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Abstract
Bayesian inference via standard Markov Chain
Monte Carlo (MCMC) methods is too computa-
tionally intensive to handle large datasets, since
the cost per step usually scales like Θ(n) in the
number of data points n. We propose the Scal-
able Metropolis–Hastings (SMH) kernel that ex-
ploits Gaussian concentration of the posterior
to require processing on average only O(1) or
even O(1/

√
n) data points per step. This scheme

is based on a combination of factorized accep-
tance probabilities, procedures for fast simula-
tion of Bernoulli processes, and control variate
ideas. Contrary to many MCMC subsampling
schemes such as fixed step-size Stochastic Gra-
dient Langevin Dynamics, our approach is exact
insofar as the invariant distribution is the true pos-
terior and not an approximation to it. We charac-
terise the performance of our algorithm theoreti-
cally, and give realistic and verifiable conditions
under which it is geometrically ergodic. This the-
ory is borne out by empirical results that demon-
strate overall performance benefits over standard
Metropolis–Hastings and various subsampling al-
gorithms.

1. Introduction
Bayesian inference is concerned with the posterior distribu-
tion p(θ|y1:n), where θ ∈ Θ = Rd denotes parameters of
interest and y1:n = (y1, · · · , yn) ∈ Yn are observed data.
We assume the prior admits a Lebesgue density p(θ) and
that the data are conditionally independent given θ with
likelihoods p(yi|θ), which means

p(θ|y1:n) ∝ p(θ)
n∏
i=1

p(yi|θ).
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Figure 1. Average number of likelihood evaluations per iteration
required by SMH for a 10-dimensional logistic regression posterior
as the number of data points n increases. SMH-1 uses a first-order
approximation to the target and SMH-2 a second-order one.

In most cases of interest, p(θ|y1:n) does not admit a
closed-form expression and so we must resort to a Markov
Chain Monte Carlo (MCMC) approach. However, stan-
dard MCMC schemes can become very computationally
expensive for large datasets. For example, the Metropolis–
Hastings (MH) algorithm requires computing a likelihood
ratio p(y1:n|θ′)/p(y1:n|θ) at each iteration. A direct imple-
mentation of this algorithm thus requires computational cost
Θ(n) per step, which is prohibitive for large n.

Many ideas for mitigating this cost have been suggested; see
Bardenet et al. (2017) for a recent review. Broadly speaking
these approaches are distinguished by whether they exactly
preserve the true posterior as the invariant distribution of
the Markov chain produced. Approximate methods that
have been proposed include divide-and-conquer schemes,
which run parallel MCMC chains on a partition of the data
(Neiswanger et al., 2013; Scott et al., 2016). Other ap-
proaches replace the likelihood ratio in MH with an approx-
imation computed from a subsample of observations. The
error introduced can be controlled heuristically using central
limit theorem approximations (Korattikara et al., 2014) or
rigorously via concentration inequalities (Bardenet et al.,
2014; 2017; Quiroz et al., 2018a). Another popular class
of schemes is based on Stochastic Gradient Langevin Dy-
namics (SGLD) (Welling & Teh, 2011; Dubey et al., 2016;
Baker et al., 2018; Brosse et al., 2018; Chatterji et al., 2018),
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which is a time-discretized Langevin dynamics where the
gradient of the log-likelihood is approximated by subsam-
pling. SGLD is usually implemented using a fixed step-size
discretization, which does not exactly preserve the posterior
distribution. Finally, Quiroz et al. (2016) and Dang et al.
(2017) propose schemes that do not preserve the posterior
exactly, but yield consistent estimates of posterior expecta-
tions after an importance sampling correction.

In addition to these approximate methods, several MCMC
methods exist that do preserve the target as invariant distri-
bution while only requiring access to a subset of the data
at each iteration. However, various restrictions of these
approaches have so far limited their widespread use. Fire-
fly Monte Carlo (Maclaurin & Adams, 2014) considers an
extended target that can be evaluated using a subset of the
data at each iteration, but requires the user specify global
lower bounds to the likelihood factors that can be difficult
to derive. It is as yet also unclear what the convergence
properties of this scheme are. Delayed acceptance schemes
have been proposed based on a factorized version of the
MH acceptance probability (Banterle et al., 2015) and on
a random subsample of the data (Payne & Mallick, 2018).
These methods allow rejecting a proposal without comput-
ing every likelihood term, but still require evaluating each
term in order to accept. Quiroz et al. (2018b) combine the
latter with the approximate subsampling approach of Quiroz
et al. (2018a) to mitigate this problem. Finally, various non-
reversible continuous-time MCMC schemes based on Piece-
wise Deterministic Markov Processes have been proposed
which, when applied to large-scale datasets (Bouchard-Côté
et al., 2018; Bierkens et al., 2019), only require evaluating
the gradient of the log-likelihood for a subset of the data.
However, these schemes can be difficult to understand the-
oretically, falling outside the scope of existing geometric
ergodicity results, and can be challenging to implement.

