
Dimensionality Reduction for Tukey Regression

Kenneth L. Clarkson * 1 Ruosong Wang * 2 David P. Woodruff * 2

Abstract
We give the first dimensionality reduction meth-
ods for the overconstrained Tukey regression prob-
lem. The Tukey loss function ‖y‖M =

∑
iM(yi)

has M(yi) ≈ |yi|p for residual errors yi smaller
than a prescribed threshold τ , butM(yi) becomes
constant for errors |yi| > τ . Our results de-
pend on a new structural result, proven construc-
tively, showing that for any d-dimensional sub-
space L ⊂ Rn, there is a fixed bounded-size sub-
set of coordinates containing, for every y ∈ L, all
the large coordinates, with respect to the Tukey
loss function, of y. Our methods reduce a given
Tukey regression problem to a smaller weighted
version, whose solution is a provably good ap-
proximate solution to the original problem. Our
reductions are fast, simple and easy to implement,
and we give empirical results demonstrating their
practicality, using existing heuristic solvers for
the small versions. We also give exponential-
time algorithms giving provably good solutions,
and hardness results suggesting that a significant
speedup in the worst case is unlikely.

1. Introduction
A number of problems in numerical linear algebra have
witnessed remarkable speedups via the technique of linear
sketching. Such speedups are made possible typically by
reductions in the dimension of the input (here the num-
ber of rows of the input matrix), whereby a large scale
optimization problem is replaced by a much smaller opti-
mization problem, and then a slower algorithm is run on
the small problem. It is then argued that the solution to
the smaller problem provides an approximate solution to
the original problem. We refer the reader to several recent
surveys on this topic (Kannan & Vempala, 2009; Mahoney,

*Equal contribution 1IBM Research - Almaden, San Jose,
California, USA 2Carnegie Mellon University, Pittsburgh, Penn-
sylvania, USA. Correspondence to: Ruosong Wang <ru-
osongw@andrew.cmu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

2011; Woodruff, 2014).

This approach has led to optimal algorithms for approximate
overconstrained least squares regression: given an n × d
matrixA, with n� d, and an n×1 vector b, output a vector
x′ ∈ Rd for which ‖Ax′ − b‖2 ≤ (1 + ε) minx ‖Ax− b‖2.
For this problem, one first samples a random matrix S ∈
Rk×n with a small number k of rows, and replaces A with
S · A and b with S · b. Then one solves (or approximately
solves) the small problem minx ‖SAx − Sb‖2. The goal
of this sketch and solve approach is to choose a distribu-
tion S so that if x′ is the minimizer to this latter problem,
then one has that ‖Ax′ − b‖2 ≤ (1 + ε) minx ‖Ax − b‖2
with high probability. Note that x′ = (SA)+Sb, where
(SA)+ denotes the pseudoinverse of SA and can be com-
puted in kd2 time, see, e.g., (Woodruff, 2014) for a survey
and further background. Consequently, the overall time
to solve least squares regression is T + kd2, where T is
the time to compute S · A and S · b. Thus, the goal is to
minimize both the time T and the sketching dimension k.
Using this approach, Sárlos showed (Sarlós, 2006) how to
achieve O(nd log n) + poly(d/ε) overall time, which was
subsequently improved to the optimal nnz(A) + poly(d/ε)
time in (Clarkson & Woodruff, 2013; Meng & Mahoney,
2012; Nelson & Nguyen, 2012).

Recently, a number of works have looked at more robust
versions of regression. Sohler and Woodruff (Sohler &
Woodruff, 2011), building off of earlier work of Clarkson
(Clarkson, 2005) (see also (Dasgupta et al., 2009)), showed
how to use the sketch and solve paradigm to obtain a (1+ε)-
approximation to `1 regression, namely, to output a vector
x′ ∈ Rd for which ‖Ax′ − b‖1 ≤ (1 + ε) minx ‖Ax− b‖1.
This version of regression, also known as least absolute de-
viations, is known to be less sensitive to outliers than least
squares regression, since one takes the absolute values of
the errors in the residuals rather than their squares, and so
does not try to fit outliers as much. By now, we also have op-
timal nnz(A)+poly(d/ε) time algorithms for `1 regression
(Li et al., 2013; Clarkson et al., 2016; Woodruff & Zhang,
2013; Clarkson & Woodruff, 2013; Meng & Mahoney, 2012;
Wang & Woodruff, 2019), for the related quantile regression
problem (Yang et al., 2013), and for `p regression for every
p ≥ 1 (Dasgupta et al., 2009; Woodruff & Zhang, 2013;
Cohen & Peng, 2015).

Dimensionality Reduction for Tukey Regression

x

M(x)

Figure 1. The Tukey loss function.

In this paper we consider more general overconstrained
regression problems: given an n× d matrix A with n� d,
and an n × 1 vector b, output a vector x′ ∈ Rd for which
‖Ax′ − b‖M ≤ (1 + ε) minx ‖Ax − b‖M , where for an
n-dimensional vector y and a function M : R → R+,
the notation ‖y‖M denotes

∑n
i=1M(yi). If M(x) = x2

then we have the least squares regression problem, while if
M(x) = |x| we have the least absolute deviations problem.

