Monge blunts Bayes: Hardness Results for Adversarial Training
— Supplementary Material —

Zac Cranko♠†, Aditya Krishna Menon♥, Richard Nock†♠♣, Cheng Soon Ong†♠, Zhan Shi◊, Christian Walder†♠

†Data61, ♠the Australian National University, ♥Google Research
♣the University of Sydney, ◊University of Illinois at Chicago
firstname.lastname@{data61.csiro.au, anu.edu.au}; zshi22@uic.edu

Abstract
This is the Supplementary Material to Paper ”Monge blunts Bayes: Hardness Results for Adversarial Training”, appearing in the proceedings of ICML 2019.
1 Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary material on proofs</td>
<td>3</td>
</tr>
<tr>
<td>Proof of Theorem ?? and Corollary ??</td>
<td>3</td>
</tr>
<tr>
<td>Proof sketch of Corollary ??</td>
<td>6</td>
</tr>
<tr>
<td>Proof of Theorem ??</td>
<td>6</td>
</tr>
<tr>
<td>Proof of Theorem ??</td>
<td>9</td>
</tr>
<tr>
<td>Proof of Lemma ??</td>
<td>9</td>
</tr>
<tr>
<td>Supplementary material on experiments</td>
<td>10</td>
</tr>
</tbody>
</table>
2 Proof of Theorem ?? and Corollary ??

Our proof assumes basic knowledge about proper losses (see for example Reid & Williamson (2010)). From (Reid & Williamson, 2010, Theorem 1, Corollary 3) and Shuford et al. (1966), \(\ell \) being twice differentiable and proper, its conditional Bayes risk \(L \) and partial losses \(\ell_1 \) and \(\ell_{-1} \) are related by:

\[
-L''(c) = \frac{\ell'_{-1}(c)}{c} = -\frac{\ell'_{1}(c)}{1-c}, \forall c \in (0, 1).
\]

(1)

The weight function (Reid & Williamson, 2010, Theorem 1) being also \(w = -L'' \), we get from the integral representation of partial losses (Reid & Williamson, 2010, eq. (5)),

\[
\ell_1(c) = -\int_c^1 (1-u)L''(u)du,
\]

(2)

from which we derive by integrating by parts and then using the Legendre conjugate of \(-L\),

\[
\ell_1(c) + L(1) = -[(1-u)L'(u)]_c^1 - \int_c^1 L'(u)du + L(1)
\]

\[
= (1-c)L(c) + L(c) - L(1) + L(1)
\]

\[
= -(-L')'(c) + c \cdot (-L')'(c) - (-L)(c)
\]

\[
= -(-L')'(c) + (-L)^*((-L)'(c)).
\]

(3)

(4)

Now, suppose that the way a real-valued prediction \(v \) is fit in the loss is through a general inverse link \(\psi^{-1}: \mathbb{R} \to (0, 1) \). Let

\[
v_{\ell, \psi} = (-L') \circ \psi^{-1}(v).
\]

(5)

Since \((-L')^{-1}(v_{\ell, \psi}) = \psi^{-1}(v) \), the proper composite loss \(\ell \) with link \(\psi \) on prediction \(v \) is the same as the proper composite loss \(\ell' \) with link \((-L)' \) on prediction \(v_{\ell, \psi} \). This last loss is in fact using its canonical link and so is proper canonical (Reid & Williamson, 2010, Section 6.1), (Buja et al., 2005). Letting in this case \(c = (-L)^{-1}(v_{\ell, \psi}) \), we get that the partial loss satisfies

\[
\ell_1(c) = -v_{\ell, \psi} + (-L)^* (v_{\ell, \psi}) - L(1).
\]

(6)

Notice the constant appearing on the right hand side. Notice also that if we see \((5) \) as a Bregman divergence, \(\ell_1(c) = (-L)(1) - (-L)(c) - ((1-c)(-L)'(c) = D_{-L}(1\|c) \), then the canonical link is the function that defines uniquely the dual affine coordinate system of the divergence (Amari & Nagaoka, 2000) (see also Reid & Williamson, 2010, Appendix B).

