M\left(e_{i} / \varepsilon^{2}\right)
$$

which implies

$$
\sum_{i \in[n] \backslash S} w_{i} M\left(y_{i}+e_{i}\right) \leq(1+C \varepsilon)\left\|e / \varepsilon^{2}\right\|_{M, w} \leq(1+C \varepsilon) \varepsilon\|y\|_{M, w}
$$

Furthermore,

$$
\sum_{i \in[n] \backslash S} w_{i} M\left(y_{i}\right) \leq \sum_{i \in[n] \backslash S} w_{i} M\left(e_{i} / \varepsilon\right) \leq\left\|e / \varepsilon^{2}\right\|_{M, w} \leq \varepsilon\|y\|_{M, w}
$$

Thus,

$$
\begin{aligned}
& \|y+e\|_{M, w} \\
= & \sum_{i \in S} w_{i} M\left(y_{i}+e_{i}\right)+\sum_{i \in[n] \backslash S} w_{i} M\left(y_{i}+e_{i}\right) \\
= & (1 \pm C \varepsilon) \sum_{i \in S} w_{i} M\left(y_{i}\right) \pm(1+C \varepsilon) \varepsilon\|y\|_{M, w} \\
= & \left(1 \pm C^{\prime} \varepsilon\right)\|y\|_{M, w}
\end{aligned}
$$

A.3. Facts Regarding Lewis Weights

In this section we recall some facts regarding leverage scores and Lewis weights.
Definition A.1. Given a matrix $A \in \mathbb{R}^{n \times d}$. The leverage score of a row $A_{i, *}$ is defined to be

$$
\tau_{i}(A)=A_{i, *}\left(A^{T} A\right)^{\dagger}\left(A_{i, *}\right)^{T}
$$

Definition A. 2 ((Cohen \& Peng, 2015)). For a matrix $A \in \mathbb{R}^{n \times d}$, its ℓ_{p} Lewis weights $\left\{u_{i}\right\}_{i=1}^{n}$ are the unique weights such that for each $i \in[n]$ we have

$$
u_{i}=\tau_{i}\left(U^{1 / 2-1 / p} A\right)
$$

Here τ_{i} is the leverage score of the i-th row of a matrix and U is the diagonal matrix formed by putting the elements of u on the diagonal.
Theorem A. 4 ((Cohen \& Peng, 2015)). There is an algorithm that receives a matrix $A \in \mathbb{R}^{n \times d}$ and outputs $\{\hat{u}\}_{i=1}^{n}$ such that

$$
u_{i} \leq \hat{u}_{i} \leq 2 u_{i}
$$

where $\left\{u_{i}\right\}_{i=1}^{n}$ are the ℓ_{p} Lewis weights of A. Furthermore, the algorithm runs in $\widetilde{O}\left(\mathrm{nnz}(A)+d^{p / 2+O(1)}\right)$ time.
Theorem A. 5 (Lewis's change of density (Lewis, 1978), see also (Wojtaszczyk, 1996, p. 113)). Given a matrix $A \in \mathbb{R}^{n \times d}$ and $p \geq 1$, there exists a basis matrix $H \in \mathbb{R}^{n \times d}$ of the column space of A, such that if we define a weight vector $\bar{u} \in \mathbb{R}^{n}$ where $\bar{u}_{i}=\left\|H_{i, *}\right\|_{2}$, then the following hold:

1. $\|\bar{u}\|_{p}^{p} \leq d$;
2. $\bar{U}^{p / 2-1} H$ is an orthonormal matrix.

Here \bar{U} is the diagonal matrix formed by putting the elements of \bar{u} on the diagonal.
Lemma A. 6 (See, e.g., (Wojtaszczyk, 1996, p. 115)). Given a matrix $A \in \mathbb{R}^{n \times d}$, for the basis matrix H and the weight vector \bar{u} defined in Theorem A.5, for all $x \in \mathbb{R}^{d}$ we have

$$
\left\|\bar{U}^{p / 2-1} H x\right\|_{2} \leq\|H x\|_{p} \leq d^{1 / p-1 / 2}\left\|\bar{U}^{p / 2-1} H x\right\|_{2}
$$

when $1 \leq p \leq 2$, and

$$
\|H x\|_{p} \leq\left\|\bar{U}^{p / 2-1} H x\right\|_{2} \leq d^{1 / 2-1 / p}\|H x\|_{p}
$$

when $p \geq 2$.
Since $\bar{U}^{p / 2-1} H$ is an orthonormal matrix, for all $x \in \mathbb{R}^{d}$ we have

$$
\|x\|_{2} \leq\|H x\|_{p} \leq d^{1 / p-1 / 2}\|x\|_{2}
$$

when $1 \leq p \leq 2$, and

$$
\|H x\|_{p} \leq\|x\|_{2} \leq d^{1 / 2-1 / p}\|H x\|_{p}
$$

when $p \geq 2$.
Lemma A.7. Given a matrix $A \in \mathbb{R}^{n \times d}$ and $p \geq 1$, the weight vector u defined in Definition $A .2$ and the weight vector \bar{u} defined in Theorem A. 5 satisfies

$$
u_{i}=\bar{u}_{i}^{p} .
$$

Proof. We show that substituting $u_{i}=\bar{u}_{i}^{p}$ will satisfy

$$
u_{i}=\tau_{i}\left(U^{1 / 2-1 / p} A\right)
$$

and thus the theorem follows by the uniqueness of Lewis weights.
Since leverage scores are invariant under change of basis (see, e.g., (Woodruff, 2014, p. 30)), we have

$$
\tau_{i}\left(U^{1 / 2-1 / p} A\right)=\tau_{i}\left(U^{1 / 2-1 / p} H\right)
$$

where H is the basis matrix defined in Theorem A.5. Substituting $u_{i}=\bar{u}_{i}^{p}$ we have

$$
\tau_{i}\left(U^{1 / 2-1 / p} A\right)=\tau_{i}\left(\bar{U}^{p / 2-1} H\right)
$$

However, since $\bar{U}^{p / 2-1} H$ is an orthonormal matrix, and the leverage scores of an orthonormal matrix are just squared ℓ_{2} norm of rows (see, e.g., (Woodruff, 2014, p. 29)), we have

$$
\tau_{i}\left(U^{1 / 2-1 / p} A\right)=\left(\bar{u}_{i}^{p / 2-1}\left\|H_{i, *}\right\|_{2}\right)^{2}=\bar{u}_{i}^{p}
$$

Lemma A.8. Given a matrix $A \in \mathbb{R}^{n \times d}$ and $p \geq 1$, for all $y \in \operatorname{im}(A)$ and $i \in[n]$, we have

$$
\left|y_{i}\right|^{p} \leq d^{\max \{0, p / 2-1\}} u_{i} \cdot\|y\|_{p}^{p}
$$

Here $\left\{u_{i}\right\}_{i=1}^{n}$ are the ℓ_{p} Lewis weights defined in Definition A.2.

Proof. For all $y \in \operatorname{im}(A)$, we can write $y=H x$ for some vector $x \in \mathbb{R}$ and the basis matrix H in Theorem A.5. By the Cauchy-Schwarz inequality,

$$
\left|y_{i}\right|^{p}=\left|\left\langle x, H_{i, *}\right\rangle\right|^{p} \leq\|x\|_{2}^{p} \cdot\left\|H_{i, *}\right\|_{2}^{p}
$$

which implies

$$
\left|y_{i}\right|^{p} \leq d^{\max \{0, p / 2-1\}} \cdot\|y\|_{p}^{p} \cdot\left\|H_{i, *}\right\|_{2}^{p}
$$

by Lemma A.6, which again implies

$$
\left|y_{i}\right|^{p} \leq d^{\max \{0, p / 2-1\}} u_{i} \cdot\|y\|_{p}^{p}
$$

since $\bar{u}_{i}=\left\|H_{i, *}\right\|_{2}$ and $u_{i}=\bar{u}_{i}^{p}$ by Lemma A.7.

Lemma A.9. Under Assumption 1, given a matrix $A \in \mathbb{R}^{n \times d}$, $\delta_{\text {lewis }} \in(0,1)$, and a weight vector $w \in \mathbb{R}^{n}$ such that (i) $w_{i} \geq 1$ for all $i \in[n]$ and (ii) $\max _{i \in[n]} w_{i} \leq 2 \min _{i \in[n]} w_{i}$. Let $w^{\prime} \in \mathbb{R}^{n}$ be another weight vector which is defined to be

$$
w_{i}^{\prime}= \begin{cases}w_{i} / p_{i} & \text { with probability } p_{i} \\ 0 & \text { with probability } 1-p_{i}\end{cases}
$$

and p_{i} satisfies

$$
p_{i} \geq \min \left\{1, \Theta\left(U_{M} / L_{M} \cdot d^{\max \{0, p / 2-1\}} u_{i} \cdot \log \left(1 / \delta_{\text {lewis }}\right) / \varepsilon^{2}\right)\right\}
$$

then for any fixed vectors $x \in \mathbb{R}^{d}$ such that $\|A x\|_{\infty} \leq \tau$, with probability at least $1-\delta_{\text {lewis }}$ we have

$$
\|A x\|_{M, w}=(1 \pm \varepsilon)\|A x\|_{M, w^{\prime}}
$$

Proof. Without loss of generality we assume $1 \leq w_{i} \leq 2$ for all $i \in[n]$. Let $y=A x$. We use the random variable Z_{i} to denote

$$
Z_{i}=w_{i}^{\prime} M\left(y_{i}\right)
$$

Clearly $\mathrm{E}\left[Z_{i}\right]=w_{i} M\left(y_{i}\right)$, which implies

$$
\mathrm{E}\left[\|y\|_{M, w^{\prime}}\right]=\|y\|_{M, w}
$$

Furthermore, $Z_{i} \leq 2 M\left(y_{i}\right) / p_{i}$. Since $\|y\|_{\infty} \leq \tau$ and $L_{M}\left|y_{i}\right|^{p} \leq M\left(y_{i}\right) \leq U_{M}\left|y_{i}\right|^{p}$ when $\left|y_{i}\right| \leq \tau$, by Lemma A. 8 we have

$$
Z_{i} \leq 2 U_{M}\left|y_{i}\right|^{p} / p_{i} \leq \Theta\left(L_{M} \cdot\|y\|_{p}^{p} \cdot \varepsilon^{2} / \log \left(1 / \delta_{\text {lewis }}\right)\right) \leq \Theta\left(\|y\|_{M, w} \cdot \varepsilon^{2} / \log \left(1 / \delta_{\text {lewis }}\right)\right)
$$

Moreover, $\mathrm{E}\left[Z_{i}^{2}\right] \leq O\left(\left(M\left(y_{i}\right)\right)^{2} / p_{i}\right)$, which implies

$$
\sum_{i=1}^{n} \mathrm{E}\left[Z_{i}^{2}\right] \leq O\left(\sum_{i=1}^{n}\left(M\left(y_{i}\right)\right)^{2} / p_{i}\right)
$$

By Hölder's inequality,

$$
\sum_{i=1}^{n} \mathrm{E}\left[Z_{i}^{2}\right] \leq O\left(\|y\|_{M}\right) \cdot \max _{i \in[n]} M\left(y_{i}\right) / p_{i} \leq O\left(\|y\|_{M, w}^{2} \cdot \varepsilon^{2} / \log \left(1 / \delta_{\text {lewis }}\right)\right)
$$

Furthermore, since

$$
\operatorname{Var}\left[\sum_{i=1}^{n} Z_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Z_{i}\right] \leq \sum_{i=1}^{n} \mathrm{E}\left[Z_{i}^{2}\right]
$$

Bernstein's inequality in Lemma A. 1 implies

$$
\operatorname{Pr}\left[\left|\|y\|_{M, w^{\prime}}-\|y\|_{M, w}\right|>t\right] \leq \exp \left(-\Theta\left(\frac{t^{2}}{\|y\|_{M, w} \cdot \varepsilon^{2} / \log \left(1 / \delta_{\text {lewis }}\right) \cdot t+\|y\|_{M, w}^{2} \cdot \varepsilon^{2} / \log \left(1 / \delta_{\text {lewis }}\right)}\right)\right)
$$

Taking $t=\varepsilon \cdot\|y\|_{M, w}$ implies the desired result.
Theorem A.10. Given a matrix $A \in \mathbb{R}^{n \times d}$, $\delta_{\text {subspace }} \in(0,1)$, and a weight vector $w \in \mathbb{R}^{n}$ such that $(i) w_{i} \geq 1$ for all $i \in[n]$ and (ii) $\max _{i \in[n]} w_{i} \leq 2 \min _{i \in[n]} w_{i}$. Let $w^{\prime} \in \mathbb{R}^{n}$ be another weight vector which is defined to be

$$
w_{i}^{\prime}= \begin{cases}w_{i} / p_{i} & \text { with probability } p_{i} \\ 0 & \text { with probability } 1-p_{i}\end{cases}
$$

and p_{i} satisfies

$$
p_{i} \geq \min \left\{1, \Theta\left(d^{\max \{0, p / 2-1\}} u_{i} \cdot\left(d \log (1 / \varepsilon)+\log \left(1 / \delta_{\text {subspace }}\right)\right) / \varepsilon^{2}\right)\right\}
$$

then with probability at least $1-\delta_{\text {subspace, }}$, for all vectors $x \in \mathbb{R}^{d}$, we have

$$
\|A x\|_{p, w}^{p}=(1 \pm \varepsilon)\|A x\|_{p, w^{\prime}}^{p}
$$

Proof. Let \mathcal{N} be an ε-net for $\left\{A x \mid\|A x\|_{p, w}=1\right\}$. Standard facts (see, e.g., (Woodruff, 2014, p. 48)) imply that $\log |\mathcal{N}| \leq O(d \log (1 / \varepsilon))$. Now we invoke Lemma A. 9 with $\delta_{\text {lewis }}=\delta_{\text {subspace }} /|\mathcal{N}|$. Notice that $f(x)=|x|^{p}$ is also a loss function that satisfies Assumption 1, with $L_{M}=U_{M}=1$ and $\tau=\infty$. Thus, if p_{i} satisfies

$$
p_{i} \geq \Theta\left(d^{\max \{0, p / 2-1\}} u_{i} \cdot\left(d \log (1 / \varepsilon)+\log \left(1 / \delta_{\text {subspace }}\right)\right) / \varepsilon^{2}\right)
$$

then with probability $1-\delta_{\text {subspace }}$, simultaneously for all $x \in \mathcal{N}$ we have

$$
\|A x\|_{p, w}^{p}=(1 \pm \varepsilon)\|A x\|_{p, w^{\prime}}^{p}
$$

Now we can invoke the standard successive approximation argument (see, e.g., (Woodruff, 2014, p. 47)) to show that with probability $1-\delta_{\text {subspace }}$, simultaneously for all $x \in \mathbb{R}^{d}$ we have

$$
\|A x\|_{p, w}^{p}=(1 \pm O(\varepsilon))\|A x\|_{p, w^{\prime}}^{p}
$$

Adjusting constants implies the desired result.

B. Finding Heavy Coordinates

B.1. A Polynomial Time Algorithm

1. Let $J=\emptyset$.
2. Repeat the following for α times:
(a) Calculate $\left\{u_{i}\right\}_{i \in[n] \backslash J}$, which are the ℓ_{p} Lewis weights of the matrix $A_{[n] \backslash J, *}$.
(b) For each $i \in[n] \backslash J$, if

$$
d^{\max \{0, p / 2-1\}} u_{i} \geq \frac{1}{2 \alpha}
$$

then add i into J.

Figure 6. Algorithm for finding the set J.

Theorem B.1. For a given matrix $A \in \mathbb{R}^{n \times d}, \tau \geq 0$ and $p \geq 1$, the algorithm in Figure 6 returns a set of indices $J \subseteq[n]$ with size $|J| \leq O\left(d^{\max \{p / 2,1\}} \cdot \alpha^{2}\right)$, such that for all $y \in \operatorname{im}(A)$, if y satisfies $(i)\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$, then $H_{y} \subseteq J$.