Clarkson and Woodruff showed (Clarkson & Woodruff,
2015b) that for any function M(·) which has at least lin-
ear (with positive slope) and at most quadratic growth, as
well as some natural other properties, there is a distribution
on sketching matrices S with k = poly(d log n) rows and
corresponding vector w ∈ Rk, with the following proper-
ties. The product S · A can be computed in nnz(A) time,
and if one solves a weighted version of the sketched prob-
lem, minx

∑k
i=1 wiM((SAx − b)i), then the minimizer

is a constant-factor approximation to the original problem.
This gives an algorithm with overall nnz(A) + poly(d) run-
ning time for the important Huber loss function: given a
parameter τ , we have

M(x) =

{
x2/(2τ) |x| ≤ τ
|x| − τ/2 otherwise

.

Unlike least absolute deviations, the Huber loss function
is differentiable at the origin, which is important for opti-
mization. However, like least absolute deviations, for large
values of x the function is linear, and thus pays less at-
tention to outliers. Other loss functions similar to Huber,
such as the `1 − `2 and Fair estimators, were also shown
to have nnz(A) + poly(d) time algorithms. These results
were extended to (1+ε)-approximations via sampling-based
techniques in (Clarkson & Woodruff, 2015c).

Despite the large body of M -functions handled by previous
work, a notable well-studied exception is the Tukey loss
function (Fox, 2002), with

M(x) =

{
τ2

6 (1− [1−
(
x
τ

)2
]3) |x| ≤ τ

τ2

6 otherwise
. (1)

See Figure 1 for a plot of the Tukey loss function. By
a simple Taylor expansion, it is easy to see that M(x) =
Θ(x2) for |x| ≤ τ and M(x) = Θ(τ2) otherwise. While

similar to Huber in the sense that it is quadratic near the
origin, it is even less sensitive to outliers than Huber since
it is constant when one is far enough away from the origin.
Thus, it does not satisfy the linear growth (with positive
slope) requirement of (Clarkson & Woodruff, 2015b;c). An
important consequence of this distinction is that, while for
M -functions with linear growth, a single outlier “at infinity”
can radically affect the regression output, this is not the case
for the Tukey loss function, due to the bound on its value.

Although the Tukey loss function is not convex, a local
minimum of it can be found via iteratively reweighted least
squares (Fox, 2002). Also, the dimensionality reduction
approach still makes sense for Tukey: here a large non-
convex problem is reduced to a smaller non-convex one.
Our reduction of a non-convex problem to a smaller one is
arguably even more interesting than reducing the size of a
convex problem, since inefficient algorithms may now be
efficient on the much smaller problem.

Notation. For a matrix A ∈ Rn×d, we use Ai,∗ to denote
its i-th row, A∗,j to denote its j-th column, and Ai,j to
denote a specific entry. For a set of indices Γ ⊆ [n], we use
AΓ,∗ to denote the submatrix of A formed by all rows in
Γ. Similarly, we use A∗,Γ to denote the submatrix formed
by all columns in Γ. For a matrix A ∈ Rn×d and a vector
b ∈ Rn, we use [A b] ∈ Rn×(d+1) to denote the matrix
whose first d columns are A and the last column is b. For
a matrix A ∈ Rn×d, we use im(A) = {Ax | x ∈ Rd} to
denote the column span of A.

1.1. Our Assumptions

Before stating our results, we give the general assumptions
our algorithms and analyses need. We need the following
assumptions on the loss function.

Assumption 1. There exist real numbers τ ≥ 0, constants
p ≥ 1 and 0 < LM ≤ 1 ≤ UM such that the function
M : R→ R+ satisfies:

1. Symmetric: M(a) = M(−a) for all a.

2. Nondecreasing: M(a) ≥M(a′) for |a| ≥ |a′|.

3. Growth condition: for |a| ≥ |a′|,∣∣∣ a
a′

∣∣∣p ≥ M(a)

M(a′)
.

4. Nearly p th power: for all |a| ≤ τ ,

LM |a|p ≤M(a) ≤ UM |a|p.

5. Mostly flat: M(a) = τp for |a| ≥ τ .

Dimensionality Reduction for Tukey Regression

The conditions in Assumption 1 state that our loss function
essentially behaves as an `p loss function M(a) = |a|p for
a ≤ τ , at which point M(a) = τp. However, the con-
ditions are more robust in that M(a) just needs to agree
with |a|p up to a fixed constant factor. This is a non-trivial
extension of the `p loss function since we will obtain (1+ε)-
approximations in our algorithms, and consequently cannot
simply replace the M loss function in our problem with an
`p loss function, as this would result in a constant factor loss.
Moreover, such an extension is essential for capturing com-
mon robust loss functions, such as the Tukey loss function
(1) above: M(a) = a2(1− (1− (a/τ)2)3) if |a| < τ , and
M(a) = τ2 for |a| ≥ τ (we note that sometimes this loss
function is divided by the number 6, but this plays no role
from a minimization perspective). Note that the Tukey loss
function M(a) does not coincide with the `2 loss function
for |a| ≤ τ , though it is within a constant factor of it so
our conditions can handle it. For a recent use of this loss
function for regression in applications to deep learning, see,
e.g., (Belagiannis et al., 2015).

