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Table 5. Key notation.

Symbol Description

m Number of constraints in Equation 1
`0 Objective loss function in Equation 1
`i ith constraint loss function in Equation 1
˜̀
i ith proxy-constraint loss function (corresponding to `i) in Definition 1
x Feature vector for an example
X Space of feature vectors x ∈ X
D Data distribution over feature vectors x ∈ X
S(trn) An i.i.d. training sample from D
S(val) An i.i.d. “validation” sample from D
θ Parameter vector defining a model
Θ Space of parameter vectors (θ ∈ Θ)
Θ̂ Subset of Θ consisting of the sequence of algorithm outputs θ(1), . . . , θ(T )

θ̄ Random variable over Θ̂ defining a stochastic model (Theorems 1 and 2)
∆m The m-probability-simplex, i.e. the set of all p ∈ Rm+1

+ for which
∑m+1
i=1 pi = 1

λ Vector of Lagrange-multiplier-like “hyperparameters” (Definition 1)
Λ Space of Lagrange-multiplier-like “hyperparameter” vectors (λ ∈ Λ := ∆m ⊆ Rm+1

+ )
λ̄ Average “hyperparameters” λ̄ := (

∑T
t=1 λ

(t))/T (Theorems 1 and 2)
λ̄1 First coordinate of λ̄, measuring our “belief” that θ̄ is feasible
Lθ In-expectation proxy-Lagrangian function minimized by θ-player (Definition 4)
Lλ In-expectation proxy-Lagrangian function maximized by λ-player (Definition 4)
L̂θ Empirical proxy-Lagrangian function minimized by θ-player (Definition 1)
L̂λ Empirical proxy-Lagrangian function maximized by λ-player (Definition 1)
G̃(trn)(Θ) Generalization bound for `0, ˜̀

1, . . . , ˜̀
m on S(trn) for θ ∈ Θ (Definition 2)

G(val)(Θ̂) Generalization bound for `1, . . . , `m on S(val) for θ ∈ Θ̂ (Definition 2)
Oρ Bayesian oracle of Definition 3
ρ Additive approximation of the Bayesian oracle of Definition 3
Cr A radius-r external covering of Λ := ∆m ⊆ Rm+1

+ w.r.t. the 1-norm
r Radius of the covering Cr
ΘCr Oracle evaluations at the covering centers (ΘCr := {Oρ(L̂θ(·, λ̃)) : λ̃ ∈ Cr})
T Number of iterations performed in Algorithms 1, 3 and 4
Tλ Number of iterations performed in the outer loop of Algorithm 2
Tθ Number of iterations performed in the inner loop of Algorithm 2
ηλ Step size associated with λ-player in Algorithms 1, 2, 3 and 4
ηθ Step size associated with θ-player in Algorithms 3 and 4
M A left-stochastic (m+ 1)× (m+ 1) matrix
M Space of all left-stochastic (m+ 1)× (m+ 1) matrices (M ∈M)
γ Maximum margin by which the proxy-constraints can be satisfied in Theorems 1 and 2
µ Strong convexity parameter of `0, ˜̀

1, . . . , ˜̀
m in Theorem 2

L Lipschitz constant of `1, . . . , `m in Theorem 2
B`0 Upper bound on b0 − a0, where range(`0) = [a0, b0]
B` Upper bound on bi − ai for all i ∈ [m], where range(`i) = [ai, bi]

B˜̀ Upper bound on |`(x; θ)| for all ` ∈ {`0, ˜̀
1, . . . , ˜̀

m}
B∆̌ Upper bound on the 2-norms of subgradients of L̂θ w.r.t. θ
B∆ Upper bound on the∞-norms of gradients of L̂λ w.r.t. λ
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Algorithm 3 “Practical” algorithm for optimizing the empirical proxy-Lagrangian game (Definition 1). This is essentially
Algorithm 2 of Cotter et al. (2019), differing only in that it is applied to the two-dataset formulation of Definition 1.

PracticalTwoDataset
(
L̂θ, L̂λ : Θ×∆m → R, T ∈ N, ηθ, ηλ ∈ R+

)
:

1 Initialize θ(1) = 0 // Assumes 0 ∈ Θ
2 Initialize M (1) ∈ R(m+1)×(m+1) with Mi,j = 1/ (m+ 1)
3 For t ∈ [T ]:
4 Let λ(t) = fixM (t) // fixed point of M (t), i.e. a stationary distribution
5 Let ∆̌

(t)
θ be a stochastic subgradient of L̂θ

(
θ(t), λ(t)

)
w.r.t. θ

6 Let ∆
(t)
λ be a stochastic gradient of L̂λ

(
θ(t), λ(t)

)
w.r.t. λ

7 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌(t)

θ

)
8 Update M̃ (t+1) = M (t) � . exp

(
ηλ∆

(t)
λ

(
λ(t)
)T)

// ∆λT is an outer product; � and . exp are element-wise

9 Project M (t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

for i ∈ [m+ 1] // Column-wise projection w.r.t. KL divergence

10 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

Algorithm 4 “Practical” algorithm for optimizing a variant of the standard Lagrangian game, modified to support proxy
constraints and two datasets. Here, instead of using the proxy-Lagrangian formulation of Definition 1, we take L̂θ :=

Ex∼S(trn)

[
`0(x; θ) +

∑m
i=1 λi

˜̀
i(x; θ)

]
and L̂λ := Ex∼S(val) [`0(x; θ) +

∑m
i=1 λi`i(x; θ)], with λ ∈ Λ := Rm+ . Compared

to Algorithm 3, this algorithm is further from those for which we can prove theoretical results (Algorithms 1 and 2), but is
much closer to the Lagrangian-based approach of Agarwal et al. (2018). We include it to demonstrate that our two-dataset
proposal works as a heuristic.

LagrangianTwoDataset
(
L̂θ, L̂λ : Θ× Rm+ → R, T ∈ N, ηθ, ηλ ∈ R+

)
:

1 Initialize θ(1) = 0, λ(1) = 0 // Assumes 0 ∈ Θ
2 For t ∈ [T ]:
3 Let ∆̌

(t)
θ be a stochastic subgradient of L̂θ

(
θ(t), λ(t)

)
w.r.t. θ

4 Let ∆
(t)
λ be a stochastic gradient of L̂λ

(
θ(t), λ(t)

)
w.r.t. λ

5 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌(t)

θ

)
// Projected SGD updates (w.r.t. the Euclidean norm) . . .

6 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// . . .