In this paper we present a novel MH-type subsampling
scheme that exactly preserves the posterior as the invariant
distribution while still enjoying attractive theoretical proper-
ties and being straightforward to implement and tune. We
make use of a combination of a factorized MH acceptance
probability (Ceperley, 1995; Christen & Fox, 2005; Ban-
terle et al., 2015; Michel et al., 2019; Vanetti et al., 2018)
and fast methods for sampling non-homogeneous Bernoulli
processes (Shanthikumar, 1985; Devroye, 1986; Fukui &
Todo, 2009; Michel et al., 2019; Vanetti et al., 2018) to
allow iterating without computing every likelihood factor.
The combination of these ideas has proven useful for some
physics models (Michel et al., 2019), but a naı̈ve applica-
tion is not efficient for large-scale Bayesian inference. Our
contribution here is an MH-style MCMC kernel that re-
alises the potential computational benefits of this method
in the Bayesian setting. We refer to this kernel as Scalable
Metropolis-Hastings (SMH) and, in addition to empirical re-

sults, provide a rigorous theoretical analysis of its behaviour
under realistic and verifiable assumptions. In particular, we
show SMH requires on average onlyO(1) or evenO(1/

√
n)

cost per step as illustrated in Figure 1, has a non-vanishing
average acceptance probability in the stationary regime, and
is geometrically ergodic under mild conditions.

Key to our approach is the use of control variate ideas,
which allow us to exploit the concentration around the mode
frequently observed for posterior distributions with large
datasets. Control variate ideas based on posterior concentra-
tion have been used successfully for large-scale Bayesian
analysis in numerous recent contributions (Dubey et al.,
2016; Bardenet et al., 2017; Baker et al., 2018; Brosse et al.,
2018; Bierkens et al., 2019; Chatterji et al., 2018; Quiroz
et al., 2018a). In our setting, this may be understood as
making use of a computationally cheap approximation of
the posterior.

The Supplement contains all our proofs as well as a guide
to our notation in Section A.

2. Factorised Metropolis-Hastings
We first review the use of a factorised acceptance probability
inside an MH-style algorithm. For now we assume a generic
target π(θ) before specialising to the Bayesian setting below.

2.1. Transition Kernel

Assume our target π(θ) and proposal q(θ, θ′) factorise like

π(θ) ∝
m∏
i=1

πi(θ) q(θ, θ′) ∝
m∏
i=1

qi(θ, θ
′)

for some m ≥ 1 and some choice of non-negative functions
πi and qi. These factors are not themselves required to be
integrable; for instance, we may take any πi, qi ≡ 1. Define
the Factorised Metropolis-Hastings (FMH) kernel

PFMH(θ,A) :=

(
1−

∫
q(θ, θ′)αFMH(θ, θ′)dθ′

)
IA(θ)

+

∫
A

q(θ, θ′)αFMH(θ, θ′)dθ′, (1)

where θ ∈ Θ , A ⊆ Θ is measurable, and the FMH accep-
tance probability is defined

αFMH(θ, θ′) :=

m∏
i=1

1 ∧ πi(θ
′)qi(θ

′, θ)

πi(θ)qi(θ, θ′)︸ ︷︷ ︸
=:αFMHi(θ,θ

′)

. (2)

It is straightforward and well-known that PFMH is π-
reversible; see Section B.1 in the Supplement for a proof.
Factorised acceptance probabilities have appeared numerous
times in the literature and date back at least to (Ceperley,
1995). The MH acceptance probability αMH and kernel
PMH correspond to αFMH and PFMH when m = 1.
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2.2. Poisson Subsampling Implementation

The acceptance step of PFMH can be implemented by sam-
pling directly m independent Bernoulli trials with success
probability 1 − αFMHi, and returning θ′ if every trial is a
failure. Since we can reject θ′ as soon as a single success
occurs, this allows us potentially to reject θ′ without com-
puting each factor at each iteration (Christen & Fox, 2005;
Banterle et al., 2015).