For τ = ∞, we indeed have M(a) = |a|p and `p loss
functions are widely studied for regression. The case p = 2
is just ordinary least squares regression. For 1 ≤ p < 2,
the `p loss function is less sensitive than least squares since
one is not squaring the errors, and therefore for such p the
loss function is considered to be more robust than ordinary
least squares. For p > 2, and in particular large values of
p, the `p regression solution approaches the `∞ regressioin
solution, which minimizes the maximum error. The `p loss
functions for every p ≥ 1 are well-studied in the context of
regression, see, e.g., (Clarkson, 2005; Dasgupta et al., 2009;
Clarkson et al., 2016; Woodruff & Zhang, 2013; Cohen &
Peng, 2015). Loss functions with the polynomial growth
condition (Assumption 1.3) are also well-studied (Clarkson
& Woodruff, 2015b;c). We also note that already for `p loss
functions, all known dimensionality reduction techniques
reduce the original regression problem to a problem of size
at least dΩ(p), which is recently shown to be necessary (Li
et al., 2019). Consequently, it is impossible to obtain a
considerable dimensionality reduction when p is allowed to
grow with n. Since this is a special case of our more general
setting of arbitrary τ , we restrict our attention to p that does
not grow with n.

For general τ and p, we obtain the Tukey `p loss function
M(a) = |a|p for a ≤ τ , and M(a) = τp for a ≥ τ . Note
that for p = 1, the loss function is the maximum likelihood
estimator in the presence of i.i.d. Laplacian noise, while for
p = 2, the loss function is the maximum likelihood estima-
tor in the presence of i.i.d. Gaussian noise. Thus we obtain
the first dimensionality reduction for loss functions that cor-
respond to maximum likelihood estimators of classical noise
models where the loss function completely saturates beyond
some threshold τ . This is particularly useful for handling

large outliers.

We will also need the following assumptions on the input,
which we justify below.

Assumption 2. We assume:

1. For given C1 ≤ poly(n), there is U = nO(d2) such
that ‖x̂‖2 ≤ U for any C1-approximate solution x̂ of
minx ‖Ax− b‖M .

2. The columns of A and b have `2 norms in nO(d).

3. The threshold τ = Ω(1/nO(d)).

As we will show, Assumption 2.1 holds when 2.2 and 2.3
hold, and the entries of A are integers. Alternatively, As-
sumption 2.1 might hold due to the particular input given,
or to an additional explicit problem constraint, or as a con-
sequence of regularization.

We need such a bound on the magnitude of the entries of
the Tukey regression optimum, since as the following ex-
ample shows, they can grow quite large, and behave quite
differently from `p regression solutions. Here we use the
case p = 2 as an example.

Suppose A is the n× 2 matrix

A =



1 0
1 1
0 ε
0 ε
...
0 ε


with n − 2 rows of [0 ε] for ε > 0. Suppose b ∈ Rn
is the vector of all ones. Then the `2 regression optimum
x∗ = argminx ‖Ax− b‖

2
2 has ‖Ax∗ − b‖22 at most n, since

x = 0 has that cost. So n ≥ ‖Ax∗ − b‖22 >= (x∗1 − 1)2 +
(x∗1 + x∗2 − 1)2, from the first two rows, so (x∗1)2 = O(n),
implying that also (x∗2)2 = O(n).

It can also be shown that when ε < 1/n, we have the entries
of the `2 regression optimum x∗ in O(1): as x1 and x2 get
larger, they contribute to the cost, due to the first two rows,
more rapidly than the decrease in the (n− 2)(1− x2/n)2

cost due to the n− 2 last rows.

However, for the Tukey loss function ‖Ax− b‖M with pa-
rameter τ = 1/2 and p = 2, the cost for x = [1 1/ε] is at
most a constant, since the contributions for all rows of A but
the second is zero, and contribution made by the second row
is at most a constant. However if x2 < 1/(2ε), the cost is
Ω(n), since all but the first two rows contribute Ω(1) to the
cost. Thus the optimal x for the Tukey regression has entries
Ω(1/ε), and no x with entries o(1/ε) is a constant-factor
approximation.

Dimensionality Reduction for Tukey Regression

Indeed, given an upper bound on the entries of x, for any
n′ < n− 2 there is a large enough version of our example
such that no x satisfying that bound can be within an n′

factor of optimal for the Tukey regression problem. This
example is in fact a near-optimal separation, as one can
show that the `2 regression solution always provides an
O(n)-approximate solution when p = 2.

1.2. Our Contributions

We show that under the assumptions mentioned above, it
is possible to obtain dimensionality reductions for Tukey
regression. All of our results hold with arbitrarily large
constant probability, which can be amplified by independent
repetitions and taking the best solution found.

Row Sampling Algorithm. We first give a row sampling
algorithm for Tukey regression.

Theorem 1.1. Given matrix A ∈ Rn×d and vector b ∈ Rn,
there is an algorithm that constructs a weight vector w in
Õ(nnz(A) + dp/2 · poly(d log n)/ε2)1 time with ‖w‖0 ≤
Õ(dp/2 · poly(d log n)/ε2), for which if x∗M,w is the mini-
mizer to min

∑n
i=1 wiM((Ax− b)i), then

‖Ax∗M,w − b‖M ≤ (1 + ε) min
x
‖Ax− b‖M ,

where M is the Tukey loss function.

Since one can directly ignore those rows Ai,∗ with wi = 0
when solving min

∑n
i=1 wiM((Ax − b)i), our row sam-

pling algorithm actually reduces a Tukey regression in-
stance to a weighted version of itself with Õ(dp/2 ·
poly(d log n)/ε2) rows. Notably, the running time of the
algorithm and the number of rows in the reduced problem
match those given by Lewis weights sampling (Cohen &
Peng, 2015), up to poly(d log n) factors. However, Lewis
weights sampling is designed specifically for the `p norm,
which is a simple special case of the Tukey loss function
where τ =∞.

Our reduction is from the Tukey regression problem to a
smaller, weighted version of itself, and since known heuris-
tics for Tukey regression can also handle weights, we can
apply them to the reduced problem as well.