Proof. Consider a fixed vector $y \in \operatorname{im}(A)$ that satisfies (i) $\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$. For ease of notation, we assume $\left|y_{1}\right| \geq\left|y_{2}\right| \geq \cdots \geq\left|y_{n}\right|$. Of course, this order is unknown and is not used by our algorithm. Under this assumption, $H_{y}=\left\{1,2, \ldots,\left|H_{y}\right|\right\}$.
We prove $H_{y} \subseteq J$ by induction. For any $i<\left|H_{y}\right|$, suppose $[i] \subseteq J$ and $i+1 \notin J$ after the i-th repetition of Step 2, we show that we will add $i+1$ into J in the $(i+1)$-th repetition of Step 2 . Since, $[i] \subseteq J$ and $\left|y_{1}\right| \geq\left|y_{2}\right| \geq \cdots \geq\left|y_{n}\right|$,

$$
\left\|y_{[n] \backslash J}\right\|_{p}^{p} \leq\left\|y_{L_{y}}\right\|_{p}^{p}+\alpha\left|y_{i+1}\right|^{p} \leq \alpha \tau^{p}+\alpha\left|y_{i+1}\right|^{p}
$$

Since $i+1 \in H_{y}$, we must have $\left|y_{i+1}\right| \geq \tau$, which implies

$$
\frac{\left|y_{i+1}\right|^{p}}{\left\|y_{[n] \backslash J}\right\|_{p}^{p}} \geq \frac{1}{2 \alpha}
$$

By Lemma A.8, this implies

$$
d^{\max \{0, p / 2-1\}} u_{i+1} \geq \frac{1}{2 \alpha}
$$

1. Let $|J|=O\left(d^{\max \{p / 2,1\}} \cdot \alpha^{2}\right)$ as in Corollary B.2.
2. Repeat the following for $O\left(\log \left(|J| / \delta_{\text {struct }}\right)\right)$ times:
(a) Randomly partition $[n]$ into $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{\alpha}$.
(b) For each $j \in[\alpha]$, use the algorithm in Theorem A. 2 to obtain weights $\left\{\hat{u}_{i}\right\}_{i \in \Gamma_{j}}$ such that $u_{i} \leq \hat{u}_{i} \leq 2 u_{i}$, where $\left\{u_{i}\right\}_{i \in \Gamma_{j}}$ are the ℓ_{p} Lewis weights of the matrix $A_{\Gamma_{j}, *}$.
(c) For each $j \in[\alpha]$, for each $i \in \Gamma_{j}$, if

$$
d^{\max \{0, p / 2-1\}} \hat{u}_{i} \geq \frac{1}{6}
$$

then add i to I.

Figure 7. Algorithm for finding the set I.
where u_{i+1} is the ℓ_{p} Lewis weight of the row $A_{i+1, *}$ in $A_{[n] \backslash J, *}$, in which case we will add $i+1$ into J. Thus, $H_{y} \subseteq J$ since $\left|H_{y}\right| \leq \alpha$.
Now we analyze the size of J. For the algorithm in Figure 6, we repeat the whole procedure α times. Each time, an index i will be added into I if and only if

$$
d^{\max \{0, p / 2-1\}} u_{i} \geq \frac{1}{2 \alpha}
$$

However, since

$$
\sum_{i \in[n] \backslash J} u_{i}=\sum_{i \in[n] \backslash J} \bar{u}_{i}^{p} \leq d
$$

by Theorem A.5, there are at most $O\left(d^{\max \{p / 2,1\}} \cdot \alpha\right)$ such indices i. Thus, the total size of J is upper bounded by $O\left(d^{\max \{p / 2,1\}} \cdot \alpha^{2}\right)$.

The above algorithm also implies the following existential result.
Corollary B.2. For a given matrix $A \in \mathbb{R}^{n \times d}, \tau \geq 0$ and $p \geq 1$, there exists a set of indices $J \subseteq[n]$ with size $|J| \leq O\left(d^{\max \{p / 2,1\}} \cdot \alpha^{2}\right)$, such that for all $y \in \operatorname{im}(A)$, if y satisfies $(i)\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$, then $H_{y} \subseteq J$.

B.2. An Input-sparsity Time Algorithm

To find a set of heavy coordinates, the algorithm in Theorem B. 1 runs in polynomial time. In this section we present an algorithm for finding heavy coordinates that runs in input-sparsity time. The algorithm is described in Figure 7.
Theorem B.3. For a given matrix $A \in \mathbb{R}^{n \times d}, \tau \geq 0$, $\delta_{\text {struct }} \in(0,1)$, and $p \geq 1$, the algorithm in Figure 7 returns a set of indices $I \subseteq[n]$ with size $|I| \leq \widetilde{O}\left(d^{\max \{p / 2,1\}} \alpha \cdot \log \left(1 / \delta_{\text {struct }}\right)\right)$, such that with probability at least $1-\delta_{\text {struct }}$, simultaneously for all $y \in \operatorname{im}(A)$, if y satisfies (i) $\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$, then $H_{y} \subseteq I$. Furthermore, the algorithm runs in $\widetilde{O}\left(\left(\mathrm{nnz}(A)+d^{p / 2+O(1)} \cdot \alpha\right) \cdot \log \left(1 / \delta_{\text {struct }}\right)\right)$ time.

Proof. Let J be the set with size $|J| \leq O\left(d^{\max \{p / 2,1\}} \cdot \alpha^{2}\right)$ whose existence is proved in Corollary B.2. For all $y \in \operatorname{im}(A)$, if y satisfies (i) $\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$, then $H_{y} \subseteq J$. We only consider those $c \in J$ for which there exists $y \in \operatorname{im}(A)$ such that (i) $\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$, (ii) $\left|H_{y}\right| \leq \alpha$ and (iii) $c \in H_{y}$, since we can remove other c from J and the properties of J still hold. For such $c \in H_{y}$ and the corresponding $y \in \operatorname{im}(A)$, suppose for some $j \in[\alpha]$ we have $c \in \Gamma_{j}$. Since $\left|H_{y}\right| \leq \alpha$, with probability $(1-1 / \alpha)^{\left|H_{y}\right|-1} \geq 1 / e$, we have $\Gamma_{j} \cap H_{y}=\{c\}$. Furthermore, $\mathrm{E}\left[\left\|y_{L_{y} \cap \Gamma_{j}}\right\|_{p}^{p}\right]=\left\|y_{L_{y}}\right\|_{p}^{p} / \alpha \leq \tau^{p}$. By Markov’s inequality, with probability at least 0.8 , we have $\left\|y_{L_{y} \cap \Gamma_{j}}\right\|_{p}^{p} \leq 5 \tau^{p}$. Thus, by a union bound, with probability at least $1 / e-0.2>0.1$, we have $\left\|y_{L_{y} \cap \Gamma_{j}}\right\|_{p}^{p} \leq 5 \tau^{p}$ and $\Gamma_{j} \cap H_{y}=\{c\}$. By repeating $O\left(\log \left(|J| / \delta_{\text {struct }}\right)\right)$ times, the success probability is at least $1-\delta_{\text {struct }} /|J|$. Applying a union bound over all $c \in J$, with probability $1-\delta_{\text {struct }}$, the stated conditions hold for all $c \in J$. We condition on this event in the rest of the proof.

Consider any $c \in J$ and $y \in \operatorname{im}(A)$ with the properties stated above. Since $\left|y_{c}\right| \geq \tau$, we have

$$
\frac{\left|y_{c}\right|^{p}}{\left\|y_{\Gamma_{j}}\right\|_{p}^{p}} \geq \frac{\left|y_{c}\right|^{p}}{\left\|y_{\Gamma_{j} \cap L_{y}}\right\|_{p}^{p}+\left|y_{c}\right|^{p}} \geq \frac{1}{6}
$$

By Lemma A.8, we must have

$$
d^{\max \{0, p / 2-1\}} u_{c} \geq \frac{1}{6}
$$

where u_{c} is the ℓ_{p} Lewis weight of the row $A_{c, *}$ in the matrix $A_{\Gamma_{j}, *}$, which also implies

$$
d^{\max \{0, p / 2-1\}} \hat{u}_{c} \geq \frac{1}{6}
$$

since $\hat{u}_{c} \geq u_{c}$, in which case we will add c to I.
Now we analyze the size of I. For each $j \in[\alpha]$, we have

$$
\sum_{i \in \Gamma_{j}} \hat{u}_{i} \leq 2 \sum_{i \in \Gamma_{j}} u_{i}=2 \sum_{i \in \Gamma_{j}} \bar{u}_{i}^{p} \leq 2 d
$$

by Theorem A.5. For each $j \in[\alpha]$, there are at most $O\left(d^{\max \{p / 2,1\}}\right)$ indices i which satisfy

$$
d^{\max \{0, p / 2-1\}} \hat{u}_{i} \geq \frac{1}{6}
$$

which implies we will add at most $O\left(\alpha \cdot d^{\max \{p / 2,1\}}\right)$ elements into I during each repetition. The bound on the size of I follows since there are only $O\left(\log \left(|J| / \delta_{\text {struct }}\right)\right)=O\left(\log d+\log \alpha+\log \left(1 / \delta_{\text {struct }}\right)\right)$ repetitions.
For the running time of the algorithm, since we invoke the algorithm in Theorem A. 4 for $O\left(\log \left(|J| / \delta_{\text {struct }}\right)\right)$ times, and each time we estimate the ℓ_{p} Lewis weights of $A_{\Gamma_{1}, *}, A_{\Gamma_{2}, *}, \ldots, A_{\Gamma_{|\alpha|}, *}$, which implies the running time for each repetition is upper bounded by

$$
\sum_{j=1}^{|\alpha|} \widetilde{O}\left(\mathrm{nnz}\left(A_{\Gamma_{j}, *}\right)+d^{p / 2+O(1)}\right)=\widetilde{O}\left(\mathrm{nnz}(A)+d^{p / 2+O(1)} \cdot \alpha\right)
$$

The bound on the running time follows since we repeat for $O\left(\log \left(|J| / \delta_{\text {struct }}\right)\right)$ times.
The above algorithm and the probabilisitic method also imply the following existential result.
Corollary B.4. For a given matrix $A \in \mathbb{R}^{n \times d}, \tau \geq 0$ and $p \geq 1$, there exists a set of indices $I \subseteq[n]$ with size $|I| \leq \widetilde{O}\left(d^{\max \{p / 2,1\}} \cdot \alpha\right)$, such that for all $y \in \operatorname{im}(A)$, if y satisfies (i) $\left\|y_{L_{y}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y}\right| \leq \alpha$, then $H_{y} \subseteq I$.

C. The Net Argument

C.1. Bounding the Norm

We will generally assume that for product $A x$, the x involved is $\operatorname{in} \operatorname{im}\left(A^{\top}\right)$, which is the orthogonal complement of the nullspace of A; any nullspace component of x would not affect $A x$ or $S A x$, and so can be neglected for our purposes.
Lemma C.1. When the entries of A are integral, for any nonempty $\mathcal{S} \subset[n],\left\|A_{\mathcal{S}, *}^{+}\right\|_{2} \leq\|A\|_{2}^{d} \mathrm{CP}(A) \sqrt{d}$, and under also Assumption 2.2, $\left\|A_{\mathcal{S}, *}^{+}\right\|_{2} \leq n^{O\left(d^{2}\right)}$.

Proof. When \mathcal{S} is a nonempty proper subset of $[n]$, then since $\left\|A_{\mathcal{S}, *}\right\|_{2} \leq\|A\|_{2}$ and $\mathrm{CP}\left(A_{\mathcal{S}, *}\right) \leq \mathrm{CP}(A)$, we have that if $\left\|A_{\mathcal{S}, *}^{+}\right\|_{2} \leq\left\|A_{\mathcal{S}, *}\right\|_{2}^{d} \mathrm{CP}\left(A_{\mathcal{S}, *}\right) \sqrt{d}$, then the lemma follows. So we can assume $S=[n]$.
First suppose A has full column rank, so that $A^{\top} A$ is invertible. For any $y \in \mathbb{R}^{n}, A^{+} y$ is the unique solution x^{*} of $A^{\top} A x=A^{\top} y$. Applying Cramer's rule, the entries of x^{*} have the form $x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A^{\top} A}$, where B_{i} is the same as $A^{\top} A$, except that the i 'th column of B_{i} is $A^{\top} y$. The integrality of A implies $\left|\operatorname{det} A^{\top} A\right| \geq 1$; using that together with Hadamard's
determinant inequality and the definition of the spectral norm, we have $\left\|x^{*}\right\|_{2} \leq\|A\|_{2}^{d} \mathrm{CP}(A)\|y\|_{2} \sqrt{d}$. Since this holds for any y, we have $\left\|A^{+}\right\|_{2} \leq\|A\|_{2}^{d} \mathrm{CP}(A) \sqrt{d}$ as claimed.
Now suppose A has rank $k<d$. Then there is $\mathcal{T} \subset[d]$ of size k whose members are indices of a set of k linearly independent columns of A. Moreover, if $x^{*}=A^{+} y$ is a solution to $\min _{x}\|A x-y\|_{2}$, then there is another solution where the entries with indices in $[d] \backslash \mathcal{T}$ are zero, since a given column not in \mathcal{T} is a linear combination of columns in \mathcal{T}. That is, the solution to $\min _{x \in \mathbb{R}^{k}}\left\|A_{*, \mathcal{T} x}-y\right\|_{2}$ can be mapped directly to a solution x^{*} in \mathbb{R}^{k} with the same Euclidean norm. Since $A_{*, \mathcal{T}}$ has full column rank, the analysis above implies that

$$
\left\|x^{*}\right\|_{2} \leq\left\|A_{*, \mathcal{T}}\right\|_{2}^{k} \mathrm{CP}\left(A_{*, \mathcal{T}}\right)\|y\|_{2} \sqrt{k} \leq\|A\|_{2}^{d} \mathrm{CP}(A)\|y\|_{2} \sqrt{d}
$$

so the bound on $\left\|A^{+}\right\|_{2}$ holds also when A has less than full rank.
The last statement of the lemma follows directly, using the definitions of $\|A\|_{2}, \mathrm{CP}(A)$, and Assumption 2.2.
Lemma C.2. If A has integral entries, and if Assumptions 1, 2.2, 2.3 hold, then Assumption 2.1 holds.
Proof. Let $x_{M}^{C_{1}}$ be a C_{1}-approximate solution of $\min _{x}\|A x-b\|_{M}$, which Assumption 2.1 requires to have bounded Euclidean norm. Let $\hat{M}(a) \equiv \min \left\{\tau^{p},|a|^{p}\right\}$, so that Assumptions 1.4 and 1.5 imply that $L_{M} \hat{M}(a) \leq M(a) \leq U_{M} \hat{M}(a)$ for all a. Letting $x_{M}^{*} \equiv \operatorname{argmin}_{x}\|A x-b\|_{M}$, and similarly defining $x_{\hat{M}}^{*}$, this condition implies that

$$
\begin{align*}
\left\|A x_{M}^{C_{1}}-b\right\|_{\hat{M}} & \leq \frac{1}{L_{M}}\left\|A x_{M}^{C_{1}}-b\right\|_{M} \\
& \leq \frac{C_{1}}{L_{M}}\left\|A x_{M}^{*}-b\right\|_{M} \\
& \leq C_{2}\left\|A x_{M}^{*}-b\right\|_{\hat{M}} \\
& \leq C_{2}\left\|A x_{\hat{M}}^{*}-b\right\|_{\hat{M}} \tag{3}
\end{align*}
$$