However, although this can lead to efficiency gains in some
contexts, it remains of limited applicability for Bayesian
inference with large datasets since we are still forced to
compute every factor whenever we accept a proposal. It was
realized independently by Michel et al. (2019) and Vanetti
et al. (2018) that if one has access to lower bounds on
αFMHi(θ, θ

′), hence to an upper bound on 1−αFMHi(θ, θ
′),

then techniques for fast simulation of Bernoulli random
variables can be used that potentially avoid this problem.
One such technique is given by the discrete-time thinning
algorithms introduced in (Shanthikumar, 1985); see also
(Devroye, 1986, Chapter VI Sections 3.3-3.4). This is used
in (Michel et al., 2019).

We use here an original variation of a scheme developed in
(Fukui & Todo, 2009). Denote

λi(θ, θ
′) := − logαFMHi(θ, θ

′),

and assume we have the bounds

λi(θ, θ
′) ≤ ϕ(θ, θ′)ψi := λi(θ, θ

′) (3)

for nonnegative ϕ,ψi. This condition holds for a variety of
statistical models: for instance, if πi is log-Lipschitz and q
is symmetric with (say) qi = q1/m, then

λi(θ, θ
′) ≤ Ki‖θ − θ′‖. (4)

This case illustrates that (3) is usually a local constraint on
the target and therefore not as strenuous as the global lower-
bounds required by Firefly (Maclaurin & Adams, 2014). We
exploit this to provide a methodology for producing ϕ and ψ
mechanically when we consider Bayesian targets in Section
3. Letting λ(θ, θ′) :=

∑m
i=1 λi(θ, θ

′), it follows that if

N ∼ Poisson
(
λ(θ, θ′)

)
X1, · · · , XN

iid∼ Categorical((λi(θ, θ
′)/λ(θ, θ′))1≤i≤m)

Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj (θ, θ′)) independently

for 1 ≤ j ≤ N

then P(B = 0) = αFMH(θ, θ′) where B =
∑N
j=1Bj (and

B = 0 if N = 0). See Proposition C.1 in the Supplement
for a proof. These steps may be interpreted as sampling a
discrete Poisson point process with intensity λi(θ, θ′) on

i ∈ {1, · · · ,m} via thinning (Devroye, 1986). Thus, to
perform the FMH acceptance step, we can simulate these
Bj and check whether each is 0.

We may exploit (3) to sample each Xj and Bj in O(1) time
per MCMC step as m → ∞ after paying some once-off
setup costs. Note that

λ(θ, θ′) = ϕ(θ, θ′)

m∑
i=1

ψi, (5)

so that we may compute λ(θ, θ′) in O(1) time per iteration
by simply evaluating ϕ(θ, θ′) if we pre-compute

∑m
i=1 ψi

ahead of our run. This incurs a one-time cost of Θ(m),
but assuming our run is long enough this will be negligible
overall. Similarly, note that

λi(θ, θ
′)

λ(θ, θ′)
=

ψi∑m
j=1 ψj

,

so that Categorical((λi(θ, θ
′)/λ(θ, θ′))1≤i≤m) does not

depend on θ, θ′. Thus, we can sample each Xi in O(1)
time using Walker’s alias method (Walker, 1977; Kronmal
& Peterson, 1979) having paid another once-off Θ(m) cost.

Algorithm 1 shows how to implement PFMH using this
approach. Observe that if N < m we are guaranteed not to
evaluate every target factor even if we accept the proposal θ′.
Of course, since N is random, in general it is not obvious
that N � m will necessarily hold on average, and indeed
this will not be so for a naı̈ve factorisation. We show in
Section 3 how to use Algorithm 1 as the basis of an efficient
subsampling method for Bayesian inference.

In many cases we will not have bounds of the form (3)
for every factor. However, Algorithm 1 can still be useful
provided the computational cost for computing these ex-
tra factors is O(1). In this case we can directly simulate
a Bernoulli trial for each additional factor, which by as-
sumption does not change the asymptotic complexity of this
method.

2.3. Geometric Ergodicity

We consider now the theoretical implications of using PFMH

rather than PMH. We refer the reader to Section B.2 in the
Supplement for a review of the relevant definitions and
theory of Markov chains. It is straightforward to show and
well-known that the following holds.

Proposition 2.1. For all θ, θ′ ∈ Θ , αFMH(θ, θ′) ≤
αMH(θ, θ′).