Oblivious Sketch. While the row sampling algorithm pro-
duces a (1 + ε)-approximate solution, where ε can be made
arbitrarily small, the algorithm does have some proper-
ties that can be a disadvantage in some settings: it makes
polylog(n) passes over the matrix A and vector b, and the
rows chosen depend on the input. In the setting of streaming
algorithms and distributed computation, on the other hand,

1Throughout the paper we use Õ(f) to denote f polylog f ,
and Ω̃(f) to denote f/polylog f .

a sketch-and-solve approach can be more effective. We give
such an approach to Tukey regression.

Theorem 1.2. When 1 ≤ p ≤ 2, there is a distribution S ∈
Rr×n over sketching matrices with r = poly(d log n), and
a corresponding weight vector w ∈ Rr, for which S ·A and
S · b can be computed in O(nnz(A)) time and for which if
x∗S,M,w is the minimizer to min

∑r
i=1 wiM((SAx− Sb)i),

then

‖Ax∗S,M,w − b‖M ≤ O(log n) min
x
‖Ax− b‖M ,

where M is the Tukey loss function.

Our sketching matrices S are oblivious, meaning that their
distribution does not depend on the data matrix A and the
vector b. Furthermore, applying the sketching matrices
requires only one pass over these inputs, and thus can be
readily implemented in streaming and distributed settings.

We further show that the same distribution S on sketching
matrices gives a fixed constant C ≥ 1 approximation factor
if one slightly changes the regression problem solved in the
reduced space.

We also remark that for oblivious sketches, the condition that
p ≤ 2 is necessary, as shown in (Braverman & Ostrovsky,
2010).

Hardness Results and Provable Algorithms. We give a
reduction from MAX-3SAT to Tukey regression, which im-
plies the NP-Hardness of Tukey regression. Under the Expo-
nential Time Hypothesis (Impagliazzo & Paturi, 2001), us-
ing Dinur’s PCP Theorem (Dinur, 2007), we can strengthen
the hardness result and show that even solving Tukey regres-
sion with approximation ratio 1 + η requires 2Ω̃(d) time for
some fixed constant η > 0.

We complement our hardness results by giving an exponen-
tial time algorithm for Tukey regression, using the polyno-
mial system verifier (Renegar, 1992; Basu et al., 1996). This
technique has been used to solve a number of numerical lin-
ear algebra problems in previous works (Song et al., 2017;
Razenshteyn et al., 2016; Clarkson & Woodruff, 2015a;
Arora et al., 2016; Moitra, 2016). For the loss function de-
fined in (1), the algorithm runs in 2O(n logn) · log(1/ε) time
to find a (1 + ε)-approximate solution of an instance of size
n × d. By further applying our dimensionality reduction
methods, the running time can be reduced to 2poly(d logn),
which is significantly faster when n� d and comes close
to the 2Ω̃(d) running time lower bound.

Empirical Evaluation. We test our dimensionality reduc-
tion methods on both synthetic datasets and real datasets.
Our empirical results quite clearly demonstrate the practi-
cality of our methods.

Dimensionality Reduction for Tukey Regression

2. Technical Overview
In this section, we give an overview of our technical contri-
butions. For convenience, we state our high-level ideas in
terms of the loss function

M(x) =

{
x2 |x| ≤ 1

1 |x| ≥ 1

where p = 2 and τ = 1. We show how to generalize our
ideas to other loss functions that satisfy Assumption 1 later.

2.1. Structural Theorem and Algorithms for Finding
Heavy Coordinates

Our first main technical contribution is the following struc-
tural theorem, which is crucial for each of our algorithms.

Theorem 2.1 (Informal). For a given matrix A ∈ Rn×d
and α ≥ 1, there exists a set of indices I ⊆ [n] with size
|I| ≤ Õ(dα), such that for all y ∈ im(A), if y satisfies
‖y‖M ≤ α then {i ∈ n | |yi| > 1} ⊆ I .

Intuitively, Theorem 2.1 states that for all vectors y in the
column space of A with small ‖y‖M , the heavy coordinates
of y (coordinates with |yi| ≥ 1) must lie in a set I with
small cardinality. To prove Theorem 2.1, in Figure 2 we
give an informal description of our algorithm for finding the
set I . The formal description of the algorithm can be found
in the supplementary material.

1. Let I = ∅.

2. Repeat the following for α times:

(a) Calculate the leverage scores {ui}i∈[n]\I,∗
of the matrix A[n]\I,∗.

(b) For each i ∈ [n] \ I , if ui ≥ Ω(1/α), then
add i into I .

3. Return I .

Figure 2. Polynomial time algorithm for finding heavy coordinates.

For correctness, we first notice that for a vector y with
‖y‖M ≤ α, the number of heavy coordinates is at most
α, since M(yi) = 1 for all |yi| > 1. Now consider the
coordinate i with largest |yi| and |yi| > 1. We must have
‖y‖22 ≤ α+ αy2

i , since the contribution of coordinates with
|yi| ≤ 1 to ‖y‖22 is upper bounded by ‖y‖M ≤ α, and there
are at most α coordinates with |yi| > 1, each contributing
at most y2

i to ‖y‖22. Now we claim that we must add the
coordinate i with largest |yi| into the set I , which simply

follows from

y2
i

‖y‖22
≥ y2

i

α+ αy2
i

≥ Ω(1/α) (2)

and thus the leverage score of the row Ai,∗ is at least
Ω(1/α). (Here we use that the i-th leverage score is at
least as large as y2

i /‖y‖22 for all y ∈ im(A).) After adding
i into I , we consider the second largest |yi| with |yi| ≥ 1. A
similar argument shows that we will also add i into I in the
second repetition. After repeating α times we will add all
coordinates i with |yi| > 1 into I , and all coordinates added
to I have leverage score Ω(1/α).