We can repeat the derivations for the partial loss \(\ell_{-1} \), which yields (Reid & Williamson, 2010, eq. (5)):

\[
\ell_{-1}(c) + L(0) = -\int_0^c uL''(u)du + L(0)
\]

\[
= -[uL'(u)]_0^c + \int_0^c L'(u)du
\]

\[
= -cL'(c) + L(c) - L(0) + L(0)
\]

\[
= c \cdot (-L)'(c) - (-L)(c)
\]

\[
= (-L)^*((-L)'(c)),
\]

(7)

(8)
and using the canonical link, we get this time

$$\ell_{-1}(c) = (-L)^*(v_{\ell,\psi}) - L(0).$$

We get from (6) and (9) the canonical proper composite loss

$$\ell(y, v) = (-L)^*(v_{\ell,\psi}) - \frac{y + 1}{2} \cdot v_{\ell,\psi} - \frac{1}{2} \cdot ((1 - y) \cdot L(0) + (1 + y) \cdot L(1)).$$

Note that for the optimisation of $\ell(y, v)$ for v, we could discount the right-hand side parenthesis, which acts just like a constant with respect to v. Using Fenchel-Young inequality yields the non-negativity of $\ell(y, v)$ as it brings $(-L)^*(v_{\ell,\psi}) - ((y + 1)/2) \cdot v_{\ell,\psi} \geq L((y + 1)/2)$ and so

$$\ell(y, v) \geq L\left(\frac{1 + y}{2}\right) - \frac{1}{2} \cdot ((1 - y) \cdot L(0) + (1 + y) \cdot L(1))$$

$$= L\left(\frac{1}{2} \cdot (1 - y) \cdot 0 + \frac{1}{2} \cdot (1 + y) \cdot 1\right) - \frac{1}{2} \cdot ((1 - y) \cdot L(0) + (1 + y) \cdot L(1))$$

$$\geq 0, \forall y \in \{-1, 1\}, \forall v \in \mathbb{R},$$

from Jensen’s inequality (the conditional Bayes risk L is always concave (Reid & Williamson 2010)). Now, if we consider the alternative use of Fenchel-Young inequality,

$$(-L)^*(v_{\ell,\psi}) - \frac{1}{2} \cdot v_{\ell,\psi} \geq L\left(\frac{1}{2}\right),$$

then if we let

$$\Delta(y) = L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot ((1 - y) \cdot L(0) + (1 + y) \cdot L(1)),$$

then we get

$$\ell(y, v) \geq \Delta(y) - \frac{y}{2} \cdot v_{\ell,\psi}, \forall y \in \{-1, 1\}, \forall v \in \mathbb{R}.$$

It follows from (11) and (14),

$$\ell(y, v) \geq \max\left\{0, \Delta(y) - \frac{y}{2} \cdot v_{\ell,\psi}\right\}, \forall y \in \{-1, 1\}, \forall v \in \mathbb{R},$$

and we get, $\forall h \in \mathbb{R}^X, a \in \mathcal{X}^X$,

$$E_{(X,Y)\sim D}[\ell(y, h \circ_a (X))]$$

$$\geq E_{(X,Y)\sim D}\left[\max\left\{0, \Delta(Y) - \frac{Y}{2} \cdot (h \circ_a \ell,\psi(X))\right\}\right]$$

$$\geq \max\left\{0, E_{(X,Y)\sim D}\left[\Delta(Y) - \frac{Y}{2} \cdot (h \circ_a \ell,\psi(X))\right]\right\}$$

$$= \max\left\{0, L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot E_{(X,Y)\sim D}[Y \cdot (h \circ_a \ell,\psi(X)) \ell,\psi + (1 - Y) \cdot L(0) + (1 + Y) \cdot L(1)]\right\}$$