See Section B in the Supplement for a proof. As such, we do
not expect FMH to enjoy better convergence properties than
MH. Indeed, Proposition 2.1 immediately entails that FMH
produces ergodic averages of higher asymptotic variance
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Algorithm 1 Efficient implementation of the FMH kernel.
Setup() is called once prior to starting the MCMC run.

function Setup()
Ψ←∑m

i=1 ψi
τ ← AliasTable((ψi/Ψ)1≤i≤m)

end function

function FmhKernel(θ)
θ′ ∼ q(θ, ·)
N ∼ Poisson(ϕ(θ, θ′)Ψ)
for j ∈ 1, ..., N do
Xj ∼ τ
Bj ∼ Bernoulli(λXj (θ, θ′)/λXj (θ, θ′))
if Bj = 1 then

return θ
end if

end for
return θ′

end function

than standard MH (Peskun, 1973; Tierney, 1998). More-
over PFMH can fail to be geometrically ergodic even when
PMH is, as noticed by Banterle et al. (2015). Geometric
ergodicity is a desirable property of MCMC algorithms be-
cause it ensures the central limit theorem holds for some
ergodic averages (Roberts & Rosenthal, 1997, Corollary
2.1). The central limit theorem in turn is the foundation of
principled stopping criteria based on Monte Carlo standard
errors (Jones & Hobert, 2001).

To address the fact that PFMH might not be geometrically
ergodic, we introduce the Truncated FMH (TFMH) kernel
PTFMH which is obtained by simply replacing in (1) the
term αFMH(θ, θ′) with the acceptance probability

αTFMH(θ, θ′) :=

{
αFMH(θ, θ′), λ(θ, θ′) < R

αMH(θ, θ′), otherwise,
(6)

for some choice of R ∈ [0,∞]. Observe that FMH is a
special case of TFMH with R = ∞. When λ(θ, θ′) is
symmetric in θ and θ′, Proposition B.3 in the Supplement
shows that PTFMH is still π-reversible. The following the-
orem shows that under mild conditions TFMH inherits the
desirable convergence properties of MH.

Theorem 2.1. If PMH is ϕ-irreducible, aperiodic, and geo-
metrically ergodic, then PTFMH is too if

δ := inf
λ(θ,θ′)<R

αFMH(θ, θ′) ∨ αFMH(θ′, θ) > 0. (7)

In this case, Gap(PFMH) ≥ δGap(PMH), and for f ∈
L2(π)

var(f, PTFMH) ≤ (δ−1 − 1)var(f, π) + δ−1var(f, PMH).

Here Gap(P ) denotes the spectral gap and var(f, P ) the
asymptotic variance of the ergodic averages of f . See
Section B.2 in the Supplement for full definitions and
a proof. Proposition B.1 in the Supplement shows that
αFMH(θ, θ′) ∨ αFMH(θ′, θ) = αFMH(θ, θ′)/αMH(θ, θ′),
and hence (7) quantifies the worst-case cost we pay for
using the FMH acceptance probability rather than the MH
one. The condition (7) is easily seen to hold in the com-
mon case that each πi is bounded away from 0 and∞ on
{θ, θ′ ∈ Θ | λ(θ, θ′) < R}, which is a fairly weak require-
ment when R <∞.

Recall from the previous section that PFMH requires com-
puting N ∼ Poisson(λ(θ, θ′)) factors for a given θ, θ′. In
this way, TFMH yields the additional benefit of controlling
the maximum expected number of factors we will need to
compute via the choice of R. An obvious choice is to take
R = m, which ensures we will not compute more factors
for FMH than for MH on average. Thus, overall, TFMH
yields the computational benefits of αFMH when our bounds
(3) are tight (usually near the mode), and otherwise falls
back to MH as a default (usually in the tails).

3. FMH for Bayesian Big Data
We now consider the specific application of FMH to the
problem of Bayesian inference for large datasets, where
π(θ) ∝ p(θ)

∏n
i=1 p(yi|θ). It is frequently observed that

such targets concentrate at a rate 1/
√
n around the mode as

n→∞, in what is sometimes referred to as the Bernstein-
von Mises phenomenon. We describe here how to leverage
this phenomenon to devise an effective subsampling algo-
rithm based on Algorithm 1. Our approach is based on con-
trol variate ideas similar to Dubey et al. (2016); Bardenet
et al. (2017); Bierkens et al. (2019); Baker et al. (2018);
Chatterji et al. (2018); Quiroz et al. (2018a). We emphasise
that all these techniques also rely on a posterior concentra-
tion assumption but none of them only requires processing
O(1/

√
n) data points per iteration as we do.

To see why this approach is needed, observe that the most
natural factorisations of the posterior have m � n. This
introduces a major pitfall: each new factor introduced can
only lower the value of αFMH(θ, θ′), which in the aggregate
can therefore mean αFMH(θ, θ′)→ 0 as n→∞.