The above algorithm has two main drawbacks. First of
all, it returns a set with size |I| ≤ O(dα2) as opposed
to Õ(dα). Moreover, the algorithm runs in O(nnz(A) ·
α) time since we need to calculate the leverage scores of
A[n]\I,∗ a total of α times. When α = poly(d), such an
algorithm does not run in input-sparsity time. An input-
sparsity time algorithm for finding such a set I , on the other
hand, is an important subroutine for our input-sparsity time
row sampling algorithm. In the supplementary material,
we give a randomized algorithm for finding a set I with
size |I| ≤ Õ(dα) that runs in input-sparsity time, and we
give an informal description of the algorithm in Figure 3.
Notice that calculating leverage scores of the matricesAΓj ,∗

can be done in Õ(nnz(A) + poly(d)) time using existing
approaches (Clarkson & Woodruff, 2013; Nelson & Nguyen,
2012).

1. Let I = ∅.

2. Repeat the following for O(log(dα)) times:

(a) Randomly partition [n] into Γ1,Γ2, . . . ,Γα.
(b) For each j ∈ [α], calculate the leverage

scores {ui}i∈Γj of the matrix AΓj ,∗.
(c) For each j ∈ [α], for each i ∈ Γj , if ûi ≥

Ω(1), then add i to I .

3. Return I .

Figure 3. Input-sparsity time algorithm for finding heavy coordi-
nates.

For correctness, recall that we only need to find those co-
ordinates i for which there exists a vector y ∈ im(A) with
‖y‖M ≤ α and |yi| ≥ 1. Since ‖y‖M ≤ α, there are most
α coordinates in y with absolute value at least 1. Thus, with
constant probability, the coordinate i is in a set Γj such that
it is the only coordinate with |yi| ≥ 1 in Γj . Moreover, by
Markov’s inequality, with constant probability the squared

Dimensionality Reduction for Tukey Regression

`2 norm of coordinates in Γj \ {i} is at most a constant.
Conditioned on these events, using an argument similar to
(2), the leverage score of the row Ai,∗ in AΓj ,∗ is at least
a constant, in which case we will add i into I . In order to
show that we will add all such i into I with good probability,
we repeat the whole procedure for O(log(dα)) times and
apply a union bound over all such i. O(log(dα)) repetitions
suffice since there are at most O(poly(dα)) different such
i, as implied by the existential result mentioned above.

The above algorithm also implies the existence of a set
I with better upper bounds on |I|, by the probabilisitic
method. These algorithms can be readily generalized to
general τ > 0, and any p ≥ 1 using `p Lewis weights in
place of leverage scores. We also give a brief overview of
Lewis weights and related properties in the supplementary
material for readers unfamiliar with these topics.

2.2. The Net Argument

Our second technical contribution is a net argument for
Tukey loss functions. Due to the lack of scale-invariance,
the net size for the Tukey loss functions need not be npoly(d).
While the M -functions in (Clarkson & Woodruff, 2015b)
also do not satisfy scale-invariance, the M -functions in
(Clarkson & Woodruff, 2015b) have at least linear growth
and so for any value c, and for an orthonormal basis U of
A, the set of x for which ‖Ux‖M = c satisfy c/poly(n) ≤
‖x‖2 ≤ c · poly(n), and so one could use O(log n) nested
nets for the `2 norm to obtain a net for the M -functions.
This does not hold for the Tukey loss function M , e.g.,
if c = τ , and if the first column of U is (1, 0, . . . , 0)T ,
then if x1 = ∞ and x2 = x3 = · · · = xd = 0, one has
‖Ux‖M = c. This motivates Assumption 2 above.

Using Assumption 2, we construct a netNε with size |Nε| ≤
(n/ε)poly(d), such that for any y = Ax − b with ‖x‖2 ≤
U = npoly(d), there exists y′ ∈ Nε with ‖y′ − y‖M ≤ ε.
The construction is based on a standard volume argument.
Notice that such a net only gives an additive error guarantee.
To give a relative error guarantee, we notice that for a vector
y = Ax − b with sufficiently small ‖y‖M , we must have
‖y‖∞ ≤ 1, in which case the Tukey loss function ‖ · ‖M
behaves similarly to the squared `2 norm ‖ · ‖22, and thus we
can instead use the net construction for the `2 norm. This
idea can be easily generalized to general p ≥ 1 and τ > 0
if the loss function satisfies M(x) = |x|p when |x| ≤ τ .

To cope with other loss functions that satisfy Assumption
1 for which M(x) can only be approximated by |x|p when
|x| ≤ τ , we use the nested net construction in (Clarkson
& Woodruff, 2015b) when ‖y‖M is sufficiently small. Our
final net argument for Tukey loss functions is a careful
combination of the two net constructions mentioned above.
The full details are given in the supplementary material.

1. Use the algorithm in Figure 3 to find a set I with
α = poly(d log n/ε).

2. Calculate the leverage scores {ui} of the matrix
A[n]\I,∗.

3. For each row Ai,∗, we define its sampling proba-
bility pi to be

pi =

{
1 i ∈ I
min{1, 1/2 + ui poly(d/ε)} i /∈ I

.

