
Online Learning with Sleeping Experts and Feedback Graphs

A. AUER-N

In this section, we present the proof of the regret guarantee for AUER-N. For the sake of this analysis, we are in fact assuming
that the awake sets A

t are generated arbitrarily before learning starts. This implies the claimed result when the A
t’s are

generated i.i.d. according to an arbitrary distribution over A, independent of the losses. We use I{·} to denote the indicator
function.

We start off with the following technical lemma.

Lemma 1 Assume the following ordering for µj , j 2 [K]: µ1 < µ2 < · · · < µK and, for i < j, let �i,j = µj � µi. Then,

for any Fj > 0, j 2 [K], the following inequality holds:
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Proof. The result and the proof are extensions of Lemma 3 of Kleinberg et al. (2008) to inequalities augmented with factors
Fj . We will use the following equality which, by definition of the Lebesgue integral, holds for any non-negative function f :
E[f(X)] =

R +1
0 P[f(x) � t] dt. Thus, considering, in particular, the uniform probability over {2, . . . , K}, we can write:
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In view of the above, we have
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Now, for any j 2 {2, . . . , K} and t > 0, define it(j) by

it(j) = argmin

⇢
i 2 [K] : i  j, �i,j 
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The index it(j) is well defined since for i = j, �j,j = 0 is upper bounded by
F

1
2
j

t
. By definition of it(j), we can write
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which completes the proof. ⇤
With the above lemma handy, we are ready to prove Theorem 1.

Proof. [Theorem 1] For any i, j 2 [K], i < j, let Mi,j denote the number of times expert ⇠j is selected by the algorithm,
while some expert ⇠k with k 2 [i] could have been selected (because it was awake), where [i] = {1, . . . , i}. By definition,
(Mi,j � Mi�1,j) is then the number of times expert ⇠j ,is selected by the algorithm, while expert ⇠i, i < j, could have been
selected. Then, using the convention �j,j = 0 and M0,j = 0 for any j 2 [K], the sleeping regret of the algorithm can be
expressed as follows:
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Thus, to bound the sleeping regret, it suffices to bound E[Mi,j ] for 1  i < j  K. This expectation can be rewritten as
follows
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If expert j is selected at time t, that is It = j, then it must have the lowest confidence bound: bµj(t � 1) � Sj(t � 1) 
bµk(t � 1) � Sk(t � 1) for all k 2 A

t. Let k
⇤ = argmink2At\[i] bµk(t � 1) � Sk(t � 1), then

E[I{It = j}I{A
t \ [i] 6= ;}I{Tj(t � 1) � �i,j}] (3)
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Next, the first event in the probability can be expressed as follows:
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Thus, for that event to hold, at least one of these three terms must be non-negative. Moreover, if one is non-positive, at least
one of the other two is non-negative.

Choose random variable �i,j as follows: �i,j = 20 log T
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In view of that, when the second event Tj(t � 1) � �i,j holds, we have
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This shows that the third term above is then non-positive and that at least one of the first two is non-negative. Thus, under
the above choice of �i,j , the following inequality holds:
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Now, since both the feedback graph G
t and the algorithm’s action It only depend on information up to time (t � 1), it

is straightforward to see that, for any j 2 [K], the sequence of random variables L(⇠j , zs1), L(⇠j , zs2), . . ., are i.i.d., and
distributed as L(⇠j , z1), where sk is the stopping time sk = min{t : Qj(t) = k}. Using a standard Hoeffding bound, this
allows us to bound the second probability in (4) as follows:
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The other probability in (4), i.e., P(�µk⇤ + bµk⇤(t�1)�Sk⇤(t�1) � 0), can be bounded in a similar way, thereby resulting
in the following upper bound:
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Plugging in the right-hand side of this inequality in (1) to upper-bound E[Mi,j ], and using Lemma 1 with Fj =

E
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maxt2[T ]

Tj(t)
Qj(t)

i
completes the proof. ⇤
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B. Lower bound on sleeping regret
This section provides a proof of the lower bound in Theorem 2. The proof of this result follows from extending the arguments
in Kleinberg et al. (2008).

Proof. [Theorem 2] We first restate Lemma 11 in Kleinberg et al. (2008).