Consider heuristically a naı̈ve application of Algorithm 1
to π. Assuming a flat prior for simplicity, the obvious fac-
torisation takes m = n and each πi(θ) = p(yi|θ). Suppose
the likelihoods are log-Lipschitz and that we use the bounds
(4) derived above. For smooth likelihoods, if the Lipschitz
constants Ki are chosen minimally, these bounds will be
tight in the limit as ‖θ− θ′‖ → 0. Consequently, if we scale
‖θ − θ′‖ as 1/

√
n to match the concentration of the target,
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then αFMH(θ, θ′) � exp(−λ(θ, θ′))→ 0 since

λ(θ, θ′) = ‖θ − θ′‖︸ ︷︷ ︸
=Θ(1/

√
n)

n∑
i=1

Ki︸ ︷︷ ︸
=Θ(n)

= Θ(
√
n).

Recall that Algorithm 1 requires the computation of at most
N ∼ Poisson(λ(θ, θ′)) factors, and hence in this case we
do obtain a reduced expected cost per iteration of Θ(

√
n) as

opposed to Θ(n). Nevertheless, we found empirically that
the increased asymptotic variance produced by the decaying
acceptance probability entails an overall loss of performance
compared with standard MH. We could consider using a
smaller stepsize such as ‖θ − θ′‖ = O(1/n) which would
give a stable acceptance probability, but then our proposal
would not match the 1/

√
n concentration of the posterior.

We again found this increases the asymptotic variance to the
extent that it negates the benefits of subsampling overall.

3.1. Scalable Metropolis–Hastings

Our approach is based on controlling λ(θ, θ′), which en-
sures both a low computational cost and a large acceptance
probability. We assume an initial factorisation

π(θ) ∝ p(θ)
n∏
i=1

p(yi|θ) ∝
m∏
i=1

π̃i(θ) (8)

for some m (not necessarily equal to n) and π̃i (e.g. using
directly the factorisation of prior and likelihoods). Let

Ui(θ) := − log π̃i(θ) U(θ) :=

m∑
i=1

Ui(θ).

We choose some fixed θ̂ ∈ Θ not depending on i that is
near the mode of π like Dubey et al. (2016); Bardenet et al.
(2017); Bierkens et al. (2019); Baker et al. (2018); Chatterji
et al. (2018); Quiroz et al. (2018a). Assuming sufficient
differentiability, we then approximate Ui with a k-th order
Taylor expansion around θ̂, which we denote by

Ûk,i(θ) ≈ Ui(θ).

We also define

π̂k,i(θ) := exp(−Ûk,i(θ)) ≈ π̃i(θ).

In practice we are exclusively interested in the cases k = 1
and k = 2, which correspond to first and second-order
approximations respectively. Explicitly, in these cases

Û1,i(θ) = U(θ̂) +∇Ui(θ̂)>(θ − θ̂),

Û2,i(θ) = Û1,i(θ) +
1

2
(θ − θ̂)>∇2Ui(θ̂)(θ − θ̂),

where∇ denotes the gradient and∇2 the Hessian. Letting

Ûk(θ) :=

m∑
i=1

Ûk,i(θ) π̂k(θ) := exp(−Ûk(θ)),

additivity of the Taylor expansion further yields

Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂)

Û2(θ) = Û1(θ) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂). (9)

Thus when∇2U(θ̂) � 0 (i.e. symmetric positive-definite),
π̂2(θ) is seen to be a Gaussian approximation to π around
the (approximate) mode θ̂.

We use the π̂k,i to define the Scalable Metropolis-Hastings
(SMH or SMH-k) acceptance probability

αSMH-k(θ, θ′) :=

(
1 ∧ π̂k(θ′)q(θ′, θ)

π̂k(θ)q(θ, θ′)

) m∏
i=1

1∧ π̃i(θ
′)π̂k,i(θ)

π̂k,i(θ′)π̃i(θ)
.

(10)
Note that SMH-k is a special case of FMH with m + 1
factors given by

π = π̂k︸︷︷︸
=πm+1

m∏
i=1

π̃i
π̂k,i︸︷︷︸
=πi

q = q︸︷︷︸
=qm+1

m∏
i=1

1︸︷︷︸
=qi

(11)

and hence defines a valid acceptance probability. (Note that
π̂1 is not integrable, but recall this is not required of FMH
factors.) We could consider any factorisation of q, but we
will not make use of this generality.

π̂k(θ) can be computed in constant time after precomputing
the relevant partial derivatives at θ̂ before our MCMC run.
This allows us to deal with 1∧ π̂k(θ′)q(θ′, θ)/π̂k(θ)q(θ, θ′)
by directly simulating a Bernoulli trial with this value as its
success probability. For the remaining factors we have

λi(θ, θ
′) = − log

(
1 ∧ π̃i(θ

′)π̂k,i(θ)

π̃i(θ)π̂k,i(θ′)

)
.