$$= \max\left\{0, L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot \left(\mathbb{E}_{X\sim P}[\pi \cdot ((h \circ a(X))_{\ell,\psi} + 2L(1))]\right.\right.$$

$$\left.\left.\mathbb{E}_{X\sim N}[(1 - \pi) \cdot ((h \circ a(X))_{\ell,\psi} - 2L(0))]\right)\right\}$$

$$= \max\left\{0, L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot \left(\varphi(P, (h \circ_a)_{\ell,\psi}, \pi, 2L(1)) - \varphi(N, (h \circ_a)_{\ell,\psi}, 1 - \pi, -2L(0))\right)\right\}$$

$$= \max\left\{0, L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot \left(\varphi(P, (h \circ_a)_{\ell,\psi}, \pi, 2L(1)) - \varphi(N, (h \circ_a)_{\ell,\psi}, 1 - \pi, -2L(0))\right)\right\}$$

$$= \left\{0, L\left(\frac{1}{2}\right) - \frac{1}{2} \cdot (\varphi(P, (h \circ_a)_{\ell,\psi}, \pi, 2L(1)) - \varphi(N, (h \circ_a)_{\ell,\psi}, 1 - \pi, -2L(0)))\right\}$$
with
\[\varphi(Q, f, b, c) = \int_X b \cdot (f(x) + c) \, dQ(x), \] (17)
and we recall
\[(h \circ a)_{\ell, \psi} = (-L') \circ \psi^{-1} \circ h \circ a. \] (18)

Hence,
\[
\begin{aligned}
&\min_{h \in \mathcal{H}} \mathbb{E}_{(X,Y) \sim D}[\max_{a \in A} \ell(Y, h \circ a(X))] \\
&\quad \geq \min_{h \in \mathcal{H}} \max_{a \in A} \mathbb{E}_{(X,Y) \sim D}[\ell(Y, h \circ a(X))] \\
&\quad \geq \min_{h \in \mathcal{H}} \max_{a \in A} \left\{ 0, L \left(\frac{1}{2} \right) - \frac{1}{2} \cdot (\varphi(P, (h \circ a)_{\ell, \psi}, \pi, 2L(1)) - \varphi(N, (h \circ a)_{\ell, \psi}, 1 - \pi, -2L(0))) \right\} \\
&\quad = \max_{a \in A} \left(L \left(\frac{1}{2} \right) - \frac{1}{2} \cdot \min_{h \in \mathcal{H}} (\varphi(P, (h \circ a)_{\ell, \psi}, \pi, 2L(1)) - \varphi(N, (h \circ a)_{\ell, \psi}, 1 - \pi, -2L(0))) \right)_+ \\
&\quad = \left(L \left(\frac{1}{2} \right) - \frac{1}{2} \cdot \min_{a \in A} g_{\mathcal{H}, a}^g(P, N, 2L(1), 2L(0)) \right)_+ \\
&\quad = \left(\ell^0 - \frac{1}{2} \cdot \min_{a \in A} \beta_a \right)_+ ,
\end{aligned}
\] (20)
as claimed for the statement of Theorem ?? (we have let \(g = (-L') \circ \psi^{-1} \)). Hence, if, for some \(\varepsilon \in [0, 1] \),
\[
\exists a \in A : g_{\mathcal{H}, a}^g(P, N, \pi, 2L(1), 2L(0)) \leq 2\varepsilon \cdot \ell^0 ,
\] (21)
then
\[
\begin{aligned}
&\min_{h \in \mathcal{H}} \mathbb{E}_{(X,Y) \sim D}[\max_{a \in A} \ell(Y, h \circ a(X))] \\
&\quad \geq (\ell^0 - \varepsilon \cdot \ell^0)_+ \\
&\quad = (1 - \varepsilon) \cdot \ell^0 ,
\end{aligned}
\] (22)
which ends the proof of Corollary ?? if \(\ell \) is proper composite with link \(\psi \). If it is proper canonical, then \((-L') \circ \psi^{-1} = \text{Id}\) and so \(g_{\mathcal{H}, a}^g = g_{\mathcal{H}, a} \) in (21).
Remark 1 Theorem ?? and Corollary ?? are very general, which naturally questions the optimality of the condition in Corollary ?? to defeat \(\mathcal{H} \) – and therefore the optimality of the Monge adversaries to appear later. Inspecting their proof shows that suboptimality comes essentially from the use of Fenchel-Young inequality in \([12] \). There are ways to strengthen this result for subclasses of losses, which might result in fine in the characterisation of different but arguably more specific adversaries.