where $C_{2} \equiv C_{1} U_{M} / L_{M}$.
Let \mathcal{S} denote the set of indices at which $\left|A_{i, *} x_{M}^{C_{1}}-b_{i}\right| \leq \tau$. If \mathcal{S} is empty, then $x_{M}^{C_{1}}$ can be assumed to be zero.
Similarly to our general assumption that $x_{M}^{C_{1}} \in \operatorname{im}\left(A^{\top}\right)$, we can assume that $x_{M}^{C_{1}} \in \operatorname{im}\left(A_{\mathcal{S}, *}^{\top}\right)$, since any component of $x_{M}^{C_{1}}$ in the nullspace of $A_{\mathcal{S}, *}$ can be removed without changing $A_{\mathcal{S}, *} x_{M}^{C_{1}}$, and without increasing the $n-|S|$ contributions of τ^{p} from the remaining summands in $\left\|A x_{M}^{C_{1}}-b\right\|_{M}$. (Here we used Assumption 1.5 that $M(a)=\tau^{p}$ for $|a| \geq \tau$.)
$\operatorname{From} x_{M}^{C_{1}} \in \operatorname{im}\left(A^{\top}\right)$ it follows that $\left\|x_{M}^{C_{1}}\right\|_{2}=\left\|A_{\mathcal{S}, *}^{+} A_{\mathcal{S}, *} x_{M}^{C_{1}}\right\|_{2} \leq\left\|A_{\mathcal{S}, *}^{+}\right\|_{2}\left\|A_{\mathcal{S}, *} x_{M}^{C_{1}}\right\|_{2}$, and since

$$
\begin{align*}
\left\|A_{\mathcal{S}, *} x_{M}^{C_{1}}\right\|_{2} & \leq \sqrt{n}\left\|A_{\mathcal{S}, *} x_{M}^{C_{1}}\right\|_{p} \\
& \leq \sqrt{n}\left(\left\|A_{\mathcal{S}, *} x_{M}^{C_{1}}-b_{S}\right\|_{p}+\left\|b_{S}\right\|_{p}\right) \\
& \leq C_{2} \sqrt{n}\left(\left\|A x_{\hat{M}}^{*}-b\right\|_{\hat{M}}^{1 / p}+\left\|b_{S}\right\|_{p}\right) \tag{3}\\
& \leq 2 C_{2} \sqrt{n}\|b\|_{p}
\end{align*}
$$

we have $\left\|x_{M}^{C_{1}}\right\|_{2} \leq\left\|A_{\mathcal{S}, *}^{+}\right\|_{2}\left\|A_{\mathcal{S}, *} x_{M}^{C_{1}}\right\|_{2} \leq\left\|A_{\mathcal{S}, *}^{+}\right\|_{2} 2 C_{2} \sqrt{n}\|b\|_{p}$, and so from Lemma C. 1 and Assumption 2.2, the bound on $\left\|x_{M}^{C_{1}}\right\|_{2}$ of Assumption 2.1 follows.

C.2. Net Constructions

Lemma C.3. Under the given assumptions, for U as in Assumption 2.1, there exists a set $\mathcal{N}_{\varepsilon} \subseteq \operatorname{im}([A b])$ with size $\left|\mathcal{N}_{\varepsilon}\right| \leq n^{O\left(d^{3}\right)} \cdot(1 / \varepsilon)^{O(d)}$, such that for any x satisfying $\|x\|_{2} \leq U$, there exists $y^{\prime} \in \mathcal{N}_{\varepsilon}$ such that

$$
\left\|(A x-b)-y^{\prime}\right\|_{M} \leq \varepsilon^{p}
$$

Proof. Let $\hat{M}(a) \equiv \min \left\{\tau^{p},|a|^{p}\right\}$. Assume for now that $\varepsilon \leq \tau / 2$, so that if $\|A x\|_{\hat{M}} \leq \varepsilon^{p}$, then every entry of $A x$ is no more than τ in magnitude, and so $\|A x\|_{\hat{M}}=\|A x\|_{p}^{p}$.

Let

$$
B_{\varepsilon} \equiv\left\{A x-b \mid\|A x-b\|_{\hat{M}} \leq \varepsilon^{p}\right\}=\left\{A x-b \mid\|A x-b\|_{p} \leq \varepsilon\right\}
$$

and

$$
B_{U} \equiv\left\{A x-b \mid\|x\|_{2} \leq U\right\} \subseteq\left\{A x-b \mid\|A x-b\|_{p} \leq \sqrt{n} \cdot\left(\|A\|_{2} U+\|b\|_{2}\right)\right\}
$$

From the scale invariance of the ℓ_{p} norm, and the volume in at-most d dimensions, $\operatorname{Vol}\left(B_{\varepsilon}\right) \geq\left(\varepsilon /\left(\sqrt{n} \cdot\left(\|A\|_{2} U+\right.\right.\right.$ $\left.\left.\left.\|b\|_{2}\right)\right)\right)^{d} \operatorname{Vol}\left(B_{U}\right)$, so that at most $\left(\sqrt{n} \cdot\left(\|A\|_{2} U+\|b\|_{2}\right) / \varepsilon\right)^{d}$ translates of B_{ε} can be packed into B_{U} without intersecting. Thus the set $\mathcal{N}_{\varepsilon}$ of centers of such a maximal packing of translates is an ε^{p}-cover of B_{U}, that is, for any point $y \in B_{U}$, there is some $y^{\prime} \in \mathcal{N}$ such that $\left\|y^{\prime}-y\right\|_{p} \leq \varepsilon$, so that $\left\|y^{\prime}-y\right\|_{\hat{M}} \leq \varepsilon^{p}$.
If $\varepsilon>\tau / 2$, we just note that a $(\tau / 2)^{p}$-cover is also an ε^{p}-cover, and so there is an ε^{p}-cover of size $\left(\sqrt{n} \cdot\left(\|A\|_{2} U+\right.\right.$ $\left.\left.\|b\|_{2}\right) / \min \{\tau / 2, \varepsilon\}\right)^{d}$.
Plugging in the bounds for U from Assumption 2.1, and for $\tau,\|b\|_{2}$, and $\|A\|_{2} \leq \max _{i \in[d]}\left\|A_{*, i}\right\|_{2}$ from Assumptions 2.2 and 2.3, the cardinality bound of the lemma follows.
This argument is readily adapted to more general $\|\cdot\|_{M}$, by noticing that $\left\|y-y^{\prime}\right\|_{M} \leq U_{M} \cdot\left\|y-y^{\prime}\right\|_{\hat{M}}$ using Assumption 1.4 and adjusting constants.

Lemma C.4. Under the given assumptions, there exists a set $\mathcal{M}_{\varepsilon}^{\alpha, \beta} \subseteq \operatorname{im}([A b])$ with size $\left|\mathcal{M}_{\varepsilon}^{\alpha, \beta}\right| \leq O\left(\frac{\beta / \alpha}{\varepsilon}\right) \cdot n^{O\left(d^{2}\right)}$. $(1 / \varepsilon)^{O(d)}$, such that for any x satisfying $\alpha \leq\|A x-b\|_{p} \leq \beta \leq \tau$, there exists $y^{\prime} \in \mathcal{M}_{\varepsilon}^{\alpha, \beta}$ such that

$$
\left\|(A x-b)-y^{\prime}\right\|_{M} \leq \varepsilon^{p} \cdot\|A x-b\|_{M}
$$

Proof. We assume $\varepsilon \leq \tau$, since otherwise we can take ε to be τ. By standard constructions (see, e.g., (Woodruff, 2014, p. 48)), there exists a set $\mathcal{M}_{\gamma} \subseteq \operatorname{im}([A b])$ with size $\left|\mathcal{M}_{\gamma}\right| \leq(1 / \varepsilon)^{O(d)}$, such that for any $y=A x-b$ with $\|y\|_{p}=\gamma$, there exists $y^{\prime} \in \mathcal{M}_{\gamma}$ such that $\left\|y-y^{\prime}\right\|_{p} \leq \gamma \cdot \varepsilon$.
Let $\mathcal{M}_{\varepsilon}^{\alpha, \beta}$ be

$$
\mathcal{M}_{\varepsilon}^{\alpha, \beta}=\mathcal{M}_{\alpha} \cup \mathcal{M}_{(1+\varepsilon) \alpha} \cup \mathcal{M}_{(1+\varepsilon)^{2} \alpha} \cup \cdots \cup \mathcal{M}_{\beta}
$$

Clearly, by Assumption 2,

$$
\left|\mathcal{M}_{\varepsilon}^{\alpha, \beta}\right| \leq \log _{1+\varepsilon}(\beta / \alpha) \cdot n^{O\left(d^{2}\right)} \cdot(1 / \varepsilon)^{O(d)} \leq O\left(\frac{\beta / \alpha}{\varepsilon}\right) \cdot n^{O\left(d^{2}\right)} \cdot(1 / \varepsilon)^{O(d)}
$$

Now we show that $\mathcal{M}_{\varepsilon}^{\alpha, \beta}$ satisfies the desired properties. For any $x \in \mathbb{R}^{d}$ such that $y=A x-b$ satisfies $\alpha \leq\|y\|_{p} \leq$ $\beta \leq \tau$, we must have $\left|y_{i}\right| \leq \tau$ for all entries of y. By normalization, there exists \hat{y} such that $\|y-\hat{y}\|_{p} \leq \varepsilon \cdot\|y\|_{p}$ and $\|\hat{y}\|_{p}=(1+\varepsilon)^{i} \cdot \alpha$ for some $i \in \mathbb{N}$. Furthermore, by the property of $\mathcal{M}_{(1+\varepsilon)^{i} \alpha}$, there exists $y^{\prime} \in \mathcal{M}_{(1+\varepsilon)^{i} \alpha} \subseteq \mathcal{M}_{\varepsilon}^{\alpha, \beta}$ such that $\left\|\hat{y}-y^{\prime}\right\|_{p} \leq \varepsilon \cdot\left\|y^{\prime}\right\|_{p} \leq 2 \varepsilon \cdot\|y\|_{p}$. Thus, by triangle inequality, we have $\left\|y-y^{\prime}\right\|_{p} \leq 3 \varepsilon\|y\|_{p}$. For sufficiently small ε, since $\|y\|_{p} \leq \tau$, we also have $\left\|y-y^{\prime}\right\|_{p} \leq \tau$, which implies $\left\|y-y^{\prime}\right\|_{\infty} \leq \tau$. Thus, using Assumption 1.4, we have

$$
\left\|y-y^{\prime}\right\|_{M} \leq U_{M}\left\|y-y^{\prime}\right\|_{p}^{p} \leq U_{M} \cdot(3 \varepsilon)^{p} \cdot\|y\|_{p}^{p} \leq U_{M} / L_{M}(3 \varepsilon)^{p}\|y\|_{M}
$$

Adjusting constants implies the desired properties.

C.3. The Net Argument

Theorem C.5. For any $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$, given a matrix $S \in \mathbb{R}^{r \times n}$ and a weight vector $w \in \mathbb{R}^{n}$ such that $w_{i} \geq 0$ for all $i \in[n]$. Let $c=\min _{x}\|A x-b\|_{p}$. If there exist $U_{O}, U_{A}, L_{A}, L_{N} \leq \operatorname{poly}(n)$ such that

1. $\left\|S\left(A x_{M}^{*}-b\right)\right\|_{M, w} \leq U_{O}\left\|A x_{M}^{*}-b\right\|_{M}$, where $x_{M}^{*}=\operatorname{argmin}_{x}\|A x-b\|_{M}$;
2. $L_{A}\|A x-b\|_{M} \leq\|S(A x-b)\|_{M, w} \leq U_{A}\|A x-b\|_{M}$ for all $x \in \mathbb{R}^{d}$;
3. $\|S y\|_{M, w} \geq L_{N}\|y\|_{M}$ for all $y \in \mathcal{N}_{\operatorname{poly}(\varepsilon \cdot \tau / n)} \cup \mathcal{M}_{\operatorname{poly}(\varepsilon / n)}^{c, c \cdot \operatorname{poly}(n)}$,
then, any C-approximate solution of $\min _{x}\|S(A x-b)\|_{M, w}$ with $C \leq \operatorname{poly}(n)$ is a $C \cdot(1+O(\varepsilon)) \cdot U_{O} / L_{N}$-approximate solution of $\min _{x}\|A x-b\|_{M}$. Here $\mathcal{N}_{\operatorname{poly}(\varepsilon \cdot \tau / n)}$ and $\mathcal{M}_{\mathrm{poly}(\varepsilon / n)}^{c, c \cdot \operatorname{poly}(n)}$ are as defined in Lemma C. 3 and Lemma C.4, respectively.

Proof. We distinguish two cases in the proof.
Case 1: $\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right) \cdot c^{p} \leq \tau^{p}$. In this case, we prove that any C-approximate solution $x_{S, M, w}^{C}$ of $\min _{x}\|S(A x-b)\|_{M, w}$ satisfies $c \leq\left\|A x_{S, M, w}^{C}-b\right\|_{p} \leq\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right)^{1 / p} \cdot c \leq \tau$. Let $x_{p}^{*}=\operatorname{argmin}_{x}\|A x-b\|_{p}$, we have

$$
\begin{aligned}
& \left\|A x_{S, M, w}^{C}-b\right\|_{M} \\
\leq & \left\|S\left(A x_{S, M, w}^{C}-b\right)\right\|_{M, w} / L_{A} \\
\leq & C \cdot\left\|S\left(A x_{p}^{*}-b\right)\right\|_{M, w} / L_{A} \\
\leq & C \cdot\left\|A x_{p}^{*}-b\right\|_{M} \cdot U_{A} / L_{A} \\
\leq & C \cdot\left\|A x_{p}^{*}-b\right\|_{p}^{p} \cdot\left(U_{M} \cdot U_{A}\right) / L_{A} \\
= & C \cdot c^{p} \cdot\left(U_{M} \cdot U_{A}\right) / L_{A}
\end{aligned}
$$

Since $L_{M} \leq 1$, this implies $\left\|A x_{S, M, w}^{C}-b\right\|_{M} \leq \tau^{p}$, which implies $\left\|A x_{S, M, w}^{C}-b\right\|_{\infty} \leq \tau$. Thus, $\left\|A x_{S, M, w}^{C}-b\right\|_{p}^{p} \leq$ $\left\|A x_{S, M, w}^{C}-b\right\|_{M} / L_{M} \leq\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right) \cdot c^{p}$, which implies $\left\|A x_{S, M, w}^{C}-b\right\|_{p} \leq\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right)^{1 / p} \cdot c$. Moreover, by the definition of c we have $\left\|A x_{S, M, w}^{C}-b\right\|_{p} \geq c$.
Since $\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right)^{1 / p} \leq \operatorname{poly}(n)$, by Lemma C.4, there exists $y^{\prime} \in \mathcal{M}_{\text {poly }(\varepsilon / n)}^{c, c \cdot p o l y(n)}$ such that $\|\left(A x_{S, M, w}^{C}-\right.$ b) $-y^{\prime}\left\|_{M} \leq \operatorname{poly}(\varepsilon / n) \cdot\right\| A x_{S, M, w}^{C}-b \|_{M}$. Notice that

$$
\left\|S\left(A x_{S, M, w}^{C}-b\right)\right\|_{M, w}=\left\|S y^{\prime}+S\left(\left(A x_{S, M, w}^{C}-b\right)-y^{\prime}\right)\right\|_{M, w}
$$

For $S y^{\prime}$, since $y^{\prime} \in \mathcal{M}_{\operatorname{poly}(\varepsilon / n)}^{c, c \cdot \operatorname{poly}(n)}$, we have

$$
\left\|S y^{\prime}\right\|_{M, w} \geq L_{N}\left\|y^{\prime}\right\|_{M}=L_{N}\left\|A x_{S, M, w}^{C}-b+\left(y^{\prime}-\left(A x_{S, M, w}^{C}-b\right)\right)\right\|_{M}
$$

