Monge blunts Bayes: Hardness Results for Adversarial Training
 - Supplementary Material -

Zac Cranko ${ }^{\boldsymbol{\omega}}{ }^{\dagger} \quad$ Aditya Krishna Menon ${ }^{\rho}$ Richard Nock $^{\dagger}{ }^{\dagger, \boldsymbol{\omega}, \boldsymbol{\varkappa}}$
Cheng Soon Ong ${ }^{\dagger \dagger}$ ©han Shi ${ }^{\diamond}$ Christian Walder ${ }^{\dagger \dagger}$ ©
${ }^{\dagger}$ Data61, ${ }^{\dagger}$ the Australian National University, ${ }^{\ominus}$ Google Research
$\boldsymbol{\pi}_{\text {the }}$ University of Sydney, ${ }^{\diamond}$ University of Illinois at Chicago
firstname.lastname@\{data61.csiro.au, anu.edu.au\}; zshi22@uic.edu

Abstract

This is the Supplementary Material to Paper " Monge blunts Bayes: Hardness Results for Adversarial Training", appearing in the proceedings of ICML 2019.

1 Table of contents

Supplementary material on proofs Pg 3
Proof of Theorem ?? and Corollary ?? Pg 3
Proof sketch of Corollary ?? Pg 6
Proof of Theorem?? Pg 6
Proof of Theorem?? Pg 9
Proof of Lemma ?? Pg 9
Supplementary material on experiments $\operatorname{Pg} 10$

2 Proof of Theorem ?? and Corollary ??

Our proof assumes basic knowledge about proper losses (see for example Reid \& Williamson (2010)). From (Reid \& Williamson, 2010, Theorem 1, Corollary 3) and Shuford et al. (1966), ℓ being twice differentiable and proper, its conditional Bayes risk \underline{L} and partial losses ℓ_{1} and ℓ_{-1} are related by:

$$
\begin{equation*}
-\underline{L}^{\prime \prime}(c)=\frac{\ell_{-1}^{\prime}(c)}{c}=-\frac{\ell_{1}^{\prime}(c)}{1-c}, \forall c \in(0,1) . \tag{1}
\end{equation*}
$$

The weight function (Reid \& Williamson, 2010, Theorem 1) being also $w=-\underline{L}^{\prime \prime}$, we get from the integral representation of partial losses (Reid \& Williamson, 2010, eq. (5)),

$$
\begin{equation*}
\ell_{1}(c)=-\int_{c}^{1}(1-u) \underline{L}^{\prime \prime}(u) \mathrm{d} u \tag{2}
\end{equation*}
$$

from which we derive by integrating by parts and then using the Legendre conjugate of $-\underline{L}$,

$$
\begin{align*}
\ell_{1}(c)+\underline{L}(1) & =-\left[(1-u) \underline{L}^{\prime}(u)\right]_{c}^{1}-\int_{c}^{1} \underline{L}^{\prime}(u) \mathrm{d} u+\underline{L}(1) \\
& =(1-c) \underline{L}^{\prime}(c)+\underline{L}(c)-\underline{L}(1)+\underline{L}(1) \tag{3}\\
& =-\left(-\underline{L}^{\prime}\right)(c)+c \cdot\left(-\underline{L}^{\prime}\right)(c)-(-\underline{L})(c) \\
& =-\left(-\underline{L}^{\prime}\right)(c)+(-\underline{L})^{\star}\left((-\underline{L})^{\prime}(c)\right) . \tag{4}
\end{align*}
$$

Now, suppose that the way a real-valued prediction v is fit in the loss is through a general inverse $\operatorname{link} \psi^{-1}: \mathbb{R} \rightarrow(0,1)$. Let

$$
\begin{equation*}
v_{\ell, \psi} \doteq\left(-\underline{L}^{\prime}\right) \circ \psi^{-1}(v) . \tag{5}
\end{equation*}
$$

Since $(-\underline{L})^{\prime-1}\left(v_{\ell, \psi}\right)=\psi^{-1}(v)$, the proper composite loss ℓ with link ψ on prediction v is the same as the proper composite loss ℓ with link $(-\underline{L})^{\prime}$ on prediction $v_{\ell, \psi}$. This last loss is in fact using its canonical link and so is proper canonical (Reid \& Williamson, 2010, Section 6.1), (Buja et al., 2005). Letting in this case $c \doteq(-\underline{L})^{\prime-1}\left(v_{\ell, \psi}\right)$, we get that the partial loss satisfies

$$
\begin{equation*}
\ell_{1}(c)=-v_{\ell, \psi}+(-\underline{L})^{\star}\left(v_{\ell, \psi}\right)-\underline{L}(1) . \tag{6}
\end{equation*}
$$

Notice the constant appearing on the right hand side. Notice also that if we see (3) as a Bregman divergence, $\ell_{1}(c)=(-\underline{L})(1)-(-\underline{L})(c)-\left((1-c)\left(-\underline{L}^{\prime}\right)(c)=D_{-\underline{L}}(1 \| c)\right.$, then the canonical link is the function that defines uniquely the dual affine coordinate system of the divergence (Amari \& Nagaoka, 2000) (see also (Reid \& Williamson, 2010, Appendix B)).