7 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

A. Glossary
(External) Regret: Suppose we have a sequence of losses `t : Θ → R that we wish to minimize, and an algorithm that
produces a sequence θ(1), . . . , θ(T ) ∈ Θ. We can measure the performance of this algorithm via its external regret:

R =

T∑
t=1

`t

(
θ(t)
)
− min
θ∗∈Θ

T∑
t=1

`t (θ∗)

External regret is the difference between the total loss of the sequence generated by the algorithm, and that of the best
element of Θ, chosen with the benefit of hindsight.

Swap Regret: To define swap regret, we must adjust the above setting slightly. In particular, we will assume that at each
step we may select from a finite number of choices—we’ll call this number m—and define each `t ∈ Rm as a vector for
which its ith element is the loss associated with the ith choice. The algorithm we are evaluating will be assumed to produce
a sequence of probability vectors p(1), . . . , p(T ) ∈ ∆m−1 ⊆ Rm+ , for which the external regret would be:

R =

T∑
t=1

〈
p(t), `t

〉
− min
p∗∈∆m−1

T∑
t=1

〈p∗, `t〉
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Unlike external regret, which compares to the best constant strategy, swap regret compares to a strategy that varies in a
particular way: we can retroactively decide that the probability mass that the p(t) sequence assigned to the ith element
should instead be assigned to the i′th, and the jth to the j′th, and so on. Mathematically, swap regret can be defined as:

R =

T∑
t=1

〈
p(t), `t

〉
− min
M∈M

T∑
t=1

〈
Mp(t), `t

〉
here,M⊆ Rm×m is the space of left-stochastic matrices.

Pure Equilibrium: Consider a two-player game with payoff functions Lθ : Θ×Λ→ R and Lλ : Θ×Λ→ R. We’ll adopt
the convention that the first player wishes to choose θ to minimize Lθ, while the second wishes to choose λ to maximize
Lλ. If Lθ = Lλ, then the game is said to be zero-sum. Otherwise, it is non-zero-sum. In either case, a pure equilibrium is
a pair θ∗, λ∗ ∈ Θ × Λ satisfying some properties (depending on the type of equilibrium). For example, for a pure Nash
equilibrium, both players suffer no external regret:

Lθ (θ∗, λ∗) ≤Lθ (θ, λ∗)

Lλ (θ∗, λ∗) ≥Lλ (θ∗, λ)

the above holding for all θ ∈ Θ and λ ∈ Λ. In words, the θ-player cannot improve upon θ∗, and the λ-player cannot improve
upon λ∗.

Mixed Equilibrium: A mixed equilibrium differs from a pure equilibrium in that, instead of being a pair of elements taken
from Θ× Λ, it is defined either as a joint distribution P supported on Θ× Λ, or—when possible—as a pair of marginal
distributions Pθ and Pλ supported on Θ and Λ, respectively (with P := Pθ × Pλ). For example, a mixed Nash equilibrium
is a pair of marginal distributions for which both players suffer no external regret:

Eθ∗∼Pθ,λ∗∼Pλ [Lθ (θ∗, λ∗)] ≤Eλ∗∼Pλ [Lθ (θ, λ∗)]

Eθ∗∼Pθ,λ∗∼Pλ [Lθ (θ∗, λ∗)] ≥Eθ∗∼Pθ [Lθ (θ∗, λ)]

the above holding, as before, for all θ ∈ Θ and λ ∈ Λ.

Coarse Correlated Equilibrium: A coarse correlated equilibrium is a joint distribution P for which both players suffer
no external regret:

Eθ∗,λ∗∼P [Lθ (θ∗, λ∗)] ≤Eθ∗,λ∗∼P [Lθ (θ, λ∗)]

Eθ∗,λ∗∼P [Lθ (θ∗, λ∗)] ≥Eθ∗,λ∗∼P [Lθ (θ∗, λ)]

the above holding, once again, for all θ ∈ Θ and λ ∈ Λ. A coarse correlated equilibrium is weaker than a mixed Nash
equilibrium: the former is a joint distribution P supported on Θ× Λ, while the latter can be decomposed as the product of
two marginal distributions (P := Pθ × Pλ).

In Theorems 1 and 2, the relevant type of mixed equilibrium—which does not have an established name ¶—is slightly
stronger than a coarse correlated equilibrium, but is still easier to find than a mixed Nash equilibrium: it is a joint distribution
P for which the θ-player suffers no external regret, while the λ-player suffers no swap regret. For further details, see
Theorem 3 in Appendix E, or Theorem 8 of Cotter et al. (2019).

B. Examples of Constraints
In this appendix, we’ll provide some examples of constrained optimization problems in the form of Equation 1.

B.1. Neyman-Pearson

The first example we’ll consider is Neyman-Pearson classification (Davenport et al., 2010; Gasso et al., 2011). Imagine that
we wish to learn a classification function f : X ×Θ→ R parameterized by θ, with the goal being to minimize the false

¶We sometimes call it a semi-coarse correlated equilibrium, since a correlated equilibrium is a joint distribution for which all players
suffer no swap regret.



Improving Generalization for Fairness (and Other Data-Dependent) Constraints

positive rate, subject to the constraint that the false negative rate be at most 10%:

minimize
θ∈Θ

Ex,y|y=−1 [1 {f (x; θ) ≥ 0}]

s.t. Ex,y|y=1 [1 {f (x; θ) ≤ 0}] ≤ 0.1

One way to convert this problem into the form of Equation 1 is to define D+ and D− as the marginal distributions over xs
for which y = +1 and y = −1 (respectively), and take D := D+ × D− so that D is a distribution over pairs of feature
vectors, the first having a positive label, and the second a negative label. Defining `0 (x+, x−; θ) := 1 {f (x−) ≥ 0} and
`1 (x+, x−; θ) := 1 {f (x+) ≤ 0} − 0.1 puts the original Neyman-Pearson problem in the form of Equation 1.

In practice, the fact that `0 and `1 are defined in terms of indicator functions, and are therefore discontinuous, will be prob-
lematic. To fix this, using the formulation of Definition 1, one could instead define `0 (x+, x−; θ) := max {0, 1 + f (x−)}
as a hinge upper bound on the false positive rate, and leave `1 as-is while defining the corresponding proxy-constraint to be
˜̀
1 (x+, x−; θ) := max {0, 1− f (x+)}.