Since $\left\|y^{\prime}-\left(A x_{S, M, w}^{C}-b\right)\right\|_{M} \leq \operatorname{poly}(\varepsilon / n) \cdot\left\|A x_{S, M, w}^{C}-b\right\|_{M}$, by Lemma A.3, we have $\| A x_{S, M, w}^{C}-b+\left(y^{\prime}-\right.$ $\left.\left(A x_{S, M, w}^{C}-b\right)\right)\left\|_{M} \geq(1-\varepsilon)\right\| A x_{S, M, w}^{C}-b \|_{M}$, which implies $\left\|S y^{\prime}\right\|_{M, w} \geq L_{N}(1-\varepsilon)\left\|A x_{S, M, w}^{C}-b\right\|_{M}$. On the other hand, $\left\|S\left(\left(A x_{S, M, w}^{C}-b\right)-y^{\prime}\right)\right\|_{M, w} \leq U_{A}\left\|\left(A x_{S, M, w}^{C}-b\right)-y^{\prime}\right\|_{M} \leq \operatorname{poly}(\varepsilon / n) \cdot\left\|A x_{S, M, w}^{C}-b\right\|_{M}$. Again by Lemma A.3, we have $\left\|S\left(A x_{S, M, w}^{C}-b\right)\right\|_{M, w} \geq(1-\varepsilon)\left\|S y^{\prime}\right\|_{M, w} \geq L_{N}(1-O(\varepsilon))\left\|A x_{S, M, w}^{C}-b\right\|_{M}$. Furthermore, since $x_{S, M, w}^{C}$ is a C-approximate solution of $\min _{x}\|S(A x-b)\|_{M, w}$, we must have

$$
\begin{aligned}
\left\|A x_{S, M, w}^{C}-b\right\|_{M} & \leq(1+O(\varepsilon)) / L_{N} \cdot\left\|S\left(A x_{S, M, w}^{C}-b\right)\right\|_{M, w} \\
& \leq C \cdot(1+O(\varepsilon)) / L_{N} \cdot\left\|S\left(A x_{M}^{*}-b\right)\right\|_{M, w} \\
& \leq C \cdot(1+O(\varepsilon)) \cdot U_{O} / L_{N} \cdot\left\|A x_{M}^{*}-b\right\|_{M}
\end{aligned}
$$

Case 2: $\left(C \cdot U_{M} \cdot U_{A} /\left(L_{M} \cdot L_{A}\right)\right) \cdot c^{p} \geq \tau^{p}$. In this case, we first prove that any C-approximate solution $x_{S, M, w}^{C}$ of $\min _{x}\|S(A x-b)\|_{M, w}$ is a poly (n)-approximate solution of $\min _{x}\|A x-b\|_{M}$. By Assumption 2.1, this implies all C-approximate solution $x_{S, M, w}^{C}$ of $\min _{x}\|S(A x-b)\|_{M, w}$ satisfies $\left\|x_{S, M, w}^{C}\right\|_{2} \leq U$.
Consider any C-approximate solution $x_{S, M, w}^{C}$ of $\min _{x}\|S(A x-b)\|_{M, w}$, we have

$$
\begin{aligned}
\left\|A x_{S, M, w}^{C}-b\right\|_{M} \leq\left\|S\left(A x_{S, M, w}^{C}-b\right)\right\|_{M, w} / L_{A} & \leq C \cdot\left\|S\left(A x_{M}^{*}-b\right)\right\|_{M, w} / L_{A} \\
& \leq C \cdot U_{A} / L_{A} \cdot\left\|A x_{M}^{*}-b\right\|_{M} \leq \operatorname{poly}(n) \cdot\left\|A x_{M}^{*}-b\right\|_{M}
\end{aligned}
$$

We further show that $\|A x-b\|_{M} \geq \tau^{p} / \operatorname{poly}(n)$ for all $x \in \mathbb{R}^{d}$. If $\|A x-b\|_{\infty} \geq \tau$, then the statement clearly holds. Otherwise, $\|A x-b\|_{M} \geq L_{M} \cdot\|A x-b\|_{p}^{p} \geq L_{M} c^{p} \geq L_{M}^{2} L_{A} /\left(C \cdot U_{M} \cdot U_{A}\right) \cdot \tau^{p} \geq \tau^{p} / \operatorname{poly}(n)$. Thus, for any C-approximate solution $x_{S, M, w}^{C}$ of $\min _{x}\|S(A x-b)\|_{M, w}$, there exists $y^{\prime} \in \mathcal{N}_{\text {poly }(\varepsilon \cdot \tau / n)}$ such that

$$
\left\|y^{\prime}-\left(A x_{S, M, w}^{C}-b\right)\right\|_{M} \leq \operatorname{poly}(\varepsilon \cdot \tau / n) \leq \operatorname{poly}(\varepsilon / n) \cdot\left\|A x_{S, M, w}^{C}-b\right\|_{M}
$$

The rest of the proof is exactly the same as that of Case 1.

D. A Row Sampling Algorithm for Tukey Loss Functions

In this section we present the row sampling algorithm. The row sampling algorithm proceeds in a recursive manner. We describe a single recursive step in Section D. 1 and the overall algorithm in Section D.2.

D.1. One Recursive Step

The goal of this section is to design one recursive step of the row sampling algorithm. For a weight vector $w \in \mathbb{R}^{n}$, the recursive step outputs a sparser weight vector $w^{\prime} \in \mathbb{R}^{n}$ such that for any set $\mathcal{N} \subseteq \operatorname{im}(A)$ with size $|\mathcal{N}|$, with probability at least $1-\delta_{\mathrm{o}}$, simultaneously for all $y \in \mathcal{N}$,

$$
\|y\|_{M, w^{\prime}}=(1 \pm \varepsilon)\|y\|_{M, w}
$$

We maintain that if $w_{i} \neq 0$, then $w_{i} \geq 1$ and $\|w\|_{\infty} \leq n^{2}$ as an invariant in the recursion. These conditions imply that we can partition the positive coordinates of w into $2 \log n$ groups P_{j}, for which $P_{j}=\left\{i \mid 2^{j-1} \leq w_{i}<2^{j}\right\}$.

Now we define one recursive step of our sampling procedure. We split the matrix A into $A_{P_{1}, *}, A_{P_{2}, *}, \ldots, A_{P_{2 \log n}, *}$, and deal with each of them separately. For each $1 \leq j \leq 2 \log n$, we invoke the algorithm in Theorem B. 3 to identify a set I_{j} for the matrix $A_{P_{j}, *}$, for some parameter α and $\delta_{\text {struct }}$ to be determined. For each $1 \leq j \leq 2 \log n$, we also use the algorithm in Theorem A. 4 to calculate $\left\{\hat{u}_{i}\right\}_{i \in P_{j}}$ such that $u_{i} \leq \hat{u}_{i} \leq 2 u_{i}$ where $\left\{u_{i}\right\}_{i \in P_{j}}$ are the ℓ_{p} Lewis weights of the matrix $A_{P_{j}, *}$. Now for each $i \in P_{j}$, we define its sampling probability p_{i} to be

$$
p_{i}=\left\{\begin{array}{ll}
1 & i \in I_{j} \\
\min \left\{1,1 / 2+\Theta\left(d^{\max \{0, p / 2-1\}} \hat{u}_{i} \cdot Y\right)\right\} & i \notin I_{j}
\end{array},\right.
$$

where $Y \equiv d \log (1 / \varepsilon)+\log \left(\log n / \delta_{\mathrm{o}}\right)+U_{M} / L_{M} \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$.
For each $i \in[n]$, we set $w_{i}^{\prime}=0$ with probability $1-p_{i}$, and set $w_{i}^{\prime}=w_{i} / p_{i}$ with probabliity p_{i}. The finishes the definition of one step of the sampling procedure.

Let

$$
F \equiv \sum_{1 \leq j \leq 2 \log n}\left|I_{j}\right|+\sum_{1 \leq j \leq 2 \log n} \sum_{i \in P_{j} \backslash I_{j}} \Theta\left(d^{\max \{0, p / 2-1\}} \hat{u}_{i} \cdot Y\right)
$$

Our first lemma shows that with probability at least $1-\delta_{0}$, the number of non-zero entries in w^{\prime} is at most $\frac{2}{3}\|w\|_{0}$, provided $\|w\|_{0}$ is large enough.
Lemma D.1. When $\|w\|_{0} \geq 10 F$, with probability at least $1-\delta_{0}$,

$$
\left\|w^{\prime}\right\|_{0} \leq \frac{2}{3}\|w\|_{0}
$$

Proof. Notice that

$$
\mathrm{E}\left[\left\|w^{\prime}\right\|_{0}\right] \leq\|w\|_{0} / 2+F
$$

By Bernstein's inequality in Lemma A.1, since $F \geq \Omega\left(\log \left(1 / \delta_{o}\right)\right)$, with probability at least $1-\exp \left(-\Omega\left(\|w\|_{0}\right)\right) \geq$ $1-\exp (-\Omega(F)) \geq 1-\delta_{0}$, we have

$$
\left\|w^{\prime}\right\|_{0} \leq\|w\|_{0} / 2+F+\|w\|_{0} / 10 \leq \frac{2}{3}\|w\|_{0}
$$

Our second lemma shows that $\left\|w^{\prime}\right\|_{\infty}$ is upper bounded by $2\|w\|_{\infty}$.
Lemma D.2. $\left\|w^{\prime}\right\|_{\infty} \leq 2\|w\|_{\infty}$.
Proof. Since $p_{i} \geq 1 / 2$ for all $i \in[n]$, we have $\left\|w^{\prime}\right\|_{\infty} \leq 2\|w\|_{\infty}$.

We show that for sufficiently large constant C, if we set

$$
\alpha=C \cdot U_{M} / L_{M} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}
$$

and $\delta_{\text {struct }}=\delta_{\mathrm{o}} /(4 \log n)$, then with probability at least $1-\delta_{\mathrm{o}}$, simultaneously for all $y \in \mathcal{N}$ we have

$$
\|y\|_{M, w^{\prime}}=(1 \pm \varepsilon)\|y\|_{M, w}
$$

By Theorem B. 3 and Theorem A.5, since

$$
\sum_{1 \leq j \leq 2 \log n} \sum_{i \in P_{j} \backslash I_{j}} \hat{u}_{i} \leq O(d \log n)
$$

this also implies

$$
F=\widetilde{O}\left(d^{\max \{1, p / 2\}} \log n \cdot\left(\log \left(|\mathcal{N}| / \delta_{\mathrm{o}}\right) \cdot \log \left(1 / \delta_{\mathrm{o}}\right)+d\right) / \varepsilon^{2}\right)
$$

Furthermore, for each $1 \leq j \leq 2 \log n$, we invoke the algorithm in Theorem A. 4 and the algorithm in Theorem B. 3 on $A_{P_{1}, *}, A_{P_{2}, *}, \ldots, A_{P_{2 \log n}, *}$, and thus the running time of each recursive step is thus upper bounded by

$$
\widetilde{O}\left(\left(\mathrm{nnz}(A)+d^{p / 2+O(1)} \cdot \alpha\right) \cdot \log \left(1 / \delta_{\text {struct }}\right)\right)=\widetilde{O}\left(\left(\mathrm{nnz}(A)+d^{p / 2+O(1)} \cdot \log \left(|\mathcal{N}| / \delta_{\mathrm{o}}\right) \cdot / \varepsilon^{2}\right) \cdot \log \left(1 / \delta_{\mathrm{o}}\right)\right)
$$

Now we consider a fixed vector $y \in \operatorname{im}(A)$. We use the following two lemmas in our analysis.
Lemma D.3. With probability $1-\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$, the following holds:

- If $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$, then

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}
$$

- If $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}<C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$, then

$$
\left|\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}\right| \leq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

Proof. For each $i \in H_{y} \cap P_{j}$, we use Z_{i} to denote the random variable

$$
Z_{i}= \begin{cases}w_{i} M\left(y_{i}\right) / p_{i} & \text { with probability } p_{i} \\ 0 & \text { with probability } 1-p_{i}\end{cases}
$$

Since $Z_{i}=w_{i}^{\prime} M\left(y_{i}\right)$, we have

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=\sum_{i \in H_{y} \cap P_{j}} Z_{i}
$$

It is clear that $Z_{i} \leq 2^{j+1} \cdot U_{M} \cdot \tau^{p}$ since $p_{i} \geq 1 / 2$ and $w_{i} \leq 2^{j}, \mathrm{E}\left[Z_{i}\right]=w_{i} M\left(y_{i}\right)$ and $\mathrm{E}\left[Z_{i}^{2}\right]=w_{i}^{2}\left(M\left(y_{i}\right)\right)^{2} / p_{i}$. By Hölder's inequality,

$$
\sum_{i \in H_{y} \cap P_{j}} \mathrm{E}\left[Z_{i}^{2}\right] \leq 2^{j+1} \cdot\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \cdot U_{M} \cdot \tau^{p}
$$

Thus by Bernstein's inequality in Lemma A.1, we have

$$
\operatorname{Pr}\left[\left|\sum_{i \in H_{y} \cap P_{j}} Z_{i}-\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2^{j+2} \cdot U_{M} \cdot \tau^{p} \cdot t / 3+2^{j+2} \cdot\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \cdot U_{M} \cdot \tau^{p}}\right)
$$

When

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}
$$

we take

$$
t=\varepsilon / 2 \cdot\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

By taking C to be some sufficiently large constant, with probability at least $1-\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$,

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}
$$

When

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}<C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}
$$

we take

$$
t=C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

By taking C to be some sufficiently large constant, with probability at least $1-\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$,

$$
\left|\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}\right| \leq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

The proof of the following lemma is exactly the same as Lemma D.3.
Lemma D.4. With probability $1-\delta_{0} / O(|\mathcal{N}| \cdot \log n)$, the following holds:

- If $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w} \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$, then

$$
\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}
$$

- If $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}<C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$, then

$$
\left|\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}\right| \leq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

Now we use Lemma D. 3 and Lemma D. 4 to analyze the sampling procedure.
Lemma D.5. If we set $\alpha=C \cdot U_{M} / L_{M} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}$, $\delta_{\text {struct }}=\delta_{\mathrm{o}} /(4 \log n)$, then for each $1 \leq j \leq 2 \log n$, with probability at least $1-\delta_{\circ} /(2 \log n)$, simultaneously for all $y \in \mathcal{N}$,

$$
\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{M, w}
$$

Applying a union bound over all $1 \leq j \leq 2 \log n$, with probability at least $1-\delta_{0}$, simultaneously for all $y \in \mathcal{N}$,

$$
\|y\|_{M, w^{\prime}}=(1 \pm \varepsilon)\|y\|_{M, w}
$$

Proof. By Theorem B.3, for each $1 \leq j \leq 2 \log n$, with probability $1-\delta_{\circ} /(4 \log n)$, simultaneously for all $y \in \mathcal{N} \subseteq \operatorname{im}(A)$, if y satisfies (i) $\left\|y_{L_{y} \cap P_{j}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{y} \cap P_{j}\right| \leq \alpha$, then we have $H_{y} \cap P_{j} \subseteq I_{j}$. We condition on this event in the remaining part of the proof.

Now we consider a fixed $y \in \mathcal{N}$. We show that $\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{M, w}$ with probability at least $1-\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$. The desired bound follows by applying a union bound over all $y \in \mathcal{N}$.

We distinguish four cases in our analysis. We use T to denote a fixed threshold

$$
T=C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{0}\right) / \varepsilon^{2}
$$

Case (i): $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}<T$ and $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}<T$. Since $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}<T$, we must have

$$
\left|H_{y} \cap P_{j}\right|<C \cdot U_{M} / L_{M} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}=\alpha
$$

Furthermore, we also have

$$
\left\|y_{L_{y} \cap P_{j}}\right\|_{p}^{p}<C \cdot U_{M} / L_{M} \cdot \tau^{p} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}=\alpha \cdot \tau^{p}
$$

By Lemma A.9, with probability at least $1-\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$, we have

$$
\left\|y_{P_{j} \backslash I_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon)\left\|y_{P_{j} \backslash I_{j}}\right\|_{M, w}
$$

since $H_{y} \cap P_{j} \subseteq I_{j}$. Moreover, $\left\|y_{I_{j}}\right\|_{M, w}=\left\|y_{I_{j}}\right\|_{M, w^{\prime}}$ since $w_{i}=w_{i}^{\prime}$ for all $i \in I_{j}$. Thus, we have $\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=$ $(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{M, w}$.