We can obtain a bound of the form (3) providedUi is (k+1)-
times continuously differentiable. In this case, if we can
find constants

Uk+1,i ≥ sup
θ∈Θ
|β|=k+1

|∂βUi(θ)|, (12)

(here β is multi-index notation; see Section A of the Supple-
ment) it follows that

λ(θ, θ′) := (‖θ − θ̂‖k+1
1 + ‖θ′ − θ̂‖k+1

1 )︸ ︷︷ ︸
=ϕ(θ,θ′)

m∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
=ψi

(13)
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defines an upper bound of the required form (5). See Propo-
sition D.1 in the Supplement for a derivation. Observe this
is symmetric in θ and θ′ and therefore can be used to define
a truncated version of SMH as described in Section 2.3.

Although we concentrate on Taylor expansions here, other
choices of π̂i may be useful. For instance, it may be possible
to make π̃i/π̂i log-Lipschitz or log-concave and obtain bet-
ter bounds. However, Taylor expansions have the advantage
of generality and (13) is sufficiently tight for us.

Heuristically, if the posterior concentrates like 1/
√
n, if

we scale our proposal like 1/
√
n, and if θ̂ is not too far

(specifically O(1/
√
n)) from the mode, then both ‖θ − θ̂‖

and ‖θ′ − θ̂‖ will be O(1/
√
n), and ϕ(θ, θ′) will be

O(n−(k+1)/2). If moreover m � n, then the summation
will be O(n) and hence overall λ(θ, θ′) = O(n(1−k)/2).
When k = 1 this is O(1) and when k = 2 this is O(1/

√
n),

which entails a substantial improvement over the naı̈ve ap-
proach. In particular, we expect stable acceptance probabil-
ities in both cases, constant expected cost in n for k = 1,
and indeed O(1/

√
n) decreasing cost for k = 2. We make

this argument rigorous in Theorem 3.1 below.

Beyond what is already needed for MH, Uk+1,i and θ̂ are
all the user must provide for our method. In practice neither
of these seems problematic in typical settings. We have
found deriving Uk+1,i to be a fairly mechanical procedure,
and give examples for two models in Section 4. Likewise,
while computing θ̂ does entail some cost, we have found
that standard gradient descent finds an adequate result in
time negligible compared with the full MCMC run.

3.2. Choice of Proposal

We now consider the choice of proposal q and its impli-
cations for the acceptance probability. As mentioned, it
is necessary to ensure that, roughly speaking, ‖θ − θ′‖ =
O(n−1/2) to match the concentration of the target. In this
section we describe heuristically how to ensure this. The-
orem 3.1 below and Section F.1.2 in the Supplement give
precise statements of what is required.

Two main classes of q are of interest to us. When q is
symmetric, (10) simplifies to

αSMH-k(θ, θ′) =

(
1 ∧ π̂k(θ′)

π̂k(θ)

) m∏
i=1

1 ∧ π̃i(θ
′)π̂k,i(θ)

π̃i(θ)π̂k,i(θ′)
.

(14)
We can realise this with the correct scaling with for example

q(θ, θ′) = Normal(θ′ | θ, σ
2

n
Id), (15)

where σ > 0 is fixed in n. Alternatively, we can more
closely match the covariance of our proposal to the covari-

ance of our target with

q(θ, θ′) = Normal(θ′ | θ, σ2[∇2U(θ̂)]−1). (16)

Under usual circumstances [∇2U(θ̂)]−1 is approximately
(since in general this will include a non-flat prior term) pro-
portional to the inverse observed information matrix, and
hence the correct O(n−1/2) scaling is achieved automati-
cally. See Section F.1.2 in the Supplement for more details.

We can improve somewhat on a symmetric proposal if we
choose q to be π̂k-reversible in the sense that

π̂k(θ)q(θ, θ′) = π̂k(θ′)q(θ′, θ)

for all θ, θ′; see, e.g., (Tierney, 1994; Neal, 1999; Kamatani,
2018). In this case we obtain

αSMH-k(θ, θ′) =

m∏
i=1

1 ∧ π̃i(θ
′)π̂k,i(θ)

π̃i(θ)π̂k,i(θ′)
.

Note that using a π̂k-reversible proposal allows us to drop
the first term in (14), and hence obtain a higher acceptance
probability for the same θ, θ′. Moreover, when k = 2, we
see from (9) that a π̂k-reversible proposal corresponds to an
MCMC kernel that targets a Gaussian approximation to π,
and may therefore be more suited to the geometry of π than
a symmetric one.