3 Proof sketch of Corollary ??

Recall that \(\beta_a = \gamma_{\mathcal{H},a}(P, N, \frac{1}{2}, 2L(1), 2L(0)) \). We prove the following, more general result which does not assume \(\pi = 1/2 \) nor \(\gamma_{\text{hard}} = 0 \).

Corollary 2 Suppose \(\ell \) is canonical proper and let \(\mathcal{H} \) denote the unit ball of a reproducing kernel Hilbert space (RKHS) of functions with reproducing kernel \(\kappa \). Denote

\[
\mu_{a,Q} = \int_X \kappa(a(x), .) dQ(x) \tag{23}
\]

the adversarial mean embedding of \(a \) on \(Q \). Then

\[
2 \cdot \gamma_{\mathcal{H},a}(P, N, \pi, 2L(1), 2L(0)) = \gamma_{\text{hard}}^\ell + \| \pi \cdot \mu_{a,P} - (1 - \pi) \cdot \mu_{a,N} \|_{\mathcal{H}}.
\]

Proof It comes from the reproducing property of \(\mathcal{H} \),

\[
2 \cdot \gamma_{\mathcal{H},a}(P, N, \pi, 2L(1), 2L(0))
\]

\[
= \gamma_{\text{hard}}^\ell + \max_{h \in \mathcal{H}} \left\{ \pi \cdot \int_X h \circ a(x) dP(x) - (1 - \pi) \cdot \int_X h \circ a(x) dN(x) \right\}
\]

\[
= \gamma_{\text{hard}}^\ell + \max_{h \in \mathcal{H}} \left\{ \pi \cdot \left\langle h, \int_X \kappa(a(x), .) dP(x) \right\rangle_{\mathcal{H}} - (1 - \pi) \cdot \left\langle h, \int_X \kappa(a(x), .) dN(x) \right\rangle_{\mathcal{H}} \right\}
\]

\[
= \gamma_{\text{hard}}^\ell + \max_{h \in \mathcal{H}} \{ \langle h, \pi \cdot \mu_{a,P} - (1 - \pi) \cdot \mu_{a,N} \rangle_{\mathcal{H}} \}
\]

\[
= \gamma_{\text{hard}}^\ell + \| \pi \cdot \mu_{a,P} - (1 - \pi) \cdot \mu_{a,N} \|_{\mathcal{H}},
\]

as claimed, where the last equality holds for the unit ball.

4 Proof of Theorem ??

We first show a Lemma giving some additional properties on our definition os Lipschitzness.