Case (ii): $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq T$ and $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w} \geq T$. By Lemma D. 3 and Lemma D.4, with probability at least 1 $\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$,

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}
$$

and

$$
\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}
$$

which implies

$$
\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{P_{j}}\right\|_{M, w}
$$

Case (iii): $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq T$ and $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}<T$. By Lemma D. 3 and Lemma D.4, with probability at least $1-$ $\delta_{\mathrm{o}} / O(|\mathcal{N}| \cdot \log n)$,

$$
\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}
$$

and

$$
\left|\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}\right| \leq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

Since

$$
\left\|y_{P_{j}}\right\|_{M, w} \geq\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w} \geq T \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}
$$

we have

$$
\left|\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}\right| \leq \varepsilon / 2 \cdot\left\|y_{P_{j}}\right\|_{M, w}
$$

which implies

$$
\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{M, w}
$$

Case (iv): $\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}<T$ and $\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w} \geq T$. By Lemma D. 3 and Lemma D.4, with probability at least $1-$ $\delta_{\circ} / O(|\mathcal{N}| \cdot \log n)$,

$$
\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon / 2)\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w}
$$

and

$$
\left|\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}\right| \leq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-2} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon
$$

Since

$$
\left\|y_{P_{j}}\right\|_{M, w} \geq\left\|y_{L_{y} \cap P_{j}}\right\|_{M, w} \geq T \geq C \cdot U_{M} \cdot \tau^{p} \cdot 2^{j-1} \cdot \log \left(|\mathcal{N}| \cdot \log n / \delta_{\mathrm{o}}\right) / \varepsilon^{2}
$$

we have

$$
\left|\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w^{\prime}}-\left\|y_{H_{y} \cap P_{j}}\right\|_{M, w}\right| \leq \varepsilon / 2 \cdot\left\|y_{P_{j}}\right\|_{M, w}
$$

which implies

$$
\left\|y_{P_{j}}\right\|_{M, w^{\prime}}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{M, w}
$$

Now we show that with probability $1-\delta_{o}$, simultaneously for all $x \in \mathbb{R}^{d},\|A x\|_{p, w^{\prime}}^{p}=(1 \pm \varepsilon)\|A x\|_{p, w}^{p}$.
Lemma D.6. For any $1 \leq j \leq 2 \log n$, with with probability at least $1-\delta_{\circ} /(2 \log n)$, simultaneously for all $y=A x$,

$$
\left\|y_{P_{j}}\right\|_{p, w^{\prime}}^{p}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{p, w}^{p}
$$

Applying a union bound over all $1 \leq j \leq 2 \log n$, this implies with probability at least $1-\delta_{0}$,

$$
\|y\|_{p, w^{\prime}}^{p}=(1 \pm \varepsilon)\|y\|_{p, w}^{p}
$$

Proof. For any fixed $1 \leq j \leq 2 \log n$, by Theorem A.10, if we take $\delta_{\text {subspace }}=\delta_{0} /(2 \log n)$, with probability at least $1-\delta_{\circ} /(2 \log n)$, simultaneously for all $y=A x$, we have

$$
\left\|y_{P_{j} \backslash I_{j}}\right\|_{p, w^{\prime}}^{p}=(1 \pm \varepsilon)\left\|y_{P_{j} \backslash I_{j}}\right\|_{p, w}^{p}
$$

Moreover, $\left\|y_{I_{j}}\right\|_{p, w}^{p}=\left\|y_{I_{j}}\right\|_{p, w^{\prime}}^{p}$ since $w_{i}=w_{i}^{\prime}$ for all $i \in I_{j}$. Thus, we have $\left\|y_{P_{j}}\right\|_{p, w^{\prime}}^{p}=(1 \pm \varepsilon)\left\|y_{P_{j}}\right\|_{p, w}^{p}$.

D.2. The Recursive Algorithm

We start by setting $w=1^{n}$. In each recursive step, we use the sampling procedure defined in Section D. 1 to obtain w^{\prime}, by setting $\delta_{\mathrm{o}}=\delta / O(\log n)$ and $\varepsilon=\varepsilon^{\prime} / O(\log n)$ for some $\varepsilon^{\prime}>0$. By Lemma D.1, for each recursive step, with probability at least $1-\delta /(10 \log n)$, we have $\left\|w^{\prime}\right\|_{0} \leq 2 / 3\|w\|_{0}$. We repeat the recursive step until $\|w\|_{0} \leq 10 F$.
By applying a union bound over all recursive steps, with probability $1-\delta / 10$, the recursive depth is at $\operatorname{most} \log _{3 / 2} n$. By Lemma D.2, this also implies with probability $1-\delta / 10$, during the whole recursive algorithm, the weight vector w always satisfies $\|w\|_{\infty} \leq 2^{\log _{1.5} n} \leq n^{2}$. If we use $w_{\text {final }}$ to denote the final weight vector, then we have

$$
\left\|w_{\text {final }}\right\|_{0} \leq 10 F=\widetilde{O}\left(d^{\max \{1, p / 2\}} \log n \cdot\left(\log \left(|\mathcal{N}| / \delta_{\mathrm{o}}\right) \cdot \log \left(1 / \delta_{\mathrm{o}}\right)+d\right) / \varepsilon^{2}\right)
$$

By Lemma D.5, and a union bound over all the $\log _{1.5} n$ recursive depths, with probability $1-\delta$, simultaneously for all $y \in \mathcal{N}$, we have

$$
\|A x\|_{M, w_{\text {final }}}=(1 \pm O(\varepsilon \cdot \log n))\|A x\|_{M}=\left(1 \pm O\left(\varepsilon^{\prime}\right)\right)\|A x\|_{M}
$$

Moreover, by Lemma D. 6 and a union bound over all the $\log _{1.5} n$ recursive depths, with probability $1-\delta / 10$, simultaneously for all $y=A x$ we have

$$
\|A x\|_{p, w_{\text {final }}}^{p}=(1 \pm O(\varepsilon \cdot \log n))\|A x\|_{p, w}^{p}=\left(1 \pm O\left(\varepsilon^{\prime}\right)\right)\|A x\|_{p, w}^{p}
$$

We further show that conditioned on this event, simultaneously for all $x \in \mathbb{R}^{d}$,

$$
\|A x\|_{M, w_{\text {final }}} \geq \frac{L_{M}}{U_{M} \cdot n} \cdot\|A x\|_{M}
$$

Consider a fixed vector $x \in \mathbb{R}^{d}$, if there exists a coordinate $i \in H_{A x}$ such that $w_{i}>0$, since $w_{i} \geq 1$ if $w_{i}>0$, we must have

$$
\|A x\|_{M, w_{\text {final }}} \geq w_{i} M\left((A x)_{i}\right) \geq M\left((A x)_{i}\right) \geq L_{M} \cdot \tau^{p}
$$

On the other hand,

$$
\|A x\|_{M} \leq n \cdot U_{M} \cdot \tau^{p}
$$

which implies

$$
\|A x\|_{M, w_{\text {final }}} \geq \frac{L_{M}}{U_{M} \cdot n} \cdot\|A x\|_{M}
$$

Otherwise, $i \in L_{A x}$ for all $i \in[n]$, which implies

$$
\|A x\|_{M, w_{\text {final }}} \geq L_{M} \cdot\|A x\|_{p, w_{\text {final }}}^{p} \geq\left(1-O\left(\varepsilon^{\prime}\right)\right) L_{M}\|A x\|_{p, w}^{p} \geq \frac{\left(1-O\left(\varepsilon^{\prime}\right)\right) L_{M}}{U_{M}}\|A x\|_{M}
$$

Finally, since each recursive step runs in $\widetilde{O}\left(\left(\operatorname{nnz}(A)+d^{p / 2+O(1)} \cdot \log (|\mathcal{N}| / \delta) \cdot / \varepsilon^{2}\right) \cdot \log (1 / \delta)\right)$ time, and the number of recursive steps is upper bounded by $\log _{1.5} n$ with probability $1-\delta / 10$, the total running time is also upper bounded $\widetilde{O}\left(\left(\operatorname{nnz}(A)+d^{p / 2+O(1)} \cdot \log (|\mathcal{N}| / \delta) \cdot / \varepsilon^{2}\right) \cdot \log (1 / \delta)\right)$ with probability $1-\delta / 10$.
The following lemma can be proved by applying a union bound over all observations above, changing ε^{\prime} to ε and changing A to $[A b]$.
Lemma D.7. The algorithm outputs a vector $w_{\text {final }} \in \mathbb{R}^{n}$, such that for any set $\mathcal{N} \subseteq \operatorname{im}([A b])$ with size $|\mathcal{N}|$, with probability $1-\delta$, the algorithm runs in $\widetilde{O}\left(\left(\operatorname{nnz}(A)+d^{p / 2+O(1)} \cdot \log (|\mathcal{N}| / \delta) \cdot / \varepsilon^{2}\right) \cdot \log (1 / \delta)\right)$ time and the following holds:

1. $\left\|w_{\text {final }}\right\|_{0} \leq \widetilde{O}\left(d^{\max \{1, p / 2\}} \log ^{3} n \cdot(\log (|\mathcal{N}| / \delta) \cdot \log (1 / \delta)+d) / \varepsilon^{2}\right)$;
2. $\left\|w_{\text {final }}\right\|_{\infty} \leq n^{2}$;
3. For all $x \in \mathbb{R}^{d},\|A x-b\|_{M, w_{\text {final }}} \geq \frac{L_{M}}{U_{M} \cdot n} \cdot\|A x-b\|_{M}$.
4. For all $x \in \mathcal{N},\|A x-b\|_{M, w_{\text {final }}}=(1 \pm \varepsilon)\|A x-b\|_{M}$.

Combining Lemma D. 7 with the net argument in Theorem C.5, we have the following theorem.
Theorem D.8. By setting $|\mathcal{N}|=n^{O\left(d^{3}\right)} \cdot(1 / \varepsilon)^{O(d)}$, the algorithm outputs a vector $w_{\text {final }} \in \mathbb{R}^{n}$, such that with probability $1-\delta$, the algorithm runs in $\widetilde{O}\left(\left(\operatorname{nnz}(A)+d^{p / 2+O(1)} / \varepsilon^{2} \cdot \log (1 / \delta)\right) \cdot \log (1 / \delta)\right)$ time, $\left\|w_{\text {final }}\right\|_{0} \leq \widetilde{O}\left(d^{p / 2+O(1)} \log ^{4} n\right.$. $\left.\log ^{2}(1 / \delta) / \varepsilon^{2}\right)$ and any C-approximate solution of $\min _{x}\|A x-b\|_{M, w_{\text {final }}}$ with $C \leq \operatorname{poly}(n)$ is a $C \cdot(1+\varepsilon)$-approximate solution of $\min _{x}\|A x-b\|_{M}$.

Proof. Lemma D. 7 implies that $U_{O}=1+\varepsilon, L_{N}=1-\varepsilon, L_{A}=\frac{L_{M}}{U_{M} \cdot n}$ and $U_{A} \leq\left\|w_{\text {final }}\right\|_{\infty} \leq n^{2}$. Adjusting constants and applying Theorem C. 5 imply the desired result.

E. The M-sketch

In this section we give an oblivious sketch for Tukey loss functions. Throughout this section we assume $1 \leq p \leq 2$ in Assumption 1.
For convenience and to set up notation, we first describe the construction.

The sketch. Each coordinate z_{p} of a vector z to be sketched is mapped to a level h_{p}, and the number of coordinates mapped to level h is exponentially small in h : for an integer branching factor $b>1$, we expect the number of coordinates at level h to be about a b^{-h} fraction of the coordinates. The number of buckets at a given level is $N=b c m$, where integers $m, c>1$ are parameters to be determined later.

Our sketching matrix is $S \in \mathbb{R}^{N h_{\max } \times n}$, where $h_{\max } \equiv\left\lfloor\log _{b}(n / m)\right\rfloor$. Our weight vector $w \in \mathbb{R}^{N h_{\max }}$ has entries $w_{i+1} \leftarrow \beta b^{h}$, for $i \in[N h, N(h+1))$ and integer $h=0,1, \ldots, h_{\max }$, and $\beta \equiv\left(b-b^{-h_{\max }}\right) /(b-1)$. Our sketch is reminiscent of sketches in the data stream literature, where we hash into buckets at multiple levels of subsampling (Indyk \& Woodruff, 2005; Verbin \& Zhang, 2012). However, the estimation performed in the sketch space needs to be the same as in the original space, which necessitates a new analysis.

The entries of S are $S_{j, p} \leftarrow \Lambda_{p}$, where $p \in[n]$ and $j \leftarrow g_{p}+N h_{p}$ and

$$
\begin{align*}
& \Lambda_{p} \leftarrow \pm 1 \text { with equal probability } \\
& g_{p} \in[N] \text { chosen with equal probability } \tag{4}\\
& h_{p} \leftarrow h \text { with probability } 1 / \beta b^{h} \text { for integer } h \in\left[0, h_{\max }\right]
\end{align*}
$$

all independently. Let L_{h} be the multiset $\left\{z_{p} \mid h_{p}=h\right\}$, and $L_{h, i}$ the multiset $\left\{z_{p} \mid h_{p}=h, g_{p}=i\right\}$; that is, L_{h} is multiset of values at a given level, $L_{h, i}$ is the multiset of values in a bucket. We can write $\|S z\|_{M, w}$ as $\sum_{h \in\left[0, h_{\max }\right], i \in[N]} \beta b^{h} M\left(\left\|L_{h, i}\right\|_{\Lambda}\right)$, where $\|L\|_{\Lambda}$ denotes $\left|\sum_{z_{p} \in L} \Lambda_{p} z_{p}\right|$.

E.1. Accuracy Bounds for Sketching One Vector

We will show that our sketching construction has the property that for a given vector $z \in \mathbb{R}^{n}$, with high probability, $\|S z\|_{M, w}$ is not too much smaller than $\|z\|_{M}$. We assume that $\|z\|_{M}=1$, for notational convenience.
Define $y \in \mathbb{R}^{n}$ by $y_{p}=M\left(z_{p}\right)$, so that $\|y\|_{1}=\|z\|_{M}=1$. Let Z denote the multiset comprising the coordinates of z, and let Y denote the multiset comprising the coordinates of y. For $\hat{Z} \subset Z$, let $M(\hat{Z}) \subset Y$ denote $\left\{M\left(z_{p}\right) \mid z_{p} \in \hat{Z}\right\}$. Let $\|Y\|_{k}$ denote $\left(\sum_{y \in Y}|y|^{k}\right)^{1 / k}$, so $\|Y\|_{1}=\|y\|_{1}$. Hereafter multisets will just be called "sets".

Weight classes. Fix a value $\gamma>1$, and for integer $q \geq 1$, let W_{q} denote the multiset comprising weight class $\left\{y_{p} \in Y \mid\right.$ $\left.\gamma^{-q} \leq y_{p} \leq \gamma^{1-q}\right\}$. We have $\beta b^{h} \mathrm{E}\left[\left\|M\left(L_{h}\right) \cap W_{q}\right\|_{1}\right]=\left\|W_{q}\right\|_{1}$. For a set of integers Q, let W_{Q} denote $\cup_{q \in Q} W_{q}$.

Defining $q_{\max }$ and $h(q)$. For given $\varepsilon>0$, consider $y^{\prime} \in \mathbb{R}^{n}$ with $y_{i}^{\prime} \leftarrow y_{i}$ when $y_{i}>\varepsilon / n$, and $y_{i}^{\prime} \leftarrow 0$ otherwise. Then $\left\|y^{\prime}\right\|_{1} \geq 1-n(\varepsilon / n)=1-\varepsilon$. We can neglect W_{q} for $q>q_{\max } \equiv \log _{\gamma}(n / \varepsilon)$, up to error ε. Moreover, we can assume that $\left\|W_{q}\right\|_{1} \geq \varepsilon / q_{\max }$, since the contribution to $\|y\|_{1}$ of weight classes W_{q} of smaller total weight, added up for $q \leq q_{\max }$, is at most ε.