We now consider how to produce π̂k-reversible proposals.
For q of the form

q(θ, θ′) = Normal(θ′ | Aθ + b, C)

where A,C ∈ Rd×d with C � 0 and b ∈ Rd, Theorem E.1
in the Supplement gives necessary and sufficient conditions
for π̂1 and π̂2-reversibility. Specific useful choices that
satisfy these conditions and ensure the correct scaling are
then as follows. For π̂1 we can use for example

A = Id b = − σ

2n
∇U(θ̂) C =

σ

n
Id (17)

for some σ > 0, where Id ∈ Rd×d is the identity matrix.
For π̂2, assuming ∇2U(θ̂) � 0 (which will hold if θ̂ is
sufficiently close to the mode), we can use a variation of
the preconditioned-Crank Nicholson proposal (pCN) (Neal,
1999) defined by taking

A =
√
ρId C = (1− ρ)[∇2U(θ̂)]−1

b = (1−√ρ)(θ̂ − [∇2U(θ̂)]−1∇U(θ̂))

where ρ ∈ [0, 1). When ρ = 0 this corresponds to an inde-
pendent Gaussian proposal: θ′ ∼ π̂2. Note that this can be
re-interpreted as the exact discretization of an Hamiltonian
dynamics for the Gaussian π̂2.
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3.3. Performance

We now show rigorously that SMH addresses the issues of
a naive approach and entails an overall performance benefit.
In our setup we assume some unknown data-generating dis-
tribution P0, with data Yi

iid∼ P0. We denote the (random)
targets by π(n)(θ) := p(θ|Y1:n), for which we assume a
factorisation (8) involving m(n) terms. We denote the mode
of π(n) by θ(n)

MAP, and our estimate of the mode by θ̂(n). Ob-
serve that θ(n)

MAP ≡ θ
(n)
MAP(Y1:n) is a deterministic function

of the data, and we assume this holds for θ̂(n) ≡ θ̂(n)(Y1:n)

also. In general θ̂(n) may depend on additional randomness,
say W1:n, if for instance it is the output of a stochastic gra-
dient descent algorithm. In that case, our statements should
involve conditioning on W1:n but are otherwise unchanged.

Given n data points we denote the proposal by q(n), and
model the behaviour of our chain at stationarity by consider-
ing θ(n) ∼ π(n) and θ′(n) ∼ q(n)(θ(n), ·) sampled indepen-
dently of all other randomness given Y1:n. The following
theorem allows us to show that both the computational cost
and the acceptance probability of SMH remain stable as
n→∞. See Section F in the Supplement for a proof.

Theorem 3.1. Suppose each Ui is (k + 1)-times con-
tinuously differentiable, each Uk+1,i ∈ Lk+2, and

E[
∑m(n)

i=1 Uk+1,i|Y1:n] = OP0(n). Likewise, assume each
of ‖θ(n)− θ(n)

MAP‖, ‖θ(n)− θ′(n)‖, and ‖θ̂(n)− θ(n)
MAP‖ is in

Lk+2, and each of E[‖θ(n) − θ(n)
MAP‖k+1|Y1:n], E[‖θ(n) −

θ′(n)‖k+1|Y1:n], and ‖θ̂(n)−θ(n)
MAP‖k+1 isOP0

(n−(k+1)/2)
as n→∞. Then λ defined by (13) satisfies

E[λ(θ(n), θ′(n))|Y1:n] = OP0(n(1−k)/2).

For given θ(n) and θ′(n), recall that the method described
in Section 2.2 requires the computation of at most N (n) ∼
Poisson(λ(θ(n), θ′(n))) factors. Under the conditions of
Theorem 3.1, we therefore have

E[N (n)|Y1:n] = E[E[N (n)|θ(n), θ′(n), Y1:n]|Y1:n]

= E[λ(θ(n), θ′(n))|Y1:n]

= OP0(n(1−k)/2).

In other words, with arbitrarily high probability with respect
to the data-generating distribution, SMH requires processing
on average only O(1) data points per step for a first-order
approximation, and O(1/

√
n) for a second-order one.

This result also ensures that the acceptance probability for
SMH does not vanish as n → ∞. Denoting by π̂(n)

k our

approximation in the case of n data points, observe that

0 ≤ E[− logαFMH(θ(n), θ′(n))|Y1:n]

≤ E[− log(1 ∧ π̂
(n)
k (θ′(n))q(n)(θ′(n), θ(n))

π̂
(n)
k (θ(n))q(n)(θ(n), θ′(n))

)|Y1:n]

+ E[λ(θ(n), θ′(n))|Y1:n]

Here the second right-hand side term is OP0
(n(1−k)/2) by

Theorem 3.1. For a π̂k-reversible proposal the first term is
simply 0, while for a symmetric proposal Theorem F.2 in
the Supplement shows it is OP0

(1). In either case, we see
that the acceptance probability is stable in the limit of large
n. In the case of a π̂2-reversible proposal, we in fact have
E[αFMH(θ(n), θ′(n))|Y1:n]

P0→ 1.