B.2. Equal Opportunity

The second example we’ll consider is a fairness-constrained problem. As before, we’ll take f : X × Θ → R to be a
classification function, but we’ll imagine that each x ∈ X contains a feature xk ∈ {1, 2, 3} indicating to which of three
protected classes the corresponding example belongs. We will seek to minimize the overall error rate, subject to the
constraint that, for each of the three protected classes, the false negative rate is at most 110% of the false negative rate across
all three classes (this is essentially an equal opportunity constraint (Hardt et al., 2016)):

minimize
θ∈Θ

Ex,y [1 {yf (x; θ) ≤ 0}]

s.t.
∀i∈{1,2,3}

Ex,y|y=1∧xk=i [1 {f (x; θ) ≤ 0}] ≤ 1.1 · Ex,y|y=1 [1 {f (x; θ) ≤ 0}]

While we could use the same approach as in the Neyman-Pearson example, i.e. taking marginals and crossing them to define
a data distribution over tuples of examples, we’ll instead take D to be the data distribution over X × {±1} pairs, and use the
indicator feature xk to define:

`0 (x, y; θ) :=1 {yf (x; θ) ≤ 0}

`i (x, y; θ) :=
1{y = 1 ∧ xk = i}1 {f (x; θ) ≤ 0}

Pr{y = 1 ∧ xk = i | x, y ∼ D}
− 1.1 · 1{y = 1}1 {f (x; θ) ≤ 0}

Pr{y = 1 | x, y ∼ D}

for all i ∈ {1, 2, 3}, where we assume that the probabilities in the denominators of the ratios defining `i are constants known
a priori.

As in the Neyman-Pearson example, in practice the indicators in the objective function could be replaced with differentiable
upper bounds, and a differentiable proxy-constraint ˜̀

i could be introduced for each `i.

C. Shrinking
Cotter et al. (2019) introduced a procedure for “shrinking” the support size of a θ̄. When adapted to our setting, the first step
is to evaluate the objective and constraints for every iterate (in practice, this is overkill; one should subsample the iterates):

~̀
0

(t)
=

1∣∣S(trn)
∣∣ ∑
x∈S(trn)

`0

(
x; θ(t)

)
~̀
i

(t)
=

1∣∣S(val)
∣∣ ∑
x∈S(val)

`i

(
x; θ(t)

)
Next, we optimize a linear program (LP) that seeks a distribution p over Θ̂ that minimizes the objective while violating no
constraint by more than ε:

min
p∈∆T−1⊆RT+

〈
p, ~̀0

〉
s.t.
∀i∈[m]

〈
p, ~̀i

〉
≤ ε
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Figure 1. Results of the experiment of Appendix D, using Algorithm 3 on a linear model. The left-hand plot demonstrates both that
overfitting increases as σ decreases, as expected, and that our model performs worse than the baseline, in terms of accuracy. In the
right-hand plot, however, we can see that our approach generalizes better on the constraints (the two red curves are closer together than the
two blue ones), and also does a better job of satisfying the constraints on the testing set (the solid red curve is below the solid blue one).

Notice that the p ∈ ∆T−1 condition adds several implicit simplex constraints to this LP. The key to this procedure is that, as
Cotter et al. (2019) show, every vertex p of this linear program has at most m+ 1 nonzero elements, where m is the number
of constraints.

In particular, if ε is chosen to be the maximum validation constraint violation of the “original” stochastic classifier θ̄, then
an optimal vertex p∗ will have a training objective function value and maximum validation constraint violation that are no
larger than those of θ̄, and p∗ will be supported on only m+ 1 θ(t)s. Furthermore, since the resulting stochastic classifier is
still supported on a subset of Θ̂, the generalization definitions of Section 3.1 apply to it just as well as they did to θ̄.

While it would be possible to provide optimality and feasibility guarantees for the result of this “shrinking” procedure, we
will only use it in our experiments (Section 5). There, instead of taking the LP’s ε parameter to be the maximum validation
constraint violation of θ̄, we follow Cotter et al. (2019)’s suggestion to use an outer bisection search to find the smallest
ε ≥ 0 for which the LP is feasible.

D. Simulated-data Experiments
These experiments are performed on a simulated binary classification problem designed to be especially prone to overfitting,
and is intended to explore the relationship between generalization and model complexity in the context of our proposed
approach.

To generate the dataset, we first draw n = 1000 points z1, . . . , zn from two overlapping Gaussians in R2, and another
n points w1, . . . , wn from the same distribution. For each i, we let the classification label yi indicate which of the
two Gaussians zi was drawn from, and generate a feature vector xi ∈ X := Rn such that the jth feature satisfies
xi,j := exp(−‖zi − wj‖2 /2σ2). Our results are averaged over ten runs, with different random splits of the data into
equally-sized training, validation and testing datasets.

The classification task is learn a classifier on X that determines which of the two Gaussian distributions generated the
example, with the model’s recall constrained to be at least 97%. The σ parameter partly controls the amount of overfitting:
as σ → 0, a linear classifier on X approaches a 1-nearest neighbor classifier over w1, . . . , wn, which one would expect to
overfit badly.

We trained four sets of models using Algorithm 3: linear, and one-hidden-layer neural networks with 5, 10 and 100 hidden
ReLU units. We also varied σ between 0 and 1. Figures 1 and 2 show that our approach consistently comes closer to
satisfying the constraints on the testing set—and the training and testing constraint violations are much closer to each other
for our approach than for the baseline—but that, as one would expect, this comes at a slight cost in testing accuracy. In light
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5 Hidden Units
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Figure 2. Same as Figure 1, but for one-hidden-layer neural networks with 5, 10 and 100 hidden units. The results follow the same general
trend as those of Figure 1, but, just as one would expect, the benefits of our proposed two-dataset approach become more pronounced as
the model complexity increases.
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of the fact that our theoretical results (Section 4) bound constraint generalization independently of model complexity, it’s
unsurprising that our approach is most advantageous for the most complex models (100-hidden unit), and less so for the
simplest (linear).

E. Proofs
We’ll begin by reproducing a definition from Cotter et al. (2019), which introduced the idea of the in-expectation proxy-
Lagrangian game:
Definition 4. (Definition 2 of Cotter et al. (2019)) Given proxy loss functions ˜̀

i (x; θ) ≥ `i (x; θ) for all x ∈ X and
i ∈ [m], the proxy-Lagrangians Lθ,Lλ : Θ× Λ→ R of Equation 1 are:

Lθ (θ, λ) :=Ex∼D

[
λ1`0 (x; θ) +

m∑
i=1

λi+1
˜̀
i (x; θ)

]

Lλ (θ, λ) :=Ex∼D

[
m∑
i=1

λi+1`i (x; θ)

]

where Λ := ∆m ⊆ Rm+1
+ is the m-probability-simplex.