Let $h(q)$ denote $\left\lfloor\log _{b}\left(\left|W_{q}\right| / \beta m\right)\right\rfloor$ for $\left|W_{q}\right| \geq \beta m$, and zero otherwise, so that

$$
m \leq \mathrm{E}\left[\left|M\left(L_{h(q)}\right) \cap W_{q}\right|\right] \leq b m
$$

for all W_{q} except those with $\left|W_{q}\right|<\beta m$, for which the lower bound does not hold.
Since $\left|W_{q}\right| \leq n$ for all q, we have $h(q) \leq\left\lfloor\log _{b}(n / \beta m)\right\rfloor \leq h_{\max }$.

E.2. Contraction Bounds

Here we will show that $\|S z\|_{M, w}$ is not too much smaller than $\|z\|_{M}$. We will need some weak conditions among the parameters. Recall that $N=b c m$.
Assumption 3. We will assume $b \geq m, b>c, m=\Omega(\log \log (n / \varepsilon)), \log b=\Omega(\log \log (n / \varepsilon)), \gamma \geq 2 \geq \beta$, an error parameter $\varepsilon \in[1 / 10,1 / 3]$, and $\log N \leq \varepsilon^{2} m$. We will consider γ to be fixed throughout, that is, not dependent on the other parameters.

We need lemmas that allow lower bounds on the contributions of the weight classes. First, some notation. For $h=$ $0,1, \ldots, h_{\max }$, let

$$
\begin{align*}
M_{<} & \equiv \log _{\gamma}(m / \varepsilon)=O\left(\log _{\gamma}(b / \varepsilon)\right) \\
Q_{<} & \equiv\left\{q\left|\left|W_{q}\right|<\beta m, q \leq M_{<}\right\}\right. \\
\hat{Q}_{h} & \equiv\left\{q\left|h(q)=h,\left|W_{q}\right| \geq \beta m\right\}\right. \\
M_{\geq} & \equiv \log _{\gamma}(2(1+3 \varepsilon) b / \varepsilon) \tag{5}\\
Q_{h} & \equiv\left\{q \in \hat{Q}_{h} \mid q \leq M_{\geq}+\min _{q \in \hat{Q}_{h}} q\right\} \\
Q^{*} & \equiv Q_{<} \cup\left[\cup_{h} Q_{h}\right] .
\end{align*}
$$

Here $Q_{<}$is the set of indices of weight classes that have relatively few members, but contain relatively large weights. \hat{Q}_{h} gives the indices of W_{q} that are "large" and have h as the level at which between m and $b m$ members of W_{q} are expected in L_{h}. The set Q_{h} cuts out the weight classes that can be regarded as negligible at level h.
Lemma E.1. If $N \geq \max \left\{O\left(\left|M_{<}\right| d m^{3} \varepsilon\right), \widetilde{O}\left(d^{2} m^{2} / \varepsilon^{2}\right)\right\}$, then with constant probability, for all $z \in \operatorname{im}(A)$ and all $q \in Q_{<, ~ t h e ~ f o l l o w i n g ~ e v e n t ~} \mathcal{E}_{v}$ holds: there are sets $W_{q}^{*} \subset W_{q}$, with $\left|W_{q}^{*}\right| \geq(1-\varepsilon)\left|W_{q}\right|$, such that for all $y \in W_{q}^{*}$,

1. they are isolated: they are the sole members of $W_{Q_{<}}$in their bucket;
2. their buckets are low-weight: the set L of other entries in bucket containing $y \in W_{q}^{*}$ has $\|L\|_{1} \leq 1 / \varepsilon^{2} m^{3}$.

Proof. Without loss of generality we assume $h(q)$ are the same for all $q \in M_{<}$, since otherwise we can deal with each $h(q)$ separately.
Let $\alpha=m /\left(L_{M} \cdot \varepsilon\right)$. By Lemma B.4, there exists a set $I \subseteq[n]$ with size $|I|=\widetilde{O}(d \cdot \alpha)=\widetilde{O}(d \cdot m / \varepsilon)$ such that for any $z \in \operatorname{im}(A)$, if z satisfies (i) $\left\|z_{L_{z}}\right\|_{p}^{p} \leq \alpha \cdot \tau^{p}$ and (ii) $\left|H_{z}\right| \leq \alpha$, then $H_{z} \subseteq I$. Let $\{u\}_{i \in[n] \backslash I}$ be the ℓ_{p} Lewis weights of $A_{[n] \backslash I, *}$ and let $J \subseteq[n] \backslash I$ be the set of indices of the $d \cdot m / \varepsilon \cdot U_{M} / L_{M}$ largest coordinates of u. Thus, $|J| \leq O(d \cdot m / \varepsilon)$. Since J contains the $d \cdot m / \varepsilon \cdot U_{M} / L_{M}$ largest coordinates of u and

$$
\sum_{i \in[n] \backslash I} u_{i}=\sum_{i \in[n] \backslash I} \bar{u}_{i}^{p} \leq d
$$

by Theorem A.5, for each $i \in[n] \backslash(I \cup J)$, we have $u_{i} \leq d /\left(d \cdot m / \varepsilon \cdot U_{M} / L_{M}\right) \leq \varepsilon / m \cdot L_{M} / U_{M}$.
If $\tau^{p}<\|z\|_{M} \cdot \varepsilon / m$, by Assumption 1.2, we have $M\left(z_{i}\right) \leq \tau^{p}<\|z\|_{M} \cdot \varepsilon / m$ for all $i \in[n]$. In this case, we have $W_{Q<}=\emptyset$. Thus we assume $\tau^{p} \geq\|z\|_{M} \cdot \varepsilon / m$ in the remaining part of the analysis.
Since $\|z\|_{M} \geq\left|H_{z}\right| \cdot \tau^{p}$, we have $\left|H_{z}\right| \leq m / \varepsilon$. Furthermore, by Assumption 1.4, $\left\|z_{L_{z}}\right\|_{p}^{p} \leq\left\|z_{L_{z}}\right\|_{M} / L_{M} \leq\|z\|_{M} / L_{M} \leq$ $\tau^{p} \cdot m /\left(L_{M} \cdot \varepsilon\right)$. Thus by setting $\alpha=m /\left(L_{M} \cdot \varepsilon\right)$ we have $H_{z} \subseteq I$. For each $i \in[n] \backslash I$, we have $\left|z_{i}\right| \leq \tau$. By Lemma
A. 8 and Assumption 1.4, for each $i \in[n] \backslash I, M\left(z_{i}\right) \leq\left|z_{i}\right|^{p} / L_{M} \leq u_{i} \cdot\left\|z_{[n] \backslash I}\right\|_{p}^{p} / L_{M} \leq u_{i} \cdot\left\|z_{[n] \backslash I}\right\|_{M} \cdot U_{M} / L_{M}<$ $u_{i} \cdot\|z\|_{M} \cdot U_{M} / L_{M}$. Thus for each entry $i \in[n] \backslash(I \cup J)$, we have $M\left(z_{i}\right)<\varepsilon / m \cdot\|z\|_{M}$.
Thus, the indices of all members of $W_{Q_{<}}$are in $I \cup J$. By setting $N \geq|I \cup J|^{2} / \kappa=\widetilde{O}\left(d^{2} m^{2} / \varepsilon^{2}\right) / \kappa$, the expected number of total collisions in $I \cup J$ is $|I \cup J|^{2} / N \leq \kappa$. Thus, by Markov's inequality, with probability $1-2 \kappa$, the total number of collisions is upper bounded by $1 / 2$, i.e., there is no collision. This implies the first condition.

For the second condition, we use $\left\{u_{i}\right\}_{i \in[n] \backslash(I \cup J)}$ to denote the ℓ_{p} Lewis weights of $A_{i \in[n] \backslash(I \cup J), *}$. Consider a fixed $q \in M_{<}$. By the first condition, all elements in W_{q} are the sole members of $W_{Q<}$ in their buckets. For each bucket we define $B_{h, i}$ to be the multiset $\left\{u_{p} \mid h_{p}=h, g_{p}=i, p \in[n] \backslash(I \cup J)\right\}$. By setting $N \geq \frac{U_{M} \cdot\left|M_{<}\right| \cdot d m^{3} \varepsilon}{L_{M} \cdot \kappa}$, for each $y \in W_{q}, \mathrm{E}\left[\left\|B_{h, i}\right\|_{1}\right] \leq d / N \leq \frac{L_{M}}{U_{M}} \cdot \frac{1}{\varepsilon^{2} m^{3}} \cdot \frac{\varepsilon \cdot \kappa}{\left|M_{<}\right|}$where $L_{h, i}$ is the bucket that contains y. This is simply because $\sum_{i \in N} B_{h, i} \leq \sum_{i \in[n] \backslash(I \cup J)} u_{i} \leq d$ by Theorem A.5. We say a bucket is good if $\left\|B_{h, i}\right\|_{1} \leq \frac{L_{M}}{U_{M}} \cdot \frac{1}{\varepsilon^{2} m^{3}}$. Notice that for $y \in W_{q}$, if y is in a good bucket $B_{h, i}$, then the set L of other entries in that bucket satisfies

$$
\begin{align*}
& \|L\|_{1}=\sum_{y \in L} y \\
= & \sum_{p \in[n] \backslash(I \cup J) \mid h_{p}=h, g_{p}=i} M\left(z_{p}\right) \\
\leq & \sum_{p \in[n] \backslash(I \cup J) \mid h_{p}=h, g_{p}=i} U_{M} \cdot\left|z_{p}\right|^{p} \tag{Assumption1.4}\\
\leq & \sum_{p \in[n] \backslash(I \cup J) \mid h_{p}=h, g_{p}=i} U_{M} \cdot u_{p} \cdot\left\|z_{[n] \backslash(I \cup J)}\right\|_{p}^{p} \tag{LemmaA.8}\\
\leq & \sum_{p \in[n] \backslash(I \cup J) \mid h_{p}=h, g_{p}=i} U_{M} / L_{M} \cdot u_{p} \cdot\left\|z_{[n] \backslash(I \cup J)}\right\|_{M} \tag{Assumption1.4}\\
\leq & \left\|B_{h, i}\right\|_{1} \cdot U_{M} / L_{M} \cdot\|z\|_{M} \\
\leq & \frac{1}{\varepsilon^{2} m^{3}} \cdot\|z\|_{M} .
\end{align*}
$$

Thus, it suffices to show that at least $(1-\varepsilon)\left|W_{q}\right|$ buckets associated with $y \in W_{q}$ are good.
By Markov's inequality, for each $y \in W_{q}$, with probability $1-\varepsilon \cdot \kappa /\left|M_{<}\right|$, the bucket that contains y is good. Thus, for the $\left|W_{q}\right|$ buckets associated with $y \in W_{q}$, the expected number of good buckets is at least $\left(1-\varepsilon \cdot \kappa / M_{<}\right)\left|W_{q}\right|$. Again, by Markov's inequality, with probability at least $1-\kappa /\left|M_{<}\right|$, at least $(1-\varepsilon)\left|W_{q}\right|$ buckets associated with $y \in W_{q}$ are good, and we just take these $(1-\varepsilon)\left|W_{q}\right|$ good buckets to be W_{q}^{*}. By applying a union bound over all $q \in M_{<}$, the second condition holds with probability at least $1-\kappa$. The lemma follows by applying a union bound over the two conditions and setting κ to be a small constant.

Lemma E. 2 (Lemma 3.8 of (Clarkson \& Woodruff, 2015b)). Let $Q_{h}^{\prime} \equiv\left\{q \mid q \leq M_{h}^{\prime}\right\}$, where $M_{h}^{\prime} \equiv \log _{\gamma}\left(\beta b^{h+1} m^{2} q_{\max }\right)$. Then for large enough $N=O\left(m^{2} b \varepsilon^{-1} q_{\max }\right)$, with probability at least $1-C^{-\varepsilon^{2} m}$ for a constant $C>1$, for each $q \in \cup_{h} Q_{h}$, there is $W_{q}^{*} \subset L_{h(q)} \cap W_{q}$ such that:

1. $\left|W_{q}^{*}\right| \geq(1-\varepsilon) \beta^{-1} b^{-h(q)}\left|W_{q}\right|$.
2. each $x \in W_{q}^{*}$ is in a bucket with no other member of $W_{Q^{*}}$.
3. $\left\|W_{q}^{*}\right\|_{1} \geq(1-4 \gamma \varepsilon) \beta^{-1} b^{-h}\left\|W_{q}\right\|_{1}$.
4. each $x \in W_{q}^{*}$ is in a bucket with no member of $W_{Q_{h}^{\prime}}$.

For $v \in T \subset Z$, let $T-v$ denote $T \backslash\{v\}$.

Lemma E. 3 (Lemma 3.6 of (Clarkson \& Woodruff, 2015b)). For $v \in T \subset Z$,

$$
M\left(\|T\|_{\Lambda}\right) \geq\left(1-\frac{\|T-v\|_{\Lambda}}{|v|}\right)^{2} M(v)
$$

and if $M(v) \geq \varepsilon^{-1}\|T-v\|_{M}$, then

$$
\begin{equation*}
\frac{\|T-v\|_{2}}{|v|} \leq \varepsilon^{1 / 2} \tag{6}
\end{equation*}
$$

and for a constant $C, \mathrm{E}_{\Lambda}\left[M\left(\|T\|_{\Lambda}\right)\right] \geq\left(1-C \varepsilon^{1 / 2}\right) M(v)$.
Lemma E. 4 (Lemma 3.9 of (Clarkson \& Woodruff, 2015b)). Assume Assumption 3. There is $N=O\left(\varepsilon^{-2} m^{2} b q_{\max }\right)$, so that for all $0 \leq h \leq h_{\max }$ and $q \in Q_{h}$ with $\left\|W_{q}\right\|_{1} \geq \varepsilon / q_{\max }$, we have

$$
\sum_{y_{p} \in W_{q}^{*}} M\left(\left\|L\left(y_{p}\right)\right\|_{\Lambda}\right) \geq\left(1-\varepsilon^{1 / 2}\right)\left\|W_{q}\right\|_{1}
$$

with failure probability at most $C^{-\varepsilon^{2} m}$ for fixed $C>1$.
Lemma E.5. Assume that \mathcal{E}_{v} of Lemma E.1 holds, and Assumption 3. Then for $q \in Q_{<,}$,

$$
\sum_{y_{p} \in W_{q}^{*}} M\left(\left\|L\left(y_{p}\right)\right\|_{\Lambda}\right) \geq\left(1-\varepsilon^{1 / 2}\right)\left\|W_{q}\right\|_{1}
$$

with failure probability at most $C^{-\varepsilon^{2} m}$ for a constant $C>1$.