4. Sample each row with probability pi.

5. Recursively call the algorithm on the resulting
matrix until the number of remaining rows is at
most poly(d log n/ε).

Figure 4. The row sampling algorithm.

2.3. The Row Sampling Algorithm

Our row sampling algorithm proceeds in a recursive man-
ner, and employs a combination of uniform sampling and
leverage score sampling, together with the procedure for
finding heavy coordinates. We give an informal description
in Figure 4. See the supplementary material for the formal
description and analysis.

For a vector y = Ax− b, we conceptually split coordinates
of y into two parts: heavy coordinates (those with |yi| > 1)
and light coordinates (those with |yi| ≤ 1). Intuitively,
we need to apply uniform sampling to heavy coordinates,
since all heavy coordinates contribute the same to ‖y‖M ,
and leverage score sampling to light coordinates, since the
Tukey loss function behaves similarly to the squared `2
norm for light coordinates.

In the formal analysis given in supplementary material, we
show that if either the contribution from heavy coordinates
to ‖y‖M or the contribution from light coordinates to ‖y‖M
is at least Ω(poly(d log n/ε)), then with high probability,
uniform sampling with sampling probability 1/2 will pre-
serve ‖y‖M up to ε relative error, for all vectors y in the net.
The proof is based on standard concentration inequalities.

If both the contribution from heavy coordinates and the
contribution from light coordinates is O(poly(d log n/ε)),
uniform sampling will no longer be sufficient, and we
resort to the structural theorem in such cases. By set-
ting α = poly(d log n/ε) in the algorithm for finding
heavy coordinates, we can identify a set I with size |I| =
poly(d log n/ε), which includes the indices of all heavy

Dimensionality Reduction for Tukey Regression

coordinates. We simply keep all coordinates in I by setting
pi = 1. The remaining coordinates must be light, and hence
behave very similarly to the squared `2 norm. Thus, we
can use leverage score sampling to deal with the remain-
ing light coordinates. This also explains why we need to
use a combination of uniform sampling and leverage score
sampling.

Our algorithm will eliminate roughly half of the coordi-
nates in each round, and after O(log n) rounds there are at
most O(poly(d log n/ε)) remaining coordinates, in which
case we stop the sampling process and return our reduced
version of the problem. In each round we calculate the
leverage scores and call the algorithm in Figure 3 to find
heavy coordinates. Since both subroutines can be imple-
mented to run in Õ(nnz(A) + poly(d log n/ε)) time, the
overall running time of our row sampling algorithm is also
Õ(nnz(A) + poly(d log n/ε)).

The above algorithm can be readily generalized to any loss
functionM that satisfies Assumption 1. Our formal analysis
in supplementary material is a careful combination of all
ideas mentioned above.

2.4. The Oblivious Sketch

From an algorithmic standpoint, our oblivious sketch S
is similar to that in (Clarkson & Woodruff, 2015b). The
distribution on matrices S can be viewed roughly as a
stack of hmax = O(log n) matrices, where the i-th such
matrix is the product of a CountSketch matrix with
poly(d log n) rows with a diagonal matrixD which samples
roughly 1/(d log n)i uniformly random coordinates of an
n-dimensional vector. Thus, S can be viewed as applying
CountSketch to a subsampled set of coordinates of a vector,
where the subsampling is more aggressive as i increases.
The weight vector w is such that wj = (d log n)i for all
coordinates j corresponding to the i-th matrix in the stack.
Our main technical contribution here is showing that this
simple sketch actually works for Tukey loss functions. One
of the main ideas in (Clarkson & Woodruff, 2015b) is that
if there is a subset of at least poly(d) log n coordinates of
a vector y of similar absolute value, then in one of the lev-
els of subsampling of S, with probability 1 − 1/npoly(d)

there will be Θ(poly(d) log n) coordinates in this group
which survive the subsampling and are isolated, that is, they
hash to separate CountSketch buckets. Using that the M -
function does not grow too quickly, which holds for Tukey
loss functions as well if p ≤ 2, this suffices for estimating
the contribution to ‖y‖M from all large subsets of similar
coordinates.

The main difference in this work is how estimates for small
subsets of coordinates of y are made. In (Clarkson &
Woodruff, 2015b) an argument based on leverage scores
sufficed, since, as one ranges over all unit vectors of the

form y = Ax−b, there is only a small subset of coordinates
which could ever be large, which follows from the condition
that the column span of A is a low-dimensional subspace.
At first glance, for Tukey loss functions this might not be
true. One may think that for any t ≤ poly(d) log n, it could
be that for a vector y = Ax − b, any subset T of t of its
n coordinates could have the property that M(yi) = 1 for
i ∈ T , and M(yi) < 1 otherwise. However, our structural
theorem in fact precludes such a possibility. The structural
theorem implies that there are only poly(d log n) coordi-
nates for which M(yi) could be 1. For those coordinates
with M(yi) < 1, the Tukey loss function behaves very sim-
ilarly to the squared `2 norm, and thus we can again use
the argument based on leverage scores. After considering
these two different types of coordinates, we can now apply
the perfect hashing argument as in (Clarkson & Woodruff,
2015b).

These ideas can be readily generalized to general τ > 0,
and any 1 ≤ p ≤ 2, again using `p Lewis weights in place
of leverage scores. We formalize these ideas in the supple-
mentary material.

