
Quantifying Generalization in Reinforcement Learning

A. Level Generation and Environment Details
A.1. CoinRun

Each CoinRun level has a difficulty setting from 1 to 3.
To generate a new level, we first uniformly sample over
difficulties. Several choices throughout the level generation
process are conditioned on this difficulty setting, including
the number of sections in the level, the length and height of
each section, and the frequency of obstacles. We find that
conditioning on difficulty in this way creates a distribution
of levels that forms a useful curriculum for the agent. For
more efficient training, one could adjust the difficulty of
sampled levels based on the agent’s current skill, as done
in (Justesen et al., 2018). However, we chose not to do so
in our experiments, for the sake of simplicity.

At each timestep, the agent receives a 64 ⇥ 64 ⇥ 3 RGB
observation, centered on the agent. Given the game me-
chanics, an agent must know it’s current velocity in order
to act optimally. This requirement can be satisfied by us-
ing frame stacking or by using a recurrent model. Alterna-
tively, we can include velocity information in each observa-
tion by painting two small squares in the upper left corner,
corresponding to x and y velocity. In practice, agents can
adequately learn under any of these conditions. Directly
painting velocity information leads to the fastest learning,
and we report results on CoinRun using this method. We
noticed similar qualitative results using frame stacking or
recurrent models, though with unsurprisingly diminished
generalization performance.

A.2. CoinRun-Platforms

As with CoinRun, agents receive a 64 ⇥ 64 ⇥ 3 RGB ob-
servation at each timestep in CoinRun-Platforms. We don’t
paint any velocity information into observations in exper-
iments with CoinRun-Platforms; this information can be
encoded by the LSTM used in these experiments. Unlike
CoinRun, levels in CoinRun-Platforms have no explicit dif-
ficulty setting, so all levels are drawn from the same dis-
tribution. In practice, of course, some levels will still be
drastically easier than others.

It is worth emphasizing that CoinRun platforms is a much
more difficult game than CoinRun. We trained for 2B
timesteps in Figure 7, but even this was not enough time for
training to fully converge. We found that with unrestricted
training levels, training converged after approximately 6B
timesteps at a mean score of 20 per level. Although this
agent occasionally makes mistakes, it appears to be rea-
sonably near optimal performance. In particular, it demon-
strates a robust ability to explore the level.

A.3. RandomMazes

As with the previous environments, agents receive a 64 ⇥
64⇥3 RGB observation at each timestep in RandomMazes.
Given the visual simplicity of the environment, using such
a larger observation space is clearly not necessary. How-
ever, we chose to do so for the sake of consistency. We did
conduct experiments with smaller observation spaces, but
we noticed similar levels of overfitting.

Quantifying Generalization in Reinforcement Learning

B. Environment Screenshots
CoinRun Difficulty 1 Levels:

CoinRun Difficulty 2 Levels:

Note: Images scaled to fit.

Quantifying Generalization in Reinforcement Learning

CoinRun Difficulty 3 Levels:

Note: Images scaled to fit.

Quantifying Generalization in Reinforcement Learning

CoinRun-Platforms Levels:

Note: Images scaled to fit.

Quantifying Generalization in Reinforcement Learning

C. Data Augmentation Screenshots
Example observations augmented with our modified version of Cutout (Devries and Taylor, 2017):

D. Hyperparameters and Settings
We used the following hyperparameters and settings in our baseline experiments with the 3 environments. Notably, we
forgo the LSTM in CoinRun, and we use more environments per worker in CoinRun-Platforms.

CoinRun CoinRun-Platforms RandomMazes

� .999 .999 .999
� .95 .95 .95

timesteps per rollout 256 256 256
Epochs per rollout 3 3 3

minibatches per epoch 8 8 8
Entropy bonus (kH) .01 .01 .01
Adam learning rate 5⇥ 10�4 5⇥ 10�4 5⇥ 10�4

environments per worker 32 96 32
workers 8 8 8
LSTM? No Yes Yes

Quantifying Generalization in Reinforcement Learning

E. Performance

Levels Nature Train Nature Test IMPALA Train IMPALA Test

100 99.45± 0.09 66.79± 1.09 99.39± 0.08 66.58± 1.91
500 97.85± 0.46 70.54± 0.62 99.16± 0.19 80.25± 1.07
1000 95.7± 0.65 72.51± 0.68 97.71± 1.04 84.84± 2.24
2000 92.65± 0.71 75.6± 0.28 97.82± 0.32 90.92± 0.45
4000 90.18± 1.04 78.35± 1.47 97.7± 0.19 95.87± 0.62
8000 88.94± 1.08 84.02± 0.96 98.13± 0.21 97.29± 1.04

12000 89.11± 0.58 86.41± 0.46 98.14± 0.56 97.51± 0.46
16000 89.24± 0.77 87.58± 0.79 98.04± 0.17 97.77± 0.68
1 90.87± 0.53 90.04± 0.9 98.11± 0.26 98.29± 0.16

Table 1. CoinRun (across 5 seeds)

Levels Train Test

100 14.04± 0.86 2.22± 0.2
400 12.16± 0.11 5.74± 0.22

1600 10.36± 0.35 8.91± 0.28
6400 11.71± 0.73 11.38± 0.55

25600 12.23± 0.49 12.21± 0.64
102400 13.84± 0.82 13.75± 0.91
409600 15.15± 1.01 15.18± 0.98
1 15.96± 0.37 15.89± 0.47

Table 2. CoinRun-Platforms IMPALA (across 3 seeds)

Levels Train Test

1000 92.09± 0.35 68.13± 1.3
2000 93.57± 2.06 74.08± 1.25
4000 92.94± 1.47 77.79± 1.87
8000 98.47± 0.4 83.33± 0.66

16000 99.19± 0.19 87.49± 1.45
32000 98.62± 0.37 93.07± 1.0
64000 98.64± 0.14 97.71± 0.24
128000 99.06± 0.21 99.1± 0.34
256000 98.97± 0.18 99.21± 0.11
1 98.83± 0.71 99.36± 0.16

Table 3. RandomMazes IMPALA (across 3 seeds)