Note that both these implications also apply if we use a trun-
cated version of SMH as per Section 2.3. This holds since
in general TFMH ensures both that the expected number of
factor evaluations is not greater than for FMH, and that the
acceptance probability is not less than for FMH.

The conditions of Theorem 3.1 hold in realistic scenarios.
The integrability assumptions are mild and mainly technical.
We will see in Section 4 that in practice Uk+1,i ≡ Uk+1(Yi)
is usually a function of Yi, in which case

E[

m(n)∑
i=1

Uk,i|Y1:n] =

n∑
i=1

Uk+1(Yi) = OP0
(n)

by the law of large numbers. In general, we might also have
one Uk,i for the prior also, but the addition of this term still
gives the same asymptotic behaviour.

The condition E[‖θ(n) − θ
(n)
MAP‖k+1|Y1:n] =

OP0
(n−(k+1)/2) essentially states that the posterior

must concentrate at rate O(1/
√
n) around the mode. This is

a consequence of standard, widely-applicable assumptions
that are used to prove Bernstein-von Mises. See Section
F.1.1 of the Supplement for more details. Note in particular
that we do not require our model to be well-specified
(i.e. we do not need P0 = p(y|θ0) for some θ0 ∈ Θ).
The remaining two OP0

conditions correspond to the
heuristic conditions given in Section 3.1. In particular,
the proposal should scale like 1/

√
n. We show Section

F.1.2 of the Supplement that this condition holds for the
proposals described in Section 3.2. Likewise, θ̂ should be
distance O(1/

√
n) from the mode. When the posterior

is log-concave it can be shown this holds for instance
for stochastic gradient descent after performing a single
pass through the data (Baker et al., 2018, Section 3.4). In
practice, we interpret this condition to mean that θ̂ should
be as close as possible to θMAP, but that some small margin
for error is acceptable.
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4. Experimental Results
In this section we apply SMH to Bayesian logistic regres-
sion. A full description of the model and upper bounds (12)
we used is given in Section G.2 of the Supplement. We
also provide there an additional application our method to
robust linear regression. We chose these models due to the
availability of lower bounds on the likelihoods required by
Firefly.

In our experiments we took d = 10. For both SMH-1 and
SMH-2 we used truncation as described in Section 2.3, with
R = n. Our estimate of the mode θ̂ was computed using
stochastic gradient descent. We compare our algorithms to
standard MH, Firefly, and Zig-Zag (Bierkens et al., 2019),
which all have the exact posterior as the invariant distri-
bution. We used the MAP-tuned variant of Firefly (which
also makes use of θ̂) with implicit sampling (this uses an
algorithmic parameter qd→b = 10−3; the optimal choice of
qd→b is an open question) and the lower bounds specified in
Section 3.1 of Maclaurin & Adams (2014).

Figure 1 (in Section 1) shows the average number of like-
lihood evaluations per step and confirms the predictions of
Theorem 3.1. Figure 2 displays the effective sample sizes
(ESS) for the posterior mean estimate of one regression
coefficient, rescaled by execution time. For large n, SMH-
2 significantly outperforms competing techniques. For all
methods except Zig-Zag we used the proposal (16) with
σ = 1, which automatically scales according to the concen-
tration of the target.

We also separately considered the performance of the pCN
proposal. Figure 3 shows the effect of varying ρ. As the
target concentrates, the Gaussian approximation of the target
improves and an independent proposal (ρ = 0) becomes
optimal. Finally, we also illustrate the average acceptance
rate when varying ρ in Figure 4.

Since SMH-2 makes use of a Gaussian approximation to
the posterior π̂2, we finally consider the benefit that our
method yields over simply using π̂2 directly. Observe in
Figure 4 that the acceptance probability of MH with the
independent proposal differs non-negligibly from 1 for rea-
sonably large values of n, which indicates that our method
yields a non-trivial increase in accuracy. For very large n,
the discrepancy vanishes as expected and SMH and other
subsampling methods based on control variates become less
useful in practice. See Section G of the Supplement for fur-
ther results along these lines. We believe however that our
approach could form the basis of subsampling methods in
more general and interesting settings such as random effect
models and leave this as an important piece of future work.

Code to reproduce our experiments is available at github.
com/pjcv/smh.
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