Lemma 3 Suppose \(\mathcal{H} \) is \((u, v, K) \)-Lipschitz. If \(c \) is symmetric, then \(\{u \circ h - v \circ h\}_{h \in \mathcal{H}} \) is \(2K \)-Lipschitz. If \(c \) satisfies the triangle inequality, then \(u - v \) is bounded. If \(c \) satisfies the identity of indiscernibles, then \(u \leq v \).
Proof If \(c \) is symmetric, then we just add two instances of (2) with \(x \) and \(y \) permuted, reorganize and get:
\[
2u \circ h(x) - v \circ h(y) + u \circ h(y) - v \circ h(x) \leq K \cdot (c(x, y) + c(y, x)), \forall h \in \mathcal{H}, \forall x, y \in \mathbb{X}
\]
\[
\Leftrightarrow (u \circ h - v \circ h)(x) - (u \circ h - v \circ h)(y) \leq 2Kc(x, y), \forall h \in \mathcal{H}, \forall x, y \in \mathbb{X}
\]
and we get the statement of the Lemma. If \(c \) satisfies the triangle inequality, then we add again two instances of (2) but this time as follows:
\[
2u \circ h(x) - v \circ h(y) + u \circ h(y) - v \circ h(z) \leq K \cdot (c(x, y) + c(y, z)), \forall h \in \mathcal{H}, \forall x, y, z \in \mathbb{X}
\]
\[
\Leftrightarrow u \circ h(x) - v \circ h(z) + \Delta(y) \leq Kc(x, z), \forall h \in \mathcal{H}, \forall x, y, z \in \mathbb{X},
\]
where \(\Delta(y) \equiv u \circ h(y) - v \circ h(y) \). If \(c \) is finite for at least one couple \((x, z)\), then we cannot have \(u - v \) unbounded in \(\cup_h \text{Im}(h) \). Finally, if \(c \) satisfies the identity of indiscernibles, then picking \(x = y \) in (2) yields \(u \circ h(x) - v \circ h(x) \leq 0, \forall h \in \mathcal{H}, \forall x \in \mathbb{X} \) and so \((u - v)(\cup_h \text{Im}(h)) \cap \mathbb{R}_+ \subseteq \{0\}\), which, disregarding the images in \(\mathcal{H} \) for simplicity, yields \(u \leq v \).

We now prove Theorem 4. In fact, we shall prove the following more general Theorem.

Theorem 4 Fix any \(\varepsilon > 0 \) and proper loss \(\ell \) with link \(\psi \). Suppose \(\exists c : \mathbb{X} \times \mathbb{X} \to \mathbb{R} \) such that:

1. \(\mathcal{H} \) is \((\pi \cdot g, (1 - \pi) \cdot g, K)\)-Lipschitz with respect to \(c \), where \(g \) is defined in (2);

2. \(\mathcal{A} \) is \(\delta \)-Monge efficient for cost \(c \) on marginals \(P, N \) for
\[
\delta \leq 2 \cdot \frac{2\varepsilon c^\ell - \gamma^\ell_{\text{hard}}}{K}.
\]

Then \(\mathcal{H} \) is \(\varepsilon \)-defeated by \(\mathcal{A} \) on \(\ell \).

Proof We have for all \(a \in \mathcal{A} \),
\[
\max_{h \in \mathcal{H}} (\varphi(P, h \circ a, \pi, 2L(1)) - \varphi(N, h \circ a, 1 - \pi, -2L(0))) = \gamma^\ell_{\text{hard}} + \frac{1}{2} \cdot \max_{h \in \mathcal{H}} \left(\int_{\mathbb{X}} \pi \cdot g \circ h \circ a(x) dP(x) - \int_{\mathbb{X}} (1 - \pi) \cdot g \circ h \circ a(x') dN(x') \right),
\]
(26)
where we recall \(g = (-L') \circ \psi^{-1} \). Let us denote for short
\[
\Delta \equiv \max_{h \in \mathcal{H}} \left(\int_{\mathbb{X}} \pi \cdot g \circ h \circ a(x) dP(x) - \int_{\mathbb{X}} (1 - \pi) \cdot g \circ h \circ a(x') dN(x') \right).
\]
(27)