Lemma 2 (Lemma 11, Kleinberg et al. (2008)) Suppose we are given two numbers µ1 > µ2, both lying in an interval

[a, b] such that 0 < a < b < 1, and suppose we are given any online algorithm � for the multi-armed bandit problem with

two experts which never picks the worse expert more than o(T↵) times for every ↵ > 0. Then there is an input instance in

the stochastic rewards model, with two experts L and R whose payoff distributions are Bernoulli random variables with

means µ1 and µ2 or vice-versa, such that for large enough T depending on a, b, µ1, and µ2, the regret of algorithm � is

⌦
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log(T )(µ1�µ2)
KL(µ2||µ1)

⌘
, where the constant inside the ⌦(·) is at least

1
2 .

Assume that the losses are Bernoulli random variables and that the means {µj}K

j=1 are bounded away from 0 and 1. Let
A

t ⇢ [K] be the awake set at time t, and suppose that A
t ⇠ U({2j � 1, 2j}K/2

j=1 ) independent of the distribution of the
losses. For each awake set A and t 2 [T ], let s(A, t) 2 [T ] be the time step in which the awake set A occurred for the t-th
time. Then we can write for the expected sleeping regret of any algorithm:
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where the second to last equality follows from Wald’s equation, and the inequality follows from applying Lemma 2 to each
awake set which is effectively a separate two-armed bandit problem.

Now, since we assume that the means are bounded between a and b, we can upper bound the KL divergence terms as follows:
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Similarly, if we consider A
t ⇠ U({2j, 2j + 1}K/2�1

j=1 ), then the expected sleeping regret of any algorithm is lower bounded
by:
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Thus, if consider an awake set distribution A
t ⇠ U({2j �1, 2j}K/2

j=1 ) and A
t ⇠ U({2j, 2j +1}K/2�1

j=1 ) each with probability
1/2, then the expected sleeping regret of any algorithm is lower bounded by:
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C. UCB-SLG

In this section, we prove Theorem 3.

Proof. [Theorem 3] To simplify the notation, throughout this proof, we replace L(·, zt) by Lt(·), E[·|At = Ak] by E[·|Ak]
and ⌫k,i⇤(k) by ⌫i⇤(k). We first decompose the regret in terms of the awake sets A1, . . . , Ap :
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t=1 E[(Lt(⇠It) � Lt(⇠i⇤(k)))|Ak] can be interpreted as the regret for region k at time T . Thus, we can
focus on bounding RT,k for each k 2 [p].

Fix k 2 [p]. Observe that we can disregard any term in RT,k where the conditional expectation of the chosen expert is less
than that of the best expert, ⌫k,It  ⌫i⇤(k), and bound that by zero:
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where in the second to last inequality, we used the fact that (Lt(⇠i)�Lt(⇠i⇤(k))) and I{It = i} are conditionally independent
given Ak. Thus, RT,k can be upper bounded by terms where the conditional expectation of the chosen expert is greater than
that of the best expert, ⌫k,It > ⌫i⇤(k):
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where si is a parameter whose value will be selected later. Since the event It = i implies in particular the inequality
b⌫k,i(t � 1) � Sk,i(t � 1)  b⌫k,i⇤(k)(t � 1) � Sk,i⇤(k)(t � 1), we have
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The inequality defining the first event in this probability can be decomposed as follows:

b⌫k,i(t � 1) � Sk,i(t � 1)  b⌫k,i⇤(k)(t � 1) � Sk,i⇤(k)(t � 1)

, 0 
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⌫i⇤(k) � ⌫k,i + 2Sk,i(t � 1)

i
.

Thus, if we choose si such that the third term be non-positive, this will imply that one of the first two terms at least is
non-negative.

Let si be defined by si = 20 log(T )

�
2
k,i

. Then, Ok,i(t�1) � si implies ⌫i⇤(k)�⌫k,i +2Sk,i(t�1)  0, that is the non-positivity

of the third term. Thus, with this choice of si, if the inequality defining the first event in the probability holds, at least one of
the first two terms above must be non-negative. In view of that, by the union bound and Hoeffding’s inequality applied to
the probability of each event, the following holds:
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Ck defined in Section 4. Since Ck is a cover of the graph Gk, we can decompose the expression involving r

1
T,k,i

in terms of
the components of the clique cover and write

X

i2Ak\Bk

�k,i r
1
T,k,i


TX

t=1

X

C2Ck

X

i2C\Bk

E[�k,iI{It = i}I{⌫k,i > ⌫i⇤(k)}I{Ok,i(t � 1) < si}|Ak].