This definition differs from Definition 1 (in Section 3) in that the former is the in-expectation version of the latter, which
additionally is written in terms of separate i.i.d. training and validation sets.

Theorem 2 of Cotter et al. (2019) characterizes the optimality and feasibility properties of a particular type of Φ-correlated
equilibrium of Definition 4. We adapt it to our setting, giving the analogous result for such an equilibrium of Definition 1:
Theorem 3. DefineM as the set of all left-stochastic (m+ 1)×(m+ 1) matrices, Λ := ∆m ⊆ Rm+1

+ as them-probability-
simplex, and assume that each ˜̀

i upper bounds the corresponding `i. Let θ(1), . . . , θ(T ) ∈ Θ and λ(1), . . . , λ(T ) ∈ Λ be
sequences satisfying:

1

T

T∑
t=1

L̂θ
(
θ(t), λ(t)

)
− inf
θ∗∈Θ

1

T

T∑
t=1

L̂θ
(
θ∗, λ(t)

)
≤εθ (8)

max
M∗∈M

1

T

T∑
t=1

L̂λ
(
θ(t),M∗λ(t)

)
− 1

T

T∑
t=1

L̂λ
(
θ(t), λ(t)

)
≤ελ

Define Θ̂ :=
{
θ(1), . . . , θ(T )

}
. Let θ̄ be a random variable taking values from Θ̂, defined such that θ̄ = θ(t) with probability

λ
(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=

(∑T
t=1 λ

(t)
)
/T . Then θ̄ is nearly-optimal in expectation:

Eθ̄,x∼D
[
`0
(
x; θ̄
)]
≤ inf
θ∗∈Θ:∀i.Ex∼D[˜̀i(x;θ∗)]≤0

Ex∼D [`0 (x; θ∗)] (9)

+
1

λ̄1

(
εθ + ελ + 2G̃(trn)(Θ) +G(val)(Θ̂)

)
and nearly-feasible:

max
i∈[m]

Eθ̄,x∼D
[
`i
(
x; θ̄
)]
≤ ελ
λ̄1

+G(val)(Θ̂) (10)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. Ex∼D [`i (x; θ′)] ≤ −γ for all
i ∈ [m]), then:

λ̄1 ≥
γ − εθ − ελ − 2G̃(trn)(Θ)−G(val)(Θ̂)

γ +B`0
(11)

where B`0 ≥ supθ∈Θ Ex∼D [`0 (x; θ)]− infθ∈Θ Ex∼D [`0 (x; θ)] is a bound on the range of the objective loss.

Proof. This proof closely follows those of Theorem 4 and Lemma 7 in Cotter et al. (2019)—the only addition is that, in
this proof, we use the empirical proxy-Lagrangian formulation with separate training and validation datasets (Definition 1),
instead of the in-expectation proxy-Lagrangian (Definition 4), and therefore need to account for generalization.
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Optimality: If we choose M∗ to be the matrix with its first row being all-one, and all other rows being all-zero, then
L̂λ (θ,M∗λ) = 0, which shows that the first term in the LHS of the second line of Equation 8 is nonnegative. Hence:

−Et∼[T ]

[
L̂λ
(
θ(t), λ(t)

)]
≤ ελ

so by the definitions of L̂λ (Definition 1) and G(val)(Θ̂) (Definition 2), and the facts that ˜̀
i ≥ `i and λ(t) ∈ ∆m:

Et∼[T ],x∼D

[
m∑
i=1

λ
(t)
i+1

˜̀
i

(
x; θ(t)

)]
≥ −ελ −G(val)(Θ̂)

Notice that L̂θ is linear in λ, so the first line of Equation 8, combined with the definition of G̃(trn)(Θ), becomes:

Et∼[T ],x∼D

[
λ

(t)
1 `0

(
x; θ(t)

)
+

m∑
i=1

λ
(t)
i+1

˜̀
i

(
x; θ(t)

)]
− inf
θ∗∈Θ

Ex∼D

[
λ̄1`0 (x; θ∗) +

m∑
i=1

λ̄i+1
˜̀
i (x; θ∗)

]
≤εθ + 2G̃(trn)(Θ)

Combining the above two results:

Et∼[T ],x∼D

[
λ

(t)
1 `0

(
x; θ(t)

)]
− inf
θ∗∈Θ

Ex∼D

[
λ̄1`0 (x; θ∗) +

m∑
i=1

λ̄i+1
˜̀
i (x; θ∗)

]
(12)

≤εθ + ελ + 2G̃(trn)(Θ) +G(val)(Θ̂)

Choose θ∗ to be the optimal solution that satisfies the proxy constraints, so that Ex∼D
[
˜̀
i (x; θ∗)

]
≤ 0 for all i ∈ [m]. Then:

Et∼[T ],x∼D

[
λ

(t)
1 `0

(
x; θ(t)

)]
− Ex∼D

[
λ̄1`0 (x; θ∗)

]
≤ εθ + ελ + 2G̃(trn)(Θ) +G(val)(Θ̂)

which is the optimality claim.

Feasibility: We’ll begin by simplifying our notation: define g1 (θ) := 0 and gi+1 (θ) := Ex∼S(val) [`i (x; θ)] for i ∈ [m], so
that L̂λ (θ, λ) = 〈λ, g: (θ)〉. Consider the first term in the LHS of the second line of Equation 8:

max
M∗∈M

Et∼[T ]

[
L̂λ
(
θ(t),M∗λ(t)

)]
= max
M∗∈M

Et∼[T ]

[〈
M∗λ(t), g:

(
θ(t)
)〉]

= max
M∗∈M

Et∼[T ]

m+1∑
i=1

m+1∑
j=1

M∗j,iλ
(t)
i gj

(
θ(t)
)

=

m+1∑
i=1

max
M∗:,i∈∆m

m+1∑
j=1

Et∼[T ]

[
M∗j,iλ

(t)
i gj

(
θ(t)
)]

=

m+1∑
i=1

max
j∈[m+1]

Et∼[T ]

[
λ

(t)
i gj

(
θ(t)
)]

where we used the fact that, sinceM∗ is left-stochastic, each of its columns is a (m+ 1)-dimensional multinoulli distribution.
For the second term in the LHS of the second line of Equation 8, we can use the fact that g1 (θ) = 0:

Et∼[T ]

[
m+1∑
i=2

λ
(t)
i gi

(
θ(t)
)]
≤
m+1∑
i=2

max
j∈[m+1]

Et∼[T ]

[
λ

(t)
i gj

(
θ(t)
)]

Plugging these two results into the second line of Equation 8, the two sums collapse, leaving:

max
i∈[m+1]

Et∼[T ]

[
λ

(t)
1 gi

(
θ(t)
)]
≤ ελ
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Substituting the definitions of gi and G(val)(Θ̂) (since the gis are defined on S(val), but we want our result to hold on D)
then yields the feasibility claim.