Proof. Let $v \equiv z_{p}$ where $y_{p}=M\left(z_{p}\right)$, let $L(v)$ denote the $\left\{z_{p^{\prime}} \mid M\left(z_{p^{\prime}}\right) \in L\right\}$. Condition \mathcal{E}_{v} and $M(v) \geq \varepsilon / m$ imply that

$$
\|L(v)-v\|_{2}^{2} \leq\|L\|_{1} \leq 1 / \varepsilon^{2} m^{3}<M(v) / \varepsilon m
$$

so that using (6) we have

$$
\begin{equation*}
\frac{\|L(v)-v\|_{2}^{2}}{|v|^{2}} \leq \frac{\|L(v)-v\|_{M}}{M(v)} \leq \frac{1}{\varepsilon m} \tag{7}
\end{equation*}
$$

Since $\|L\|_{\infty} \leq\|L\|_{1}$, we also have, for all $v^{\prime} \in L(v)-v$, and using again $M(v) \geq \varepsilon / m$,

$$
\begin{equation*}
\left|\frac{v^{\prime}}{v}\right| \leq\left(\frac{M\left(v^{\prime}\right)}{M(v)}\right)^{1 / 2} \leq \frac{1}{m \varepsilon^{3 / 2}} \tag{8}
\end{equation*}
$$

From (8), we have that the summands determining $\|L(v)-v\|_{\Lambda}$ have magnitude at most $|v| \varepsilon^{1 / 2} / \varepsilon^{2} m$. From (7), we have $\|L(v)-v\|_{2}^{2}$ is at most $v^{2} \varepsilon / \varepsilon^{2} m$. It follows from Bernstein's inequality that with failure probability $\exp \left(-\varepsilon^{2} m\right)$, $\|L(v)-v\|_{\Lambda} \leq \varepsilon^{1 / 2}|v|$. Applying the first claim of Lemma E.3, we have $M\left(\|L(v)\|_{\Lambda}\right) \geq\left(1-2 \varepsilon^{1 / 2}\right) M(v)$, for all $v \in M^{-1}\left(W_{q}^{*}\right)$ with failure probability $\beta m M_{<} \exp \left(-\varepsilon^{2} m\right)$. Summing over W_{q}^{*}, we have

$$
\sum_{v \in M^{-1}\left(W_{q} *\right)} M\left(\|L(v)\|_{\Lambda}\right) \geq\left(1-\varepsilon^{1 / 2}\right)\left\|W_{q}^{*}\right\|_{1} \geq(1-2 \varepsilon \gamma)\left(1-\varepsilon^{1 / 2}\right)\left\|W_{q}\right\|_{1}
$$

This implies the bound, using Assumption 3, after adjusting constants.

The above lemmas imply that overall, with high probability, the sketching-based estimate of $\|z\|_{M}$ of a single given vector z is very likely to not much smaller than $\|z\|_{M}$, as stated next.
Theorem E. 6 (Theorem 3.2 of (Clarkson \& Woodruff, 2015b)). Assume Assumption 3, and condition \mathcal{E}_{v} of Lemma E.1. Then $\|S z\|_{M, w} \geq\|z\|_{M}\left(1-\varepsilon^{1 / 2}\right)$, with failure probability no more than $C^{-\varepsilon^{2} m}$, for an absolute constant $C>1$.

E.3. A "Clipped" Version

For a vector z, we use $\|S z\|_{M c, w}$ to denote a "clipped" version of $\|S z\|_{M, w}$, in which we ignore small buckets and use a subset of the coordinates of $S z$ as follows: $\|S z\|_{M c, w}$ is obtained by adding in only those buckets in level h that are among the top

$$
M^{*} \equiv b m M_{\geq}+\beta m M_{<}
$$

in $\left\|L_{h, i}\right\|_{\Lambda}$, recalling M_{\geq}and $M_{<}$defined in (5). Formally, we define $\|S z\|_{M c, w}$ to be

$$
\|S z\|_{M c, w}=\sum_{h \in\left[0, h_{\max }\right], i \in\left[M^{*}\right]} \beta b^{h} M\left(\left\|L_{h,(i)}\right\|_{\Lambda}\right)
$$

where $L_{h,(i)}$ denotes the level h bucket with the i-th largest $\left\|L_{h, i}\right\|_{\Lambda}$ among all the level h buckets.
The proof of the contraction bound of $\|S z\|_{M, w}$ in Theorem E. 6 requires only lower bounds on $M\left(\left\|L_{h, i}\right\|_{\Lambda}\right)$ for those at most M^{*} buckets on level h. Thus, the proven contraction bounds continue to hold for $\|S z\|_{M c, w}$, and in particular $\|S z\|_{M c, w} \geq(1-\varepsilon)\|S z\|_{M, w}$.

E.4. Dilation Bounds

We use two prior bounds of (Clarkson \& Woodruff, 2015b) on dilation; the first shows that the dilation is at most $O(\log n)$ in expectation, while the second shows that the "clipped" version gives $O(1)$ dilation with constant probability. Note that we need only expectations, since we need the dilation bound to hold only for the optimal solution as in Theorem C.5.
Theorem E. 7 (Theorem 3.3 of (Clarkson \& Woodruff, 2015b)). $\mathrm{E}\left[\|S z\|_{M, w}\right]=O\left(h_{\max }\right)\|z\|_{M}$.
Better dilation is achieved by using the "clipped" version $\|S z\|_{M c, w}$, as described in (Clarkson \& Woodruff, 2015b).
Theorem E. 8 (Theorem 3.4 of (Clarkson \& Woodruff, 2015b)). There is $c=O\left(\log _{\gamma}(b / \varepsilon)\left(\log _{b}(n / m)\right)\right)$ and $b \geq c$, recalling $N=m b c$, such that

$$
\mathrm{E}\left[\|S z\|_{M c, w}\right] \leq C\|z\|_{M}
$$

for a constant C.

E.5. Regression Theorem

Lemma E.9. There is $N=O\left(d^{2} h_{\max }\right)$, so that with constant probability, simultaneously for all $x \in \mathbb{R}^{d}$,

$$
0.9 /\left(n \cdot U_{M} / L_{M}\right)\|A x-b\|_{M} \leq\|S(A x-b)\|_{M, w} \leq U_{M} / L_{M} \cdot n^{2} \cdot\|A x-b\|_{M}
$$

Proof. For the upper bound,

$$
\|S z\|_{M, w}=\sum_{h \in\left[0, h_{\max }\right], i \in[N]} \beta b^{h} M\left(\left\|L_{h, i}\right\|_{\Lambda}\right)
$$

The weights βb^{h} are less than n, and

$$
\begin{align*}
& M\left(\left\|L_{h, i}\right\|_{\Lambda}\right) \\
\leq & M\left(\left\|L_{h, i}\right\|_{1}\right) \\
\leq & M\left(n^{1-1 / p}\left\|L_{h, i}\right\|_{p}\right) \tag{Assumption1.2}\\
\leq & U_{M} \cdot n^{p-1}\left\|L_{h, i}\right\|_{p}^{p} \tag{Assumption1.4}\\
\leq & U_{M} / L_{M} \cdot n \cdot \sum_{z_{p} \in L_{h, i}} M\left(z_{p}\right) .
\end{align*}
$$

(Assumption 1.4)

Since any given z_{p} contributes once to $\|S z\|_{M, w},\|S z\|_{M, w} \leq U_{M} / L_{M} \cdot n^{2} \cdot\|z\|_{M}$.
For the lower bound, notice that

$$
\|S z\|_{2, w}^{2}=\sum_{h \in\left[0, h_{\max }\right], i \in[N]} \beta b^{h}\left\|L_{h, i}\right\|_{\Lambda}^{2}
$$

For each $h \in\left[0, h_{\max }\right]$, since $N=O\left(d^{2} h_{\max }\right)$, with probability at least $1-1 /\left(10 h_{\max }\right)$, simultaneously for all $z \in \operatorname{im}(A)$ we have

$$
\sum_{i \in[N]}\left\|L_{h, i}\right\|_{\Lambda}^{2}=(1 \pm 0.1) \sum_{z_{p} \in L_{h}} z_{p}^{2}
$$

since the summation on the left-hand side can be equivalently viewed as applying CountSketch (Clarkson \& Woodruff, 2013; Nelson \& Nguyen, 2012; Meng \& Mahoney, 2012) on L_{h}. Thus, by applying union bound over all $h \in\left[0, h_{\max }\right]$, we have

$$
\begin{equation*}
\|S z\|_{2, w}^{2}=\sum_{h \in\left[0, h_{\max }\right], i \in[N]} \beta b^{h}\left\|L_{h, i}\right\|_{\Lambda}^{2} \geq 0.9\|z\|_{2}^{2} \tag{9}
\end{equation*}
$$

If there exists some $i \in H_{S z}$, since $w_{i} \geq 1$ for all i, we have

$$
\|S z\|_{M, w} \geq w_{i} M\left((S z)_{i}\right) \geq M\left((S z)_{i}\right) \geq \tau^{p}
$$

On the other hand,

$$
\|z\|_{M} \leq n \cdot U_{M} \cdot \tau^{p}
$$

which implies

$$
\|S z\|_{M, w} \geq\|z\|_{M} /\left(n \cdot U_{M}\right)
$$

If $H_{S z}=\emptyset$, then

$$
\begin{align*}
& \|S z\|_{M, w} \\
\geq & \sum_{i} w_{i}\left|(S z)_{i}\right|^{p} \cdot L_{M} \tag{Assumption1.4}\\
= & \|S z\|_{p, w}^{p} \cdot L_{M} \\
\geq & \|S z\|_{2, w}^{p} \cdot L_{M} \tag{9}\\
\geq & 0.9\|z\|_{2}^{p} \cdot L_{M} \\
\geq & 0.9\|z\|_{p}^{p} \cdot L_{M} / n \\
\geq & 0.9\|z\|_{M} /\left(n \cdot U_{M} / L_{M}\right) .
\end{align*}
$$

$$
\geq\|S z\|_{2, w}^{p} \cdot L_{M} \quad(p \leq 2)
$$

(Assumption 1.4)

The following theorem states that M-sketches can be used for Tukey regression, under the conditions described above.
Theorem E.10. Under Assumption 1 and Assumption 2, there is an algorithm running in $O(\mathrm{nnz}(A))$ time, that with constant probability creates a sketched regression problem $\min _{x}\|S(A x-b)\|_{M, w}$ where $S A$ and $S b$ have $\operatorname{poly}(d \log n)$ rows, and any C-approximate solution \tilde{x} of $\min _{x}\|S(A x-b)\|_{M, w}$ with $C \leq \operatorname{poly}(n)$ satisfies

$$
\|A \tilde{x}-b\|_{M} \leq O\left(C \cdot \log _{d} n\right) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{M}
$$

Moreover, any C-approximate solution \hat{x} of $\min _{x}\|S(A x-b)\|_{M c, w}$ with $C \leq \operatorname{poly}(n)$ satisfies

$$
\|A \hat{x}-b\|_{M} \leq O(C) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{M}
$$

Proof. We set S to be an M-sketch matrix with large enough $N=\operatorname{poly}(d \log n)$. We note that, up to the trivial scaling by β, SA satisfies Assumption 2 if A does. We also set $m=O\left(d^{3} \log n\right)$, and $\varepsilon=1 / 10$. We apply Theorem C. 5 to prove the desired result.
The given N is large enough for Theorem E. 6 and Lemma E. 9 to apply, obtaining a contraction bound with failure probability C_{1}^{-m}. By Theorem E.6, since the needed contraction bound holds for all members of $\mathcal{N}_{\text {poly }(\varepsilon \cdot \tau / n)} \cup \mathcal{M}_{\text {poly }(\varepsilon / n)}^{c, c \cdot \text { poly }(n)}$, with failure probability $n^{O\left(d^{3}\right)} C_{1}^{-m}<1$, for $m=O\left(d^{3} \log n\right)$, assuming the condition \mathcal{E}_{v}.

Thus, by Theorem E.7, we have $U_{O} \leq O\left(\log _{d} n\right)$. By Lemma E.9, $L_{A}=0.9 /\left(n \cdot U_{M} / L_{M}\right)$ and $U_{A}=U_{M} / L_{M} \cdot n^{2}$. By Theorem E. $6, L_{N}=1-\varepsilon^{1 / 2}=\Omega(1)$. Thus, by Theorem C. 5 we have

$$
\|A \tilde{x}-b\|_{M} \leq O\left(C \cdot \log _{d} n\right) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{M}
$$

A similar argument holds for C-approximate solution \hat{x} of $\min _{x}\|S(A x-b)\|_{M c, w}$.

F. Hardness Results and Provable Algorithms for Tukey Regression

F.1. Hardness Results

In this section, we prove hardness results for Tukey regression based on the Exponential Time Hypothesis (Impagliazzo \& Paturi, 2001). We first state the hypothesis.
Conjecture 1 (Exponential Time Hypothesis (Impagliazzo \& Paturi, 2001)). For some constant $\delta>0$, no algorithm can solve 3 -SAT on n variables and $m=O(n)$ clauses correctly with probability at least $2 / 3$ in $O\left(2^{\delta n}\right)$ time.

Using Dinur's PCP Theorem (Dinur, 2007), Hypothesis 1 implies a hardness result for MAX-3SAT.
Theorem F. 1 ((Dinur, 2007)). Under Hypothesis 1, for some constant $\varepsilon>0$ and $c>0$, no algorithm can, given a 3-SAT formula on n variables and $m=O(n)$ clauses, distinguish between the following cases correctly with probability at least $2 / 3$ in $2^{n / \log ^{c} n}$ time:

- There is an assignment that satisfies all clauses in ϕ;
- Any assignment can satisfy at most $(1-\varepsilon) m$ clauses in ϕ.

We make the following assumptions on the loss function $M: \mathbb{R} \rightarrow \mathbb{R}^{+}$. Notice that the following assumptions are more general than those in Assumption 1.
Assumption 4. There exist real numbers $\tau \geq 0$ and $C>0$ such that

1. $M(x)=C$ for all $|x| \geq \tau$.
2. $0 \leq M(x) \leq C$ for all $|x| \leq \tau$.
3. $M(0)=0$.

Now we give an reduction that transforms a 3-SAT formula ϕ with d variables and $m=O(d)$ clauses to a Tukey regression instance

$$
\min _{x}\|A x-b\|_{M}
$$

such that $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$ with $n=O(d)$, and all entries in A are in $\{0,+1,-1\}$ and all entries in b are in $\{ \pm k \tau \mid k \in \mathbb{N}, k \leq O(1)\}$. Furthermore, there are at most three non-zero entries in each row of A.
For each variable v_{i} in the formula ϕ, there is a variable x_{i} in the Tukey regression that corresponds to v_{i}. For each variable v_{i}, if v_{i} appears in Γ_{i} clauses in ϕ, we add $2 \Gamma_{i}$ rows into $[A b]$. These $2 \Gamma_{i}$ rows are chosen such that when calculating $\|A x-b\|_{M}$, there are Γ_{i} terms of the form $M\left(x_{i}\right)$, and another Γ_{i} terms of the form $M\left(x_{i}-10 \tau\right)$. This can be done by taking the i-th entry of the corresponding row of A to be 1 and taking the corresponding entry of b to be either 0 or 10τ. Since $\sum_{i=1}^{d} \Gamma_{i}=3 m$ in a 3 -SAT formula ϕ, we have added $6 m=O(d)$ rows into $[A b]$. We call these rows Part I of $[A b]$.
Now for each clause $\mathcal{C} \in \phi$, we add three rows into $[A b]$. Suppose the three variables in \mathcal{C} are v_{i}, v_{j} and v_{k}. The first row is chosen such that when calculating $\|A x-b\|_{M}$, there is a term of the form $M(a+b+c-10 \tau)$, where $a=x_{i}$ if there is a positive literal that corresponds to v_{i} in \mathcal{C} and $a=10 \tau-x_{i}$ if there is a negative literal that corresponds to v_{i} in \mathcal{C}. Similarly, $b=x_{j}$ if there is a positive literal that corresponds to v_{j} in \mathcal{C} and $b=10 \tau-x_{j}$ if there is a negative literal that corresponds to v_{j} in \mathcal{C}. The same holds for c, x_{k}, and v_{k}. The second and the third row are designed such that when calculating $\|A x-b\|_{M}$, there is a term of the form $M(a+b+c-20 \tau)$ and another term of the form $M(a+b+c-30 \tau)$.

Clearly, this can also be done while satisfying the constraint that all entries in A are in $\{0,+1,-1\}$ and all entries in b are in $\{ \pm k \tau \mid k \in \mathbb{N}, k \leq O(1)\}$. We have added $3 m$ rows into $[A b]$. We call these rows Part II of $[A b]$.