Let Ok,C(t � 1) denote the number of times any expert in clique C has been played up to time t � 1. Since experts in the
same clique are observed together, Ok,C(t � 1) is less than or equal to the number of times an expert i 2 C is observed:
Ok,C(t � 1)  Ok,i(t � 1). Thus, we can upper bound the expression above by replacing Ok,i(t � 1) with Ok,C(t � 1) as
follows:
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i2C\Bk

E

I{It = i}I

n
Ok,C(t � 1) < max

i2C\Bk
si

o����Ak

�


X

C2Ck

⇣
max

i2C\Bk
�k,i

⌘ TX

t=1

E

I{It 2 C}I

n
Ok,C(t � 1) < max

i2C\Bk
si

o����Ak

�
.

Define s and t
⇤ by s = maxi2C\Bk si and t

⇤ = max
n

t  T : I{Ok,C(t � 1) < s} 6= 0
o

. Then, we have

TX

t=1

I{It 2 C}I
�
Ok,C(t � 1) < s

 
=

t
⇤X

t=1

I{It 2 C}I
�
Ok,C(t � 1) < s

 
 s,
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where the last inequality holds since, by definition of t
⇤, the number of non-zero terms in the last sum it at most s. Thus, we

have
P

T

t=1 E[I{It 2 C}I{Ok,C(t � 1) < s}|Ak]  s and

X

i2Ak\Bk

�k,i r
1
T,k,i


X

C2Ck

⇣
max

i2C\Bk
�k,i

⌘⇣
max

i2C\Bk
si

⌘
= 20

X

C2Ck

maxi2C\Bk �k,i

mini2C\Bk �
2
k,i

log(T ),

for any clique covering Ck. Combining this inequality with the one for r
2
T,k,i

gives:

RSLEEP
T

(UCB-SLG) =
pX

k=1

pkRT,k 
pX

k=1

pk

X

i2Ak\Bk

�k,i(r
1
T,k,i

+ r
2
T,k,i

)


pX

k=1

pk

 
20
X

C2Ck

maxi2C\Bk �k,i

mini2C\Bk �
2
k,i

log(T ) + 4|Ak \ Bk|
!

.

Taking the minimum of the right-hand side over all possible clique covering Ck completes the proof. ⇤
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D. UCB-ABS

In this section, we prove Theorem 4.

Proof. [Theorem 4] To alleviate notation, throughout this proof we replace L(·, zt) by Lt(·), E[·|At = Ak] by E[·|Ak], and
⌫k,i⇤(k) by ⌫i⇤(k). By the same reasoning as in the proof of Theorem 3, for each k 2 [p] the following holds:

RT,k 
TX

t=1

E[I{⌫k,It > ⌫i⇤(k)}(Lt(⇠It) � Lt(⇠i⇤(k)))|Ak] , (5)

where RT,k is defined as in that proof.

Next, in order to bound (5), we split the rounds t 2 [T ] into three cases that need to be dealt with separately:

1. ⌫i⇤(k) 6= c and round t is such that It 6= 0 ;

2. ⌫i⇤(k) = c and round t is such that It 6= 0 ;

3. Round t is such that It = 0.

In Case 1, the algorithm will pick an expert that is not i
⇤(k) if there exists an expert i 6= 0 that satisfies b⌫k,i(t � 1) 

b⌫i⇤(k)(t�1). We will use a Follow-The-Leader type argument based on Lemma 1 of Caron et al. (2012). On the other hand, in
Case 2, the algorithm will pick an expert that is not i⇤(k) if there exists an expert i 6= 0 that satisfies b⌫k,i(t�1)�Sk(t�1)  c.
We will use a UCB-type argument. Finally, for Case 3, it must be that c  b⌫i⇤(k)(t � 1) � Sk(t � 1), and we will show that
the overall contribution to the regret can be upper bounded by a constant, independent of time horizon T .