Bound on λ̄1: Choosing θ∗ = θ′ in Equation 12 (recall that θ′ satisfies all of the proxy constraints with margin γ) and
substituting the definition of B`0 :

εθ + ελ + 2G̃(trn)(Θ) +G(val)(Θ̂) ≥Et∼[T ],x∼D

[
λ

(t)
1 `0

(
x; θ(t)

)
− λ(t)

1 `0 (x; θ′)
]

+
(
1− λ̄1

)
γ

≥− λ̄1B`0 +
(
1− λ̄1

)
γ

Solving for λ̄1 yields the claim.

Before moving on to the convergence and generalization properties of our actual algorithms, we need to state some (fairly
standard) elementary results:
Definition 5. We say that Cr ⊆ Rm+1 is a radius-r external covering of Λ := ∆m ⊆ Rm+1

+ w.r.t. the 1-norm if for every

λ ∈ Λ there exists a λ̃ ∈ Cr for which
∥∥∥λ− λ̃∥∥∥

1
≤ r. Notice that we do not require Cr to be a subset of Λ—this is why it’s

an external covering.
Lemma 1. Assuming that r ≤ 1, there exists a radius-r external covering of Λ := ∆m ⊆ Rm+1

+ w.r.t. the 1-norm of size no
larger than (5/r)

m.

Proof. Consider the m-dimensional unit ball B̃ :=
{
λ̃ ∈ Rm :

∥∥∥λ̃∥∥∥
1
≤ 1
}

w.r.t. the 1-norm (note that we could instead

consider only the positive orthant, which would improve the constant in the overall result). There exists a radius-r/2
covering C̃r ⊆ Rm of B̃ with

∣∣∣C̃r∣∣∣ ≤ (1 + 4/r)
m ≤ (5/r)

m (Bartlett, 2013).

Define Cr ⊆ Rm+1 as:

Cr =

{[
λ̃

1−
∥∥∥λ̃∥∥∥

1

]
: λ̃ ∈ C̃r

}
Notice that we do not necessarily have that Cr ⊆ ∆m, i.e. this will be an external covering.

From any λ ∈ ∆m, we can define λ′ ∈ Rm+ by dropping the last coordinate of λ, and we’ll have that ‖λ′‖1 ≤ ‖λ‖1 = 1, so

there will exist a λ̃ ∈ C̃r such that
∥∥∥λ̃− λ′∥∥∥

1
≤ r/2, which implies that the corresponding element of Cr is r-far from λ,

showing that Cr is a radius-r covering of ∆m w.r.t. the 1-norm.

Lemma 2. Let S be an i.i.d. sample from a distribution D supported on X , and Θ̂ ⊆ Θ the finite set of permitted model
parameters, which defines a a finite function class (Θ̂ may be a random variable, but must be independent of S). Suppose
that ` : X ×Θ→ [a, b] with B` := b− a. Then:∣∣∣∣∣ 1

|S|
∑
x∈S

` (x; θ)− Ex∼D [` (x; θ)]

∣∣∣∣∣ < B`

√√√√ ln
(

2
∣∣∣Θ̂∣∣∣ /δ)

2 |S|

for all θ ∈ Θ̂, with probability at least 1− δ over the sampling of S.

Proof. Allowing Θ̂ to be a random variable independent of S, instead of a constant set, doesn’t significantly change the
standard proof (e.g. Srebro, 2016) . By Hoeffding’s inequality:

Pr

{∣∣∣∣∣ 1

|S|
∑
x∈S

` (x; θ)− Ex∼D [` (x; θ)]

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

(
−2 |S| ε2

B2
`

)
the above holding for any θ ∈ Θ. Since Θ̂ is independent of S, we can apply the union bound over all θ ∈ Θ̂:

Pr

{
∃θ ∈ Θ̂.

∣∣∣∣∣ 1

|S|
∑
x∈S

` (x; θ)− Ex∼D [` (x; θ)]

∣∣∣∣∣ ≥ ε
}
≤ 2 |θ| exp

(
−2 |S| ε2

B2
`

)
Rearranging terms yields the claimed result.
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E.1. Algorithm 1

Lemma 3. If we take ηλ :=
√

(m+ 1) ln (m+ 1) /TB2
∆, then the result of Algorithm 1 satisfies the conditions of

Theorem 3 with:

εθ =ρ+ 2rB˜̀

ελ =2B∆

√
(m+ 1) ln (m+ 1)

T

where B˜̀≥ |` (x, θ)| for all ` ∈
{
`0, ˜̀

1, . . . , ˜̀
m

}
, and B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
∞

is a bound on the gradients.

Proof. Since Cr is a radius-r external covering of Λ := ∆m ⊆ Rm+1
+ w.r.t. the 1-norm, we must have that

∥∥∥λ̃(t) − λ(t)
∥∥∥

1
≤

r, which implies by Definition 1 that: ∣∣∣L̂θ (θ, λ̃(t)
)
− L̂λ

(
θ, λ(t)

)∣∣∣ ≤ rB˜̀

the above holding for all θ ∈ Θ, and all t. In particular, this implies that:

L̂θ
(
θ(t), λ(t)

)
≤L̂θ

(
θ(t), λ̃(t)

)
+ rB˜̀

≤ inf
θ∗∈Θ

L̂θ
(
θ∗, λ̃(t)

)
+ ρ+ rB˜̀

≤ inf
θ∗∈Θ

L̂θ
(
θ∗, λ(t)

)
+ ρ+ 2rB˜̀

Therefore:

1

T

T∑
t=1

L̂θ
(
θ(t), λ(t)

)
≤ 1

T

T∑
t=1

inf
θ∗∈Θ

L̂θ
(
θ∗, λ(t)

)
+ ρ+ 2rB˜̀

≤ inf
θ∗∈Θ

1

T

T∑
t=1

L̂θ
(
θ∗, λ(t)

)
+ ρ+ 2rB˜̀

so the first condition of Theorem 3 is satisfied with the claimed εθ.

The second condition, on ελ, follows immediately from Lemma 8 of Appendix C.1 of Cotter et al. (2019), taking m̃ =
m+ 1.