\(\mathcal{H} \) being \((\pi \cdot g, (1 - \pi) \cdot g, K)\)-Lipschitz for cost \(c \), since
\[
\mathcal{H} \subseteq \{ h \in \mathbb{R}^X : \pi g \circ h \circ a(x) - (1 - \pi) g \circ h \circ a(x') \leq Kc(a(x), a(x')), \forall x, x' \in \mathbb{X} \},
\]

it comes after letting for short \(\Psi \equiv \pi g \circ h \circ a, \chi \equiv (1 - \pi) g \circ h \circ a, \)
\[
\Delta \leq \max_{\Psi(x) = \chi(x')} \left(\int_{\mathbb{X}} \Psi(x) dP(x) - \int_{\mathbb{X}} \chi(x) dN(x) \right)
\]
\[
\leq K \cdot \inf_{\mu \in \Pi(P, N)} \int c(a(x), a(\varepsilon')) d\mu(x, x').
\]
(28)
See for example [Villani, 2009, Section 4] for the last inequality. Now, if some adversary \(a \in A \) is \(\delta \)-Monge efficient for cost \(c \), then

\[
K \cdot \inf_{\mu \in \Pi(P,N)} \int c(a(x), a(x')) d\mu(x, x') \leq K\delta.
\]

(29)

From Theorem ??, if we want \(\mathcal{H} \) to be \(\varepsilon \)-defeated by \(A \), then it is sufficient from (26) that \(a \) satisfies

\[
\gamma^\ell_{\text{hard}} + \frac{1}{2} \cdot K \delta \leq 2\varepsilon^\ell,
\]

(30)

resulting in

\[
\delta \leq 2 \cdot \frac{2\varepsilon^\ell - \gamma^\ell_{\text{hard}}}{K},
\]

(31)

as claimed.

\[\blacksquare \]

Remark 1 note that unless \(\pi = \frac{1}{2} \), \(c \) cannot be a distance in the general case for Theorem ??: indeed, the identity of indiscernibles and Lemma 3 enforce \((1 - 2\pi) \cdot g \geq 0\) and so \(g \) cannot take both signs, which is impossible whenever \(\ell \) is canonical proper as \(g = \text{Id} \) in this case. We take it as a potential difficulty for the adversary which, we recall, cannot act on \(\pi \).

Remark 2 In the light of recent results (Cissé et al., 2017; Cranko et al., 2018; Miyato et al., 2018), there is an interesting corollary to Theorem ?? when \(\pi = \frac{1}{2} \) using a form of Lipschitz continuity of the link of the loss.

Corollary 5 Suppose loss \(\ell \) is proper with link \(\psi \) and furthermore its canonical link satisfies, some \(K_\ell > 0 \):

\[
(L)'(y) - (L)'(y') \leq K_\ell \cdot |\psi(y) - \psi(y')|, \forall y, y' \in [0, 1].
\]

Suppose furthermore that (i) \(\pi = \frac{1}{2} \), (ii) \(\mathcal{H} \) is \(K_h \)-Lipschitz with respect to some non-negative \(c \) and (iii) \(A \) is \(\delta \)-Monge efficient for cost \(c \) on marginals \(P, N \) for

\[
\delta \leq \frac{4\varepsilon^\ell - 2\gamma^\ell_{\text{hard}}}{K_\ell K_h}.
\]

(32)

Then \(\mathcal{H} \) is \(\varepsilon \)-defeated by \(A \) on \(\ell \).

Proof The domination condition on links,

\[
(L)'(y) - (L)'(y') \leq K_\ell \cdot |\psi(y) - \psi(y')|, \forall y, y' \in [0, 1],
\]

(33)

implies \(g \) is Lipschitz and letting \(y \doteq \psi^{-1} \circ h \circ a(x), y' \doteq \psi^{-1} \circ h \circ a(x') \), we obtain equivalently \(g \circ h \circ a(x) - g \circ h \circ a(x) \leq K_\ell \cdot |h \circ a(x) - h \circ a(x')|, \forall x, x' \in X \). But \(\mathcal{H} \) is \(K_h \)-Lipschitz with respect to some non-negative \(c \), so we have \(|h \circ a(x) - h \circ a(x')| \leq K_h c(a(x), a(x')) \), and so bringing these two inequalities together, we have from the proof of Theorem ?? that \(\Delta \) now satisfies

\[
\Delta \leq \frac{K_\ell K_h}{2} \cdot \inf_{\mu \in \Pi(P,N)} \int c(a(x), a(x')) d\mu(x, x'),
\]