This finishes our construction, with $6 m+3 m=O(d)$ rows in total. It also satisfies all the restrictions mentioned above.
Now we show that when ϕ is satisfiable, if we are given any solution \bar{x} such that

$$
\|A \bar{x}-b\|_{M} \leq(1+\eta) \min _{x}\|A x-b\|_{M}
$$

then we can find an assignment to ϕ that satisfies at least $(1-5 \eta) m$ clauses.
We first show that when ϕ is satisfiable, the regression instance we constructed satisfies

$$
\min _{x}\|A x-b\|_{M} \leq 5 C \cdot m
$$

We show this by explicitly constructing a vector x. For each variable v_{i} in ϕ, if $v_{i}=0$ in the satisfiable assignment, then we set x_{i} to be 0 . Otherwise, we set x_{i} to be 10τ. For each variable v_{i}, since $x_{i} \in\{0,10 \tau\}$, for all the $2 \Gamma_{i}$ rows added for it, there will be Γ_{i} rows contributing 0 when calculating $\|A x-b\|_{M}$, and another Γ_{i} rows contributing C when calculating $\|A x-b\|_{M}$. The total contribution from this part will be $3 C \cdot m$. For each clause $\mathcal{C} \in \phi$, for the three rows added for it, there will be one row contributing 0 when calculating $\|A x-b\|_{M}$, and another two rows contributing C when calculating $\|A x-b\|_{M}$. This is by construction of $[A b]$ and by the fact that \mathcal{C} is satisfied. Notice that $M(a+b+c-10 \tau)=0$ if only one literal in \mathcal{C} is satisfied, $M(a+b+c-20 \tau)=0$ if two literals are satisfied, and $M(a+b+c-30 \tau)=0$ if all three literals in \mathcal{C} are satisfied. Thus, we must have $\min _{x}\|A x-b\|_{M} \leq 5 C \cdot m$, which implies $\|A \bar{x}-b\|_{M} \leq(1+\eta) 5 C \cdot m$.
We first show that we can assume each \bar{x}_{i} satisfies $\bar{x}_{i} \in[-\tau, \tau]$ or $\bar{x}_{i} \in[9 \tau, 11 \tau]$. This is because we can set $\bar{x}_{i}=0$ otherwise without increasing $\|A \bar{x}-b\|_{M}$, as we will show immediately. For any \bar{x}_{i} that is not in the two ranges mentioned above, its contribution to $\|A \bar{x}-b\|_{M}$ in Part I is at least $C \cdot 2 \Gamma_{i}$. However, by setting $\bar{x}_{i}=0$, its contribution to $\|A \bar{x}-b\|_{M}$ in Part I will be at most $C \cdot \Gamma_{i}$. Thus, by setting $\bar{x}_{i}=0$ the total contribution to $\|A \bar{x}-b\|_{M}$ in Part I has been decreased by at least $C \cdot \Gamma_{i}$. Now we consider Part II of the rows in $[A b]$. The contribution to $\|A \bar{x}-b\|_{M}$ of all rows in $[A b]$ created for clauses that do not contain v_{i} will not be affected after changing \bar{x}_{i} to be 0 . For the $3 \Gamma_{i}$ rows in $[A b]$ created for clauses that contain v_{i}, their contribution to $\|A \bar{x}-b\|_{M}$ is lower bounded by $C \cdot 2 \Gamma_{i}$ and upper bounded by $C \cdot 3 \Gamma_{i}$. The lower bound follows since for any three real numbers a, b and c, at least two elements in $\{a+b+c-10 \tau, a+b+c-20 \tau, a+b+c-30 \tau\}$ have absolute value at least τ, and $M(x)=C$ for all $|x| \geq \tau$. Thus, by setting $\bar{x}_{i}=0$ the total contribution to $\|A \bar{x}-b\|_{M}$ in Part II will be increased by at most $C \cdot \Gamma_{i}$, which implies we can set $\bar{x}_{i}=0$ without increasing $\|A \bar{x}-b\|_{M}$.
Now we show how to construct an assignment to the 3-SAT formula ϕ which satisfies at least $(1-5 \eta) m$ clauses, using a vector $\bar{x} \in \mathbb{R}^{d}$ which satisfies (i) $\|A \bar{x}-b\|_{M} \leq(1+\eta) 5 C \cdot m$ and (ii) $\bar{x}_{i} \in[-\tau, \tau]$ or $\bar{x}_{i} \in[9 \tau, 11 \tau]$ for all \bar{x}_{i}. We set $v_{i}=0$ if $\bar{x}_{i} \in[-\tau, \tau]$ and set $v_{i}=1$ if $\bar{x}_{i} \in[9 \tau, 11 \tau]$. To count the number of clauses satisfied by the assignment, we show that for each clause $\mathcal{C} \in \phi, \mathcal{C}$ is satisfied whenever $a+b+c \geq 7 \tau$. Recall that $a=x_{i}$ if there is a positive literal that corresponds to v_{i} in \mathcal{C} and $a=10 \tau-x_{i}$ if there is a negative literal that corresponds to v_{i} in \mathcal{C}. Similarly, $b=x_{j}$ if there is a positive literal that corresponds to v_{j} in \mathcal{C} and $b=10 \tau-x_{j}$ if there is a negative literal that corresponds to v_{j} in \mathcal{C}. The same holds for c, x_{k}, and v_{k}. Since a, b and c are all in the range $[-\tau, \tau]$ or in the range $[9 \tau, 11 \tau]$, whenever $a+b+c \geq 7 \tau$, we must have $a \geq 9 \tau, b \geq 9 \tau$ or $c \geq 9 \tau$, in which case clause \mathcal{C} will be satisfied. Thus, at least $(1-5 \eta) m$ clauses will be satisfied, since otherwise $\|A \bar{x}-b\|_{M}$ will be larger than $3 C \cdot m+2 C \cdot m+5 \eta C \cdot m=(1+\eta) 5 C \cdot m$. Here the first term $3 C \cdot m$ corresponds to the contribution from Part I, since any \bar{x}_{i} must satisfy $\left|\bar{x}_{i}\right| \geq \tau$ or $\left|\bar{x}_{i}-10 \tau\right| \geq \tau$. The second and the third term $2 C \cdot m+5 \eta C \cdot m$ corresponds to the contribution from Part II when at least $5 \eta m$ clauses are not satisfied.
Our reduction implies the following theorem.
Theorem F.2. Suppose there is an algorithm that runs in $T(d)$ time and succeeds with probability $2 / 3$ for Tukey regression with approximation ratio $1+\eta$ when the loss function M satisfies Assumption 4 and the input data satisfies the following restrictions:

1. $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$ with $n=O(d)$.
2. All entries in A are in $\{0,+1,-1\}$ and all entries in b are in $\{ \pm k \tau \mid k \in \mathbb{N}, k \leq O(1)\}$.

3. There are at most three non-zero entries in each row of A.

Then, there exists an algorithm that runs in $T(d)$ time for a 3-SAT formula on d variables and $m=O(d)$ clauses which distinguishes between the following cases correctly with probability at least $2 / 3$:

- There is an assignment that satisfies all clauses in ϕ.
- Any assignment can satisfy at most $(1-5 \eta) m$ clauses in ϕ.

Combining Theorem F. 1 and Theorem F. 2 with the Hypothesis 1, we have the following corollary.
Corollary F.3. Under Hypothesis 1, for some constant $\eta>0$ and $C>0$, no algorithm can solve Tukey regression with approximation ratio $1+\eta$ and success probability $2 / 3$, and runs in $2^{d / \log ^{C} d}$ time, when the loss function M satisfies Assumption 4 and the input data satisfies the following restrictions:

1. $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$ with $n=O(d)$.
2. All entries in A are in $\{0,+1,-1\}$ and all entries in b are in $\{ \pm k \tau \mid k \in \mathbb{N}, k \leq O(1)\}$.
3. There are at most three non-zero entries in each row of A.

F.2. Provable Algorithms

In this section, we use the polynomial system verifier to develop provable algorithms for Tukey regression.
Theorem F. 4 ((Renegar, 1992; Basu et al., 1996)). Given a real polynomial system $P\left(x_{1}, x_{2}, \cdots, x_{d}\right)$ with d variables and n polynomial constraints $\left\{f_{i}\left(x_{1}, x_{2}, \cdots, x_{d}\right) \Delta_{i} 0\right\}_{i=1}^{n}$, where Δ_{i} is any of the "standard relations": $\{>, \geq,=, \neq, \leq,<\}$, let D denote the maximum degree of all the polynomial constraints and let H denote the maximum bitsize of the coefficients of all the polynomial constraints. Then there exists an algorithm that runs in

$$
(D n)^{O(d)} \operatorname{poly}(H)
$$

time that can determine if there exists a solution to the polynomial system P.
Besides Assumption 1, we further assume that the loss function $M(x)$ can be approximated by a polynomial $P(x)$ with degree D, when $|x| \leq \tau$. Formally, we assume there exist two constants $L_{P} \leq 1 \leq U_{P}$ such that when $|x| \leq \tau$, we have

$$
L_{P} P(|x|) \leq M(|x|) \leq U_{P} P(|x|)
$$

Indeed, Assumption 1 already implies we can take $P(x)=x^{p}$, with $L_{P}=L_{M}$ and $U_{P}=U_{M}$ when p is an integer. However, for some loss function (e.g., the one defined in (1)), one can find a better polynomial to approximate the loss function. Since the approximation ratio of our algorithm depends on U_{P} / L_{P}, for those loss functions we can get an algorithm with better approximation ratio. We also assume Assumption 2 and all entries in A and b are integers.

We first show that under Assumption 2 and the assumption that all entries in A and b are integers, either $\|A x-b\|_{M}=0$ for some $x \in \mathbb{R}^{d}$, or $\|A x-b\|_{M} \geq 1 / 2^{\text {poly(nd) }}$ for all $x \in \mathbb{R}^{d}$.
Lemma F.5. Suppose all entries in A and b are integers, under Assumption 1 and Assumption 2, either $\|A x-b\|_{M}=0$ for some $x \in \mathbb{R}^{d}$, or $\|A x-b\|_{M} \geq 1 / 2^{\text {poly }(n d)}$ for all $x \in \mathbb{R}^{d}$.

Proof. We show that either there exists $x \in \mathbb{R}^{d}$ such that $A x=b$, or $\|A x-b\|_{2} \geq 1 / 2^{\text {poly(nd) }}$ for all $x \in \mathbb{R}^{d}$. Notice that $\|A x-b\|_{2} \geq 1 / 2^{\text {poly }(n d)}$ implies $\|A x-b\|_{\infty} \geq 1 / 2^{\text {poly }(n d)} / \sqrt{n}$, and thus the claimed bound follows from Assumption 1.
Without loss of generality we assume A is non-singular. By the normal equation, we know $x^{*}=\left(A^{T} A\right)^{-1}\left(A^{T} b\right)$ is an optimal solution to $\min _{x}\|A x-b\|_{2}$. By Cramer's rule, all entries in x^{*} are either 0 or have absolute value at least $1 / 2^{\text {poly }(n d)}$. This directly implies either $A x^{*}-b=0$ or $\left\|A x^{*}-b\right\|_{2} \geq 1 / 2^{\text {poly }(n d)}$.

Lemma F. 5 implies that either $\|A x-b\|_{M}=0$ for some $x \in \mathbb{R}^{d}$, or $\|A x-b\|_{M} \geq 1 / 2^{\text {poly (nd) }}$ for all $x \in \mathbb{R}^{d}$. The former case can be solved by simply solving the linear system $A x=b$. Thus we assume $\|A x-b\|_{M} \geq 1 / 2^{\text {poly }(n d)}$ for all $x \in \mathbb{R}^{d}$ in the rest part of this section.

To solve the Tukey regression problem $\min _{x}\|A x-b\|_{M}$, we apply a binary search to find the optimal solution value OPT. Since $1 / 2^{\text {poly }(n d)} \leq \mathrm{OPT} \leq n \cdot \tau^{p} \leq 2^{\text {poly }(n d)}$ by Assumption 1 and Assumption 2, the binary search makes at most $\log \left(2^{\operatorname{poly}(n d)} / \varepsilon\right)=\operatorname{poly}(n d)+\log (1 / \varepsilon)$ guesses to the value of OPT to find a $(1+\varepsilon)$-approximate solution.
For each guess λ, we need to decide whether there exists $x \in \mathbb{R}^{d}$ such that $\|A x-b\|_{M} \leq \lambda$ or not. We use the polynomial system verifier in Theorem F. 4 to solve this problem. We first enumerate a set of coordinates $S \subseteq[n]$, which are the coordinates with $\left|\left(A x^{*}-b\right)_{i}\right| \geq \tau$, where $x^{*}=\operatorname{argmin}_{x}\|A x-b\|_{M}$, and then solve the following decision problem:

$$
\begin{aligned}
& \quad \sum_{i \in[n] \backslash S} P\left(\sigma_{i}(A x-b)_{i}\right)+|S| \cdot \tau^{p} \leq \lambda \\
& \text { s.t } \sigma_{i}^{2}=1, \forall i \in[n] \backslash S \\
& 0 \leq \sigma_{i}(A x-b)_{i} \leq \tau, \forall i \in[n] \backslash S .
\end{aligned}
$$

Clearly, $\sigma_{i}(A x-b)_{i}=\left|(A x-b)_{i}\right|$, and thus $L_{P} P\left(\sigma_{i}(A x-b)_{i}\right) \leq M\left((A x-b)_{i}\right) \leq U_{P} P\left(\sigma_{i}(A x-b)_{i}\right)$. Thus by Assumption 1, for all $x \in \mathbb{R}^{d}$ and $S \subseteq[n]$,

$$
L_{P}\|A x-b\|_{M} \leq \sum_{i \in[n] \backslash S} P\left(\sigma_{i}(A x-b)_{i}\right)+|S| \cdot \tau^{p}
$$

Moreover,

$$
\sum_{i \in[n] \backslash S} P\left(\sigma_{i}\left(A x^{*}-b\right)_{i}\right)+|S| \cdot \tau^{p} \leq U_{P}\left\|A x^{*}-b\right\|_{M}
$$

when $S=\left\{i \in[n]| |\left(A x^{*}-b\right)_{i} \mid \geq \tau\right\}$, which implies the binary search will return a $\left((1+\varepsilon) \cdot U_{P} / L_{P}\right)$-approximate solution.

Now we analyze the running time of the algorithm. We make at most poly $(n d)+\log (1 / \varepsilon)$ guesses to the value of OPT. For each guess, we enumerate a set of coordinates S, which takes $O\left(2^{n}\right)$ time. For each set $S \subseteq[n]$, we need to solve the decision problem mentioned above, which has $n+d$ variables and $O(n)$ polynomial constraints with degree at most D. By Theorem F. 4 this decision problem can be solved in $(n D)^{O(n)}$ time. Thus, the overall time complexity is upper bounded by $(n D)^{O(n)} \cdot \log (1 / \varepsilon)$.
Notice that we can apply the row sampling algorithm in Theorem D. 8 to reduce the size of the problem before applying this algorithm. This reduces the running time from $(n D)^{O(n)} \cdot \log (1 / \varepsilon)=2^{O(n \cdot(\log n+\log D))} \cdot \log (1 / \varepsilon)$ to $\left.2^{\widetilde{O}\left(\log D \cdot d^{p / 2}\right.} \operatorname{poly}(d \log n) / \varepsilon^{2}\right)$. Formally, we have the following theorem.
Theorem F.6. Under Assumption 1 and 2, and suppose all entries in A and b are integers, and there exists a polynomial $P(x)$ with degree D and two constants $L_{P} \leq 1 \leq U_{M}$ such that when $|x| \leq \tau$, we have

$$
L_{P} P(|x|) \leq M(|x|) \leq U_{P} P(|x|)
$$

Then there exists an algorithm that returns $a\left((1+\varepsilon) \cdot U_{P} / L_{P}\right)$-approximate solution to $\min _{x}\|A x-b\|_{M}$ and runs in $2^{\widetilde{O}\left(\log D \cdot d^{p / 2} \operatorname{poly}(d \log n) / \varepsilon^{2}\right)}$ time.

Corollary F.7. Under Assumption 2, and suppose all entries in A and b are integers, for the loss function M defined in (1) there exists an algorithm that returns a $(1+\varepsilon)$-approximate solution to $\min _{x}\|A x-b\|_{M}$ and runs in $2^{\widetilde{O}\left(\operatorname{poly}(d \log n) / \varepsilon^{2}\right)}$ time.