Lemma 4. If we take Θ̂ :=
{
θ(1), . . . , θ(T )

}
as in Theorem 3, where θ(1), . . . , θ(T ) are the result of Algorithm 1, then with

probability 1− δ over the sampling of S(val):

G(val)(Θ̂) < B`

√
ln (2m |Cr| /δ)

2
∣∣S(val)

∣∣
where B` ≥ maxi∈[m] (bi − ai) assuming that the range of each `i is the interval [ai, bi].

Proof. Since each θ(t) is uniquely associated with a λ̃(t) ∈ Cr (Definition 3), we will have that Θ̂ ⊆ ΘCr , where:

ΘCr :=
{
Oρ
(
L̂θ
(
·, λ̃
))

: λ̃ ∈ Cr
}

Because the oracle call defining ΘCr depends only on L̂θ, which itself depends only on S(trn), we can apply Lemma 2 to
ΘCr , yielding that, for each i ∈ [m], the following holds with probability δ/m for all θ ∈ ΘCr :∣∣∣∣∣∣ 1∣∣S(val)

∣∣ ∑
x∈S(val)

`i (x; θ)− Ex∼D [`i (x; θ)]

∣∣∣∣∣∣ < B`

√
ln (2m |ΘCr | /δ)

2
∣∣S(val)

∣∣
The claimed result on G(val)(Θ̂) then follows from the union bound and the facts that Θ̂ ⊆ ΘCr and |ΘCr | = |Cr|.
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Theorem 1. Given any ε > 0, there exists a covering Cr such that, if we take T ≥ 4B2
∆ (m+ 1) ln (m+ 1) /ε2 and

ηλ =
√

(m+ 1) ln (m+ 1) /TB2
∆, where B∆ ≥ maxt∈[T ]

∥∥∥∆
(t)
λ

∥∥∥
∞

is a bound on the gradients, then the following hold,

where Θ̂ :=
{
θ(1), . . . , θ(T )

}
is the set of results of Algorithm 1.

Optimality and Feasibility: Let θ̄ be a random variable taking values from Θ̂, defined such that θ̄ = θ(t) with probability
λ

(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=

(∑T
t=1 λ

(t)
)
/T . Then θ̄ is nearly-optimal in expectation:

Eθ̄,x∼D
[
`0
(
x; θ̄
)]
≤ Ex∼D [`0 (x; θ∗)] +

1

λ̄1

(
ρ+ 2ε+ 2G̃(trn)(Θ) +G(val)(Θ̂)

)
(3)

where θ∗ minimizes Ex∼D [`0 (x; ·)] subject to the proxy-constraints Ex∼D
[
˜̀
i (x; θ∗)

]
≤ 0. It is also nearly-feasible:

max
i∈[m]

Eθ̄,x∼D
[
`i
(
x; θ̄
)]
≤ ε

λ̄1
+G(val)(Θ̂) (4)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. Ex∼D [`i (x; θ′)] ≤ −γ for all
i ∈ [m]), then:

λ̄1 ≥
1

γ +B`0

(
γ − ρ− 2ε− 2G̃(trn)(Θ)−G(val)(Θ̂)

)
(5)

where B`0 ≥ supθ∈Θ Ex∼D [`0 (x; θ)]− infθ∈Θ Ex∼D [`0 (x; θ)] is a bound on the range of the objective loss.

Generalization: With probability 1− δ over the sampling of S(val):

G(val)(Θ̂) < B`

√
m ln

(
10B˜̀/ε

)
+ ln (2m/δ)

2
∣∣S(val)

∣∣ (6)

where B˜̀≥ |` (x, θ)| for all ` ∈
{
`0, ˜̀

1, . . . , ˜̀
m

}
, and B` ≥ maxi∈[m] (bi − ai) assuming that the range of each `i is the

interval [ai, bi].

Proof. The particular values we choose for T and ηλ come from Lemma 3, taking r = ε/2B˜̀, εθ = ρ+ 2rB˜̀ = ρ+ ε, and
ελ = ε. The optimality and feasibility results then follow from Theorem 3.

For the bound on G(val)(Θ̂), notice that by Lemma 1, there exists a radius-r covering Cr w.r.t. the 1-norm with |Cr| ≤
(5/r)

m
=
(
10B˜̀/ε

)m
. Substituting this, and the definition of r, into the bound of Lemma 4 yields the claimed bound.

E.2. Algorithm 2

Lemma 5. Suppose that Θ is compact and convex, and that ` (x; θ) is µ-strongly convex in θ for all ` ∈
{
`0, ˜̀

1, . . . , ˜̀
m

}
.

If we take ηλ :=
√

(m+ 1) ln (m+ 1) /TλB2
∆, then the result of Algorithm 2 satisfies the conditions of Theorem 3 with:

εθ =
B2

∆̌
(1 + lnTθ)

2µTθ

ελ =2B∆

√
(m+ 1) ln (m+ 1)

Tλ

where B∆̌ ≥ maxs,t∈[Tθ]×[Tλ]

∥∥∥∆̌
(t,s)
θ

∥∥∥
2

is a bound on the subgradients, and B∆ ≥ maxt∈[Tλ]

∥∥∥∆
(t)
λ

∥∥∥
∞

is a bound on the
gradients.

Proof. By Lemma 1 of Shalev-Shwartz et al. (2011), the fact that L̂θ (θ, λ) is µ-strongly convex in θ (because ` (x; θ) is
µ-strongly convex in θ for ` ∈

{
`0, ˜̀

1, . . . , ˜̀
m

}
, and λ ∈ Λ := ∆m ⊆ Rm+1

+ ), and Jensen’s inequality:

L̂θ
(
θ(t), λ(t)

)
≤ 1

Tθ

Tθ∑
s=1

L̂θ
(
θ̃(t,s), λ(t)

)
≤ min
θ∗∈Θ

L̂θ
(
θ∗, λ(t)

)
+
B2

∆̌
(1 + lnTθ)

2µTθ
(13)
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the above holding for all t. Therefore:

1

T

T∑
t=1

L̂θ
(
θ(t), λ(t)

)
≤ min
θ∗∈Θ

1

T

T∑
t=1

L̂θ
(
θ∗, λ(t)

)
+
B2

∆̌
(1 + lnTθ)

2µTθ

so the first condition of Theorem 3 is satisfied with the claimed εθ.

As in the proof of Lemma 3, the second condition, on ελ, follows immediately from Lemma 8 of Appendix C.1 of Cotter
et al. (2019), taking m̃ = m+ 1.