Case 1. Since Lt(⇠i)�Lt(⇠i⇤(k)) and I{It = i} are conditionally independent given3 Ak, we can decompose the expectation
in (5):

TX

t=1

X

i2[K]\({0}[Bk)

E
h
I{It = i}I{⌫k,i > ⌫i⇤(k)}|Ak

i
(⌫k,i � ⌫i⇤(k))

and focus on bounding the number of times each arm i 2 [K] \ ({0} [ Bk) was pulled. Similarly to the proof of Theorem 3,
we introduce the conditions Ok(t � 1) > si and Ok(t � 1) < si for some si to be chosen later:

TX

t=1

E
h
I{It = i}I{i 6= {0}}I{⌫k,i > ⌫i⇤(k)}|Ak

i

=
TX

t=1

E
h
I{It = i}I{i 6= {0}}I{Ok(t � 1) < si}I{⌫k,i > ⌫i⇤(k)}|Ak

i
(6)

+
TX

t=1

E
h
I{It = i}I{i 6= {0}}I{Ok(t � 1) > si}I{⌫k,i > ⌫i⇤(k)}|Ak

i
(7)

and we bound (7) by a constant that is independent of T . If expert It = i where i 6= {0} is chosen, then it must be that
b⌫k,i(t � 1)  b⌫i⇤(k)(t � 1). Hence,

(7) 
TX

t=1

P[b⌫k,i(t � 1)  b⌫i⇤(k)(t � 1), i 6= {0}, Ok(t � 1) > si, ⌫k,i > ⌫i⇤(k)|Ak

i
.

We then use Lemma 1 of Caron et al. (2012) to show that the empirical mean of the chosen expert cannot be less than that of
the best expert i

⇤(k) too often. This gives us

(7) 
TX

t=1

2e
�si(⌫k,i�⌫i⇤(k))

2
/2

.

3 Recall that Ak is determined by xt.
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Note that this lemma applies here because the loss observations are i.i.d. given A
t = Ak and since Ok(t � 1) > si, we saw

at least si observations of the losses. We then choose si =
2 log(T�2

k,i)

�2
k,i

, so that
P

T

t=1 2e
�si(⌫k,i�⌫i⇤(k))

2
/2 = O(1). Lastly,

the bound on (6) follows by the same covering argument as in the proof of Theorem 3.

Case 2. By a similar reasoning as in Case 1, the regret is bounded as follows :

TX

t=1

X

i2[K]\({0}[Bk)

E
h
I{It = i}I{⌫k,i > c}|Ak

i
(⌫k,i � c) .

Again, for each expert i 2 [K]\({0}[Bk), we split this sum according to the conditions Ok(t�1) > si and Ok(t�1) < si

for some si to be chosen later. That is,

TX

t=1

E
h
I{It = i}I{i 6= {0}}I{⌫k,i > c}|Ak

i

=
TX

t=1

E
h
I{It = i}I{i 6= {0}}I{Ok(t � 1) < si}I{⌫k,i > c}|Ak

i
(8)

+
TX

t=1

E
h
I{It = i}I{i 6= {0}}I{Ok(t � 1) > si}I{⌫k,i > c}|Ak

i
. (9)

To bound term (9), since ⌫i⇤(k) = c, if It = i was the chosen expert, then it must be that b⌫k,i(t � 1) � Sk(t � 1)  c. Thus,

(9) 
TX

t=1

P
⇣
b⌫k,i(t � 1) � Sk(t � 1)  c, c < ⌫k,i, Ok(t � 1) > si

���Ak

⌘

=
TX

t=1

P
⇣
0 < �b⌫k,i(t � 1) + Sk(t � 1) + c + ⌫k,i � ⌫k,i + 2Sk(t � 1) � 2Sk(t � 1), c < ⌫k,i, Ok(t � 1) > si

���Ak

⌘

=
TX

t=1

P
⇣
0 < ⌫k,i � b⌫k,i(t � 1) � Sk(t � 1) + c � ⌫k,i + 2Sk(t � 1), c < ⌫k,i, Ok(t � 1) > si

���Ak

⌘
,

where as in the proof of Theorem 3, we introduced the terms ⌫k,i and Sk(t � 1). By choosing si = 20 log T

(⌫k,i�c)2 , then the
condition Ok(t�1) > si implies that c�⌫k,i +2Sk(t�1)  0. This in turn implies that 0 < ⌫k,i �b⌫k,i(t�1)�Sk(t�1),
and we bound the probability of this latter event by using a union bound and Hoeffding’s inequality:

TX

t=1

P[0 < ⌫k,i � b⌫k,i(t � 1) � Sk(t � 1)] 
TX

t=1

tX

s=1

1

t5


TX

t=1

1

t4
 2 .