3. Experiments
In this section we provide experimental results to illustrate
the practicality of our dimensionality reduction methods.
Figure 5 shows the approximation ratio of our dimension-
ality reduction methods, when applied to synthetic and
real datasets. For all datasets, the number of data points
is n = 10000. The dimension d is different for different
datasets and is marked in Figure 5. We adopt the loss func-
tion defined in (1) and use different values of τ for different
datasets. To calculate the approximation ratio of our di-
mensionality reduction methods, we solve the full problems
and their sketched counterparts by using the LinvPy soft-
ware (lin). This software uses iteratively re-weighted least
squares (IRLS), and we modify it for ‖ · ‖M,w, which re-
quires only to include a “fixed” weighting from w into the
IRLS solver.

The Random Gaussian dataset is a synthetic dataset, whose
entries are sampled i.i.d. from the standard Gaussian dis-
tribution. The remaining datasets are chosen from the UCI
Machine Learning Repository. The τ values were chosen
roughly so that there would be significant clipping of the
residuals. For each dataset, we also randomly select 5%
of the entries of the b vector and change them to 104, to
model outliers. Such modified datasets are marked as “with
outliers” in Figure 5.

We tested both the row sampling algorithm and the obliv-
ious sketch. We varied the size of the sketch from 2d to
10d (d is the dimension of the dataset) and calculated the
approximation ratio ‖Ax̂ − b‖M/‖Ax∗ − b‖M using the

Dimensionality Reduction for Tukey Regression

modified LinvPy software, where x∗ is the solution returned
by solving the full problem and x̂ is the solution returned by
solving the sketched version. We repeated each experiment
ten times and took the best result among all repetitions.

Discussions As can be seen from Figure 5, the row sam-
pling algorithm has better approximation ratio as we in-
crease the sketch size. The same is not always true for the
oblivious sketch, since the oblivious sketch only guarantees
anO(log n) approximation instead of a (1+ε)-approximate
solution, as returned by the row sampling algorithm. More-
over, the row sampling algorithm consistently outperforms
the oblivious sketch in the experiments, except for extremely
small sketch sizes (around 2d). However, applying the obliv-
ious sketch requires only one pass over the input, and the
distribution of the sketching matrices does not depend on
the input. These advantages make the oblivious sketch
preferable in streaming and distributed settings. Another
advantage of the oblivious sketch is its simplicity.

Our empirical results demonstrate the practicality of our di-
mensionality reduction methods. Our methods successfully
reduce a Tukey regression instance of size 10000 × d to
another instance with O(d) rows, without much sacrifice in
the quality of the solution. In most cases, the row sampling
algorithm reduces the size to 3d rows while retaining an
approximation ratio of at most 2.

4. Conclusions
We give the first dimensionality reduction methods for
the overconstrained Tukey regression problem. We first
give a row sampling algorithm which takes Õ(nnz(A) +
poly(d log n/ε)) time to return a weight vector with
poly(d log n/ε) non-zero entries, such that the solution of
the resulting weighted Tukey regression problem gives a
(1 + ε)-approximation to the original problem. We further
give another way to reduce Tukey regression problems to
smaller weighted versions, via an oblivious sketching matrix
S, applied in a single pass over the data. Our dimensionality
reduction methods are simple and easy to implement, and
we give empirical results demonstrating their practicality.
We also give hardness results showing that the Tukey regres-
sion problem cannot be efficiently solved in the worst-case.

From a technical point of view, our algorithms for finding
heavy coordinates and our structural theorem seem to be
of independent interest. We leave it as an intriguing open
problem to find more applications of them.

40 60 80 100 120 140 160 180 200

#rows of the sketch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(a) Random Gaussian. d =
20, τ = 10.

40 60 80 100 120 140 160 180 200

#rows of the sketch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(b) Random Gaussian (with out-
liers). d = 20, τ = 10.

106 159 212 265 318 371 424 477 530

#rows of the sketch

1.0

1.2

1.4

1.6

1.8

2.0

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(c) Facebook Comment Volume.
d = 53, τ = 10.

106 159 212 265 318 371 424 477 530

#rows of the sketch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(d) Facebook Comment Volume
(with outliers). d = 53, τ =
100.

50 75 100 125 150 175 200 225 250

#rows of the sketch

1.0

1.5

2.0

2.5

3.0

3.5

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(e) Appliances Energy Predic-
tion. d = 25, τ = 1000.

50 75 100 125 150 175 200 225 250

#rows of the sketch

1.0

1.5

2.0

2.5

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(f) Appliances Energy Predic-
tion (with outliers). d = 25,
τ = 100.

768 1152 1536 1920 2304 2688 3072 3456 3840

#rows of the sketch

0

2

4

6

8

10

12

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(g) CT Slice Localization. d =
384, τ = 100.

768 1152 1536 1920 2304 2688 3072 3456 3840

#rows of the sketch

1.000

1.005

1.010

1.015

1.020

1.025

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

Oblivious Sketch

Row Sampling

(h) CT Slice Localization (with
outliers). d = 384, τ = 1000.

Figure 5. Approximation ratio of our dimensionality reduction
methods.

Dimensionality Reduction for Tukey Regression

Acknowledgements
The authors would like to thank Lijie Chen and Peilin Zhong
for helpful discussions, and the anonymous ICML reviewers
for their insightful comments. Ruosong Wang and David
P. Woodruff were supported in part by Office of Naval Re-
search (ONR) grant N00014-18-1-2562. Part of this work
was done while the authors were visiting the Simons Insti-
tute for the Theory of Computing.

References
The linvpy package. https://github.com/LCAV/linvpy/.