Lemma 6. In addition to the conditions of Lemma 5, suppose that ` (x; θ) is L-Lipschitz continuous in θ for all ` ∈
{`1, . . . , `m}. If we take Θ̂ :=

{
θ(1), . . . , θ(T )

}
as in Theorem 3, where θ(1), . . . , θ(T ) are the result of Algorithm 2, then

with probability 1− δ over the sampling of S(val):

G(val)(Θ̂) < 2L

√
4rB˜̀

µ
+

2LB∆̌

µ

√
1 + lnTθ

Tθ
+B`

√
ln (2m |Cr| /δ)

2
∣∣S(val)

∣∣
where B˜̀ ≥ |` (x, θ)| for all ` ∈

{
`0, ˜̀

1, . . . , ˜̀
m

}
, B` ≥ maxi∈[m] (bi − ai) assuming that the range of each `i is the

interval [ai, bi], and Cr is a radius-r covering of Λ := ∆m ⊆ Rm+1
+ w.r.t. the 1-norm.

Proof. Define λ̃(t) := argminλ̃∈Cr

∥∥∥λ(t) − λ̃
∥∥∥ for all t. Since Cr is a radius-r covering of Λ := ∆m w.r.t. the 1-norm, we

must have that
∥∥∥λ̃(t) − λ(t)

∥∥∥
1
≤ r, which implies by Definition 1 that:∣∣∣L̂θ (θ, λ̃(t)

)
− L̂λ

(
θ, λ(t)

)∣∣∣ ≤ rB˜̀

the above holding for all θ ∈ Θ, and all t. Take θ(t∗) := argminθ∗∈Θ L̂θ
(
θ∗, λ(t)

)
and θ̃(t∗) := argminθ̃∗∈Θ L̂θ

(
θ̃∗, λ̃(t)

)
.

Then, by the above result and the triangle inequality:∣∣∣L̂θ (θ(t∗), λ(t)
)
− L̂θ

(
θ̃(t∗), λ̃(t)

)∣∣∣ ≤rB˜̀∣∣∣L̂θ (θ(t∗), λ̃(t)
)
− L̂θ

(
θ̃(t∗), λ̃(t)

)∣∣∣ ≤2rB˜̀

so by the fact that L̂θ (θ, λ) is µ-strongly convex in θ for all λ:

∥∥∥θ(t∗) − θ̃(t∗)
∥∥∥

2
≤

√
4rB˜̀

µ

Again by strong convexity, but applied to Equation 13 in the proof of Lemma 5:

∥∥∥θ(t) − θ(t∗)
∥∥∥

2
≤

√
B2

∆̌
(1 + lnTθ)

µ2Tθ

so by the triangle inequality: ∥∥∥θ(t) − θ̃(t∗)
∥∥∥

2
≤

√
4rB˜̀

µ
+

√
B2

∆̌
(1 + lnTθ)

µ2Tθ

and by L-Lipschitz continuity:

∣∣∣`i (x; θ(t)
)
− `i

(
x; θ̃(t∗)

)∣∣∣ ≤ L
√4rB˜̀

µ
+

√
B2

∆̌
(1 + lnTθ)

µ2Tθ

 (14)

the above holding for all t, and all i ∈ [m].
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Define Θ̃ :=
{
θ̃(1∗), . . . , θ̃(T∗)

}
. Observe that since θ̃(t∗) is uniquely associated with a λ̃(t) ∈ Cr, we will have that

Θ̃ ⊆ ΘCr , where:

ΘCr :=

{
argmin
θ̃∗∈Θ

L̂θ
(
θ̃∗, λ̃

)
: λ̃ ∈ Cr

}
Because the argmins defining ΘCr depend only on L̂θ, which itself depends only on S(trn), we can apply Lemma 2 to ΘCr ,
yielding that, for each i ∈ [m], the following holds with probability δ/m for any θ ∈ ΘCr :∣∣∣∣∣∣ 1∣∣S(val)

∣∣ ∑
x∈S(val)

`i (x; θ)− Ex∼D [`i (x; θ)]

∣∣∣∣∣∣ < B`

√
ln (2m |ΘCr | /δ)

2
∣∣S(val)

∣∣
By the union bound, we could instead take the above to hold uniformly for all i ∈ [m] with probability 1− δ. Substituting
Equation 14 and using the facts that Θ̃ ⊆ ΘCr and |ΘCr | = |Cr| yields the claimed result.

Theorem 2. Suppose that Θ is compact and convex, and that ` (x; θ) is µ-strongly convex in θ for all ` ∈{
`0, ˜̀

1, . . . , ˜̀
m

}
. Given any ε > 0, if we take Tθ ≥

(
B2

∆̌
/µε
)

ln
(
B2

∆̌
/µε
)
, Tλ ≥ 4B2

∆ (m+ 1) ln (m+ 1) /ε2 and

ηλ =
√

(m+ 1) ln (m+ 1) /TλB2
∆, where B∆ is as in Theorem 1 and B∆̌ ≥ maxs,t∈[Tθ]×[Tλ]

∥∥∥∆̌
(t,s)
θ

∥∥∥
2

is a bound on

the subgradients, then the following hold, where Θ̂ :=
{
θ(1), . . . , θ(Tλ)

}
is the set of results of Algorithm 1.

Optimality and Feasibility: Let θ̄ be a random variable taking values from Θ̂, defined such that θ̄ = θ(t) with probability
λ

(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=

(∑T
t=1 λ

(t)
)
/Tλ. Then θ̄ is nearly-optimal in expectation:

Eθ̄,x∼D
[
`0
(
x; θ̄
)]
≤ Ex∼D [`0 (x; θ∗)] +

1

λ̄1

(
2ε+ 2G̃(trn)(Θ) +G(val)(Θ̂)

)
where θ∗ minimizes Ex∼D [`0 (x; ·)] subject to the proxy-constraints Ex∼D

[
˜̀
i (x; θ∗)

]
≤ 0. It is also nearly-feasible:

max
i∈[m]

Eθ̄,x∼D
[
`i
(
x; θ̄
)]
≤ ε

λ̄1
+G(val)(Θ̂)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. Ex∼D [`i (x; θ′)] ≤ −γ for all
i ∈ [m]), then:

λ̄1 ≥
1

γ +B`0

(
γ − 2ε− 2G̃(trn)(Θ)−G(val)(Θ̂)

)
where B`0 is as in Theorem 1.