(34)
so to be \(\varepsilon \)-defeated by \(\mathcal{A} \) on \(\ell \), we now want that \(a \) satisfies
\[
\gamma^\ell_{\text{hard}} + \frac{K_f K_h}{2} \cdot \delta \leq 2\varepsilon \ell^c,
\]
resulting in the statement of the Corollary.

5 Proof of Theorem ??

Denote \(a^J = a \circ a \circ \ldots \circ a \) \((J \text{ times})\). We have by definition
\[
C_\Phi(a^J, P, N) = \inf_{\mu \in \Pi(P, N)} \int_X \| \Phi \circ a^J(x) - \Phi \circ a^J(x') \|_{\mathcal{H}} \, d\mu(x, x')
\]
\[
= \inf_{\mu \in \Pi(P, N)} \int_X \| \Phi \circ a \circ a^{J-1}(x) - \Phi \circ a \circ a^{J-1}(x') \|_{\mathcal{H}} \, d\mu(x, x')
\]
\[
\leq (1 - \eta) \cdot \inf_{\mu \in \Pi(P, N)} \int_X \| \Phi \circ a^{J-1}(x) - \Phi \circ a^{J-1}(x') \|_{\mathcal{H}} \, d\mu(x, x')
\]
\[
\vdots
\]
\[
\leq (1 - \eta)^J \cdot \inf_{\mu \in \Pi(P, N)} \int_X \| \Phi(x) - \Phi(x') \|_{\mathcal{H}} \, d\mu(x, x')
\]
\[
= (1 - \eta)^J \cdot W_1^\Phi,
\]
where we have used the assumption that \(a \) is \(\eta \)-contractive and the definition of \(W_1^\Phi \). There remains to bound the last line by \(\delta \) and solve for \(J \) to get the statement of the Theorem. We can also stop at \((36) \) to conclude that \(\mathcal{A} \) is \(\delta \)-Monge efficient for \(\delta = (1 - \eta) \cdot W_1^\Phi \). The number of iterations for \(\mathcal{A}^J \) to be \(\delta \)-Monge efficient is obtained from \((37) \) as
\[
J \geq \frac{1}{\log \left(\frac{1}{1 - \eta} \right)} \cdot \log \frac{W_1^\Phi}{\delta},
\]
which gives the statement of the Theorem once we remark that \(\log(1/(1 - \eta)) \geq \eta \).

6 Proof of Lemma ??

The proof follows from the observation that for any \(x, x' \) in \(S \),
\[
\| a(x) - a(x') \| = \lambda \| x - x' \|,
\]
where \(\| . \| \) is the metric of \(X \). Thus, letting \(a \) denote a mixup to \(x^* \) adversary for some \(\lambda \in [0, 1] \), we have \(C(a, P, N) = \lambda \cdot W_1(dP, dN) \), where \(W_1(dP, dN) \) denotes the Wasserstein distance of order 1 between the class marginals. \(\delta > 0 \) being fixed, all mixups to \(x^* \) adversaries in \(\mathcal{A} \) that are also \(\delta \)-Monge efficient are those for which:
\[
\lambda \leq \frac{\delta}{W_1(dP, dN)},
\]
and we get the statement of the Lemma.
Figure 1: Visualising the toy example for the case $\alpha = 0.5$. Clockwise from top left: (a) the clean class conditional distributions, (b) the class distributions mapped by the adversary a, (c) the transport cost c under the adversarial mapping a, (d) the corresponding optimal transport μ.

7 Experiments

Figure 1 includes detailed plots for the $\alpha = 0.5$ case of the numerical toy example.

References