Arora, S., Ge, R., Kannan, R., and Moitra, A. Comput-
ing a nonnegative matrix factorization—provably. SIAM
Journal on Computing, 45(4):1582–1611, 2016.

Basu, S., Pollack, R., and Roy, M.-F. On the combinato-
rial and algebraic complexity of quantifier elimination.
Journal of the ACM (JACM), 43(6):1002–1045, 1996.

Belagiannis, V., Rupprecht, C., Carneiro, G., and Navab,
N. Robust optimization for deep regression. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 2830–2838, 2015.

Braverman, V. and Ostrovsky, R. Zero-one frequency laws.
In Proceedings of the forty-second ACM symposium on
Theory of computing, pp. 281–290. ACM, 2010.

Clarkson, K. L. Subgradient and sampling algorithms for `1
regression. In SODA, 2005.

Clarkson, K. L. and Woodruff, D. P. Low rank
approximation and regression in input spar-
sity time. In STOC, 2013. Full version at
http://arxiv.org/abs/1207.6365.

Clarkson, K. L. and Woodruff, D. P. Input sparsity and hard-
ness for robust subspace approximation. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pp. 310–329. IEEE, 2015a.

Clarkson, K. L. and Woodruff, D. P. Sketching for M-
estimators: A unified approach to robust regression. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pp. 921–939, 2015b.

Clarkson, K. L. and Woodruff, D. P. Input sparsity and
hardness for robust subspace approximation. In IEEE
56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pp. 310–329, 2015c.

Clarkson, K. L., Drineas, P., Magdon-Ismail, M., Mahoney,
M. W., Meng, X., and Woodruff, D. P. The fast cauchy

transform and faster robust linear regression. SIAM Jour-
nal on Computing, 45(3):763–810, 2016.

Cohen, M. B. and Peng, R. `p row sampling by Lewis
weights. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pp. 183–
192, 2015.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for `p
regression. SIAM J. Comput., 38(5):2060–2078, 2009.

Dinur, I. The pcp theorem by gap amplification. Journal of
the ACM (JACM), 54(3):12, 2007.

Fox, J. Robust Regression (web appendix). Sage
Publications, 2002. URL http://socserv.
mcmaster.ca/jfox/books/companion/
appendix.html.

Impagliazzo, R. and Paturi, R. On the complexity of k-
sat. Journal of Computer and System Sciences, 62(2):
367–375, 2001.

Indyk, P. and Woodruff, D. P. Optimal approximations of
the frequency moments of data streams. In STOC, pp.
202–208, 2005.

Kannan, R. and Vempala, S. Spectral algorithms. Foun-
dations and Trends in Theoretical Computer Science, 4
(3-4):157–288, 2009.

Lewis, D. Finite dimensional subspaces of Lp. Studia
Mathematica, 63(2):207–212, 1978.

Li, M., Miller, G. L., and Peng, R. Iterative row sampling.
In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 127–136. IEEE, 2013.

Li, Y., Wang, R., and Woodruff, D. P. Tight bounds for
the subspace sketch problem with applications. arXiv
preprint arXiv:1904.05543, 2019.

Mahoney, M. W. Randomized algorithms for matrices and
data. Foundations and Trends in Machine Learning, 3(2):
123–224, 2011.

Meng, X. and Mahoney, M. W. Low-distortion Subspace
Embeddings in Input-sparsity Time and Applications to
Robust Linear Regression. ArXiv e-prints, October 2012.

Moitra, A. An almost optimal algorithm for computing
nonnegative rank. SIAM Journal on Computing, 45(1):
156–173, 2016.

Nelson, J. and Nguyen, H. L. OSNAP: Faster numerical lin-
ear algebra algorithms via sparser subspace embeddings.
CoRR, abs/1211.1002, 2012.

http://socserv.mcmaster.ca/jfox/books/companion/appendix.html.
http://socserv.mcmaster.ca/jfox/books/companion/appendix.html.
http://socserv.mcmaster.ca/jfox/books/companion/appendix.html.

Dimensionality Reduction for Tukey Regression

Razenshteyn, I., Song, Z., and Woodruff, D. P. Weighted
low rank approximations with provable guarantees. In
Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pp. 250–263. ACM, 2016.

Renegar, J. On the computational complexity and geometry
of the first-order theory of the reals. part i: Introduction.
preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals.
Journal of symbolic computation, 13(3):255–299, 1992.

Sarlós, T. Improved approximation algorithms for large
matrices via random projections. In FOCS, pp. 143–152,
2006.

Sohler, C. and Woodruff, D. P. Subspace embeddings for
the l1-norm with applications. In STOC, pp. 755–764,
2011.

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approxi-
mation with entrywise `1-norm error. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 688–701. ACM, 2017.

Verbin, E. and Zhang, Q. Rademacher-sketch: A
dimensionality-reducing embedding for sum-product
norms, with an application to earth-mover distance. In
ICALP (1), pp. 834–845, 2012.

Wang, R. and Woodruff, D. P. Tight bounds for `p oblivious
subspace embeddings. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1825–1843. SIAM, 2019.

Wojtaszczyk, P. Banach spaces for analysts, volume 25.
Cambridge University Press, 1996.

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1–157, 2014.

Woodruff, D. P. and Zhang, Q. Subspace embeddings and
lp-regression using exponential random variables. CoRR,
abs/1305.5580, 2013.

Yang, J., Meng, X., and Mahoney, M. W. Quantile re-
gression for large-scale applications. In ICML (3), pp.
881–887, 2013.