Generalization: If, in addition to the above requirements, ` (x; θ) is L-Lipschitz continuous in θ for all ` ∈ {`1, . . . , `m},
then with probability 1− δ over the sampling of S(val):

G(val)(Θ̂) < B`

√√√√ 2m∣∣S(val)
∣∣ max

{
1, ln

(
160L2B˜̀

∣∣S(val)
∣∣

mµB2
`

)}
+B`

√
ln (2m/δ)

2
∣∣S(val)

∣∣ + 2Lε

√
2

µ
(7)

where B˜̀ and B` are as in Theorem 1.

Proof. The particular values we choose for Tθ, Tλ and ηλ come from Lemma 5, taking εθ = ελ = ε. The optimality and
feasibility results then follow from Theorem 3.

For the bound on G(val)(Θ̂), notice that by Lemma 1, there exists a radius-r external covering Cr w.r.t. the 1-norm with
|Cr| ≤ max {1, (5/r)m}. Substituting into the bound of Lemma 6:

G(val)(Θ̂) <2L

√
4rB˜̀

µ
+

2LB∆̌

µ

√
1 + lnTθ

Tθ
+B`

√
mmax {0, ln (5/r)}+ ln (2m/δ)

2
∣∣S(val)

∣∣
<2L

√
4rB˜̀

µ
+B`

√
mmax {0, ln (5/r)}

2
∣∣S(val)

∣∣ +
2LB∆̌

µ

√
1 + lnTθ

Tθ
+B`

√
ln (2m/δ)

2
∣∣S(val)

∣∣
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Taking r :=
(
mµB2

`

)
/
(
32L2B˜̀

∣∣S(val)
∣∣):

G(val)(Θ̂) <2B`

√
mmax {1, ln (5/r)}

2
∣∣S(val)

∣∣ +
2LB∆̌

µ

√
1 + lnTθ

Tθ
+B`

√
ln (2m/δ)

2
∣∣S(val)

∣∣
<B`

√√√√ 2m∣∣S(val)
∣∣ max

{
1, ln

(
160L2B˜̀

∣∣S(val)
∣∣

mµB2
`

)}

+B`

√
ln (2m/δ)

2
∣∣S(val)

∣∣ +
2LB∆̌

µ

√
1 + lnTθ

Tθ

Substituting the definition of Tθ then yields the claimed result.

F. One-dataset Lagrangian Baseline Approach
In this appendix, we’ll analyze the most natural theoretical baseline for our proposed approach, namely using a single
training dataset, and optimizing the empirical Lagrangian:

L̂ (θ, λ) :=
1∣∣S(trn)
∣∣ ∑
x∈S(trn)

(
`0 (x; θ) +

m∑
i=1

λi`i (x; θ)

)
(15)

This is essentially a minor extension of the approach proposed by Agarwal et al. (2018)—who proposed using the
Lagrangian formulation in the particular case of fair classification—to the slightly more general setting of inequality
constrained optimization.

Theorem 1 of Cotter et al. (2019) characterizes the optimality and feasibility properties of Nash equilibria of the in-
expectation Lagrangian (Equation 2). The analogous result for the empirical Lagrangian of Equation 15 is given in the
following theorem:
Theorem 4. Define Λ =

{
λ ∈ Rm+ : ‖λ‖1 ≤ R

}
, let ˜̀

i := `i for all i ∈ [m], and consider the empirical Lagrangian of
Equation 15. Let θ(1), . . . , θ(T ) ∈ Θ and λ(1), . . . , λ(T ) ∈ Λ be sequences satisfying:

max
λ∗∈Λ

1

T

T∑
t=1

L̂
(
θ(t), λ∗

)
− inf
θ∗∈Θ

1

T

T∑
t=1

L̂
(
θ∗, λ(t)

)
≤ ε (16)

Define θ̄ as a random variable for which θ̄ = θ(t) with probability 1/T , and let λ̄ :=
(∑T

t=1 λ
(t)
)
/T . Then θ̄ is

nearly-optimal in expectation:

Eθ̄,x∼D
[
`0
(
x; θ̄
)]
≤ inf
θ∗∈Θ:∀i.Ex∼D[`i(x;θ∗)]≤0

Ex∼D [`0 (x; θ∗)] + ε+ 2G̃(trn)(Θ)

and nearly-feasible:
max
i∈[m]

Eθ̄,x∼D
[
`i
(
x; θ̄
)]
≤ ε

R−
∥∥λ̄∥∥

1

+ G̃(trn)(Θ)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. Ex∼D [`i (x; θ′)] ≤ −γ for all
i ∈ [m]), then: ∥∥λ̄∥∥

1
≤ ε+B`0
γ − G̃(trn)(Θ)

assuming that γ > G̃(trn)(Θ), where B`0 ≥ supθ∈Θ Ex∼D [`0 (x; θ)]− infθ∈Θ Ex∼D [`0 (x; θ)] is a bound on the range of
the objective loss.

Proof. The empirical Lagrangian is nothing but the in-expectation Lagrangian over the finite training sample S(trn), so by
Theorem 1 of Cotter et al. (2019), θ̄ is nearly-optimal in expectation:

Eθ̄,x∼S(trn)

[
`0
(
x; θ̄
)]
≤ inf
θ∗∈Θ:∀i.E

x∼S(trn) [`i(x;θ∗)]≤0
Ex∼S(trn) [`0 (x; θ∗)] + ε
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and nearly-feasible:
max
i∈[m]

Eθ̄,x∼S(trn)

[
`i
(
x; θ̄
)]
≤ ε

R−
∥∥λ̄∥∥

1

Since θ′ satisfies the constraints with margin γ in expectation, it will satisfy them with margin γ − G̃(trn)(Θ) on the training
dataset, so the same theorem gives the claimed upper-bound

∥∥λ̄∥∥
1
≤ (ε+B`0) /(γ − G̃(trn)(Θ)) when γ > G̃(trn)(Θ).

Notice that the above expectations are taken over the finite training sample S(trn), rather than the data distribution D. To fix
this, we need only define ˜̀

i = `i, and appeal to the definition of G̃(trn)(Θ) (Definition 2), yielding the claimed results.

Here, R is the maximum allowed 1-norm of the vector of Lagrange multipliers (such a bound is necessary for Cotter et al.
(2019)’s proof to work out). Notice that we have assumed that ˜̀

i := `i for all i. This is purely for notational reasons (the
Lagrangian does not involve proxy constraints at all)—it allows us to re-use the definition of G̃(trn)(Θ) (Definition 2) in the
above Theorem, and causes γ to have the same definition here, as it did in Theorems 1 and 2.