Again, the bound on (8) follows directly by the covering argument in the proof of Theorem 3.

Case 3. Consider the rounds t where the chosen expert is the all-abstain expert, (It = 0) (and where It /2 Bk). By the same
reasoning as in the previous two cases, the regret in this case can be bounded as follows:

(5) 
TX

t=1

E[I{⌫k,It > ⌫i⇤(k)}I{It = 0}|Ak](c � ⌫i⇤(k)) .

If the all-abstain expert is chosen at time t, then it must be that c  b⌫i⇤(k)(t � 1) � Sk(t � 1). Hence,

TX

t=1

E
h
I{⌫k,It > ⌫i⇤(k)}I{It = 0}|Ak

i


TX

t=1

P
⇣
c  b⌫k,i⇤(k)(t � 1) � Sk(t � 1), c > ⌫i⇤(k)

���Ak

⌘
. (10)
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By following a similar logic as in proof of Theorem 3, we then introduce ⌫i⇤(k) and use the fact that c > ⌫i⇤(k):

(10) 
TX

t=1

P
⇣
0  �⌫i⇤(k) + b⌫k,i⇤(k)(t � 1) � Sk(t � 1) + ⌫i⇤(k) � c, c > ⌫i⇤(k)

���Ak

⌘


TX

t=1

P
⇣
0  �⌫i⇤(k) + b⌫k,i⇤(k)(t � 1) � Sk(t � 1)

���Ak

⌘


TX

t=1

tX

s=1

1

t5


TX

t=1

1

t4
 2 ,

where in the third-last inequality we used a union bound in conjunction with Hoeffding’s inequality.

Combining the inequalities corresponding to three cases above completes the proof. ⇤
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E. Further Experimental Results
In this section, we present further experimental results testing different aspects of our problem. The first set of figures present
the experimental results of all datasets using the same experimental setup as Cortes et al. (2018). Figure 4 and Figure 5 show
the results for all abstention costs for two datasets eye and HIGGS. These results show that UCB-ABS outperform UCB,
UCB-NT, and UCB-GT on most datasets, and approaches the performance of FS. Even though the experiments were carried
out for all abstention costs, to simplify exposition, we show the results for the rest of the datasets for abstention costs in
{0.05, 0.5, 0.95} in Figure 6 and Figure 7. Figure 8, Figure 9, and Figure 10 show the fraction of abstained points for each
algorithm for different abstention costs. As expected, all algorithms tend to abstain more often when the cost of abstention
is smaller. Lastly, we increased the number of predictions functions from 100 to 200 hyperplanes and increased the number
of abstention regions from 21 to 41. We find that the performance of all algorithms improves slightly on some datasets.
Figure 11 shows the results of these new experiments for the same set of datasets and abstention costs as in the main part of
the paper.
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Figure 4: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the eye dataset.
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Figure 5: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the HIGGS dataset.
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Figure 6: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the skin, cod-rna, guide, ijcnn dataset.
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Figure 7: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the CIFAR, covtype, and phish dataset.
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Figure 8: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. The results are for the eye dataset.
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Figure 9: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. The results are for the HIGGS dataset.
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Figure 10: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. We show the results for two abstention costs for each dataset. Starting from the top left, the plots are
for the skin , cod-rna, guide, ijcnn, CIFAR, covtype and phish datasets.

Figure 11: In this set of experiments, we increased the number of abstention functions from 21 to 41 and the number of
hyperplanes from 100 to 200. The figures shows a graph of the averaged loss with standard deviations as a function of t (log
scale). The algorithms we tested include UCB-ABS, UCB-GT, UCB-NT, UCB, and FS. Starting from the left, the datasets are
as follows: eye, HIGGS , skin, and covtype.