We can repeat the derivations for the partial loss ℓ_{-1}, which yields (Reid \& Williamson, 2010, eq. (5)):

$$
\begin{align*}
\ell_{-1}(c)+\underline{L}(0) & =-\int_{0}^{c} u \underline{L}^{\prime \prime}(u) \mathrm{d} u+\underline{L}(0) \\
& =-\left[u \underline{L}^{\prime}(u)\right]_{0}^{c}+\int_{0}^{c} \underline{L}^{\prime}(u) \mathrm{d} u \\
& =-c \underline{L}^{\prime}(c)+\underline{L}(c)-\underline{L}(0)+\underline{L}(0) \tag{7}\\
& =c \cdot\left(-\underline{L}^{\prime}\right)(c)-(-\underline{L})(c) \\
& =(-\underline{L})^{\star}\left((-\underline{L})^{\prime}(c)\right), \tag{8}
\end{align*}
$$

and using the canonical link, we get this time

$$
\begin{equation*}
\ell_{-1}(c)=(-\underline{L})^{\star}\left(v_{\ell, \psi}\right)-\underline{L}(0) . \tag{9}
\end{equation*}
$$

We get from (6) and (9) the canonical proper composite loss

$$
\begin{equation*}
\ell(y, v)=(-\underline{L})^{\star}\left(v_{\ell, \psi}\right)-\frac{y+1}{2} \cdot v_{\ell, \psi}-\frac{1}{2} \cdot((1-y) \cdot \underline{L}(0)+(1+y) \cdot \underline{L}(1)) . \tag{10}
\end{equation*}
$$

Note that for the optimisation of $\ell(y, v)$ for v, we could discount the right-hand side parenthesis, which acts just like a constant with respect to v. Using Fenchel-Young inequality yields the non-negativity of $\ell(y, v)$ as it brings $(-\underline{L})^{\star}\left(v_{\ell, \psi}\right)-((y+1) / 2) \cdot v_{\ell, \psi} \geq \underline{L}((y+1) / 2)$ and so

$$
\begin{align*}
\ell(y, v) \geq & \underline{L}\left(\frac{1+y}{2}\right)-\frac{1}{2} \cdot((1-y) \cdot \underline{L}(0)+(1+y) \cdot \underline{L}(1)) \\
& =\underline{L}\left(\frac{1}{2} \cdot(1-y) \cdot 0+\frac{1}{2} \cdot(1+y) \cdot 1\right)-\frac{1}{2} \cdot((1-y) \cdot \underline{L}(0)+(1+y) \cdot \underline{L}(1)) \\
\geq & 0, \forall y \in\{-1,1\}, \forall v \in \mathbb{R} \tag{11}
\end{align*}
$$

from Jensen's inequality (the conditional Bayes risk \underline{L} is always concave (Reid \& Williamson, 2010). Now, if we consider the alternative use of Fenchel-Young inequality,

$$
\begin{equation*}
(-\underline{L})^{\star}\left(v_{\ell, \psi}\right)-\frac{1}{2} \cdot v_{\ell, \psi} \geq \underline{L}\left(\frac{1}{2}\right) \tag{12}
\end{equation*}
$$

then if we let

$$
\begin{equation*}
\Delta(y) \doteq \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot((1-y) \cdot \underline{L}(0)+(1+y) \cdot \underline{L}(1)) \tag{13}
\end{equation*}
$$

then we get

$$
\begin{equation*}
\ell(y, v) \geq \Delta(y)-\frac{y}{2} \cdot v_{\ell, \psi}, \forall y \in\{-1,1\}, \forall v \in \mathbb{R} \tag{14}
\end{equation*}
$$

It follows from (11) and (14),

$$
\begin{equation*}
\ell(y, v) \geq \max \left\{0, \Delta(y)-\frac{y}{2} \cdot v_{\ell, \psi}\right\}, \forall y \in\{-1,1\}, \forall v \in \mathbb{R} \tag{15}
\end{equation*}
$$

and we get, $\forall h \in \mathbb{R}^{x}, a \in X^{x}$,

$$
\begin{aligned}
& \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}[\ell(y, h \circ a(\mathrm{X}))] \\
& \geq \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}\left[\max \left\{0, \Delta(\mathrm{Y})-\frac{\mathrm{Y}}{2} \cdot(h \circ a)_{\ell, \psi}(\mathrm{X})\right\}\right] \\
& \geq \max \left\{0, \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}\left[\Delta(\mathrm{Y})-\frac{\mathrm{Y}}{2} \cdot(h \circ a(\mathrm{X}))_{\ell, \psi}\right]\right\} \\
& \quad=\max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}\left[\mathrm{Y} \cdot(h \circ a(\mathrm{X}))_{\ell, \psi}+(1-\mathrm{Y}) \cdot \underline{L}(0)+(1+\mathrm{Y}) \cdot \underline{L}(1)\right]\right\} \\
& =\max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot\binom{\mathrm{E}_{\mathrm{X} \sim P}\left[\pi \cdot\left((h \circ a(\mathrm{X}))_{\ell, \psi}+2 \underline{L}(1)\right)\right]}{-\mathrm{E}_{\mathrm{X} \sim N}\left[(1-\pi) \cdot\left((h \circ a(\mathrm{X}))_{\ell, \psi}-2 \underline{L}(0)\right)\right]}\right\} \\
& =\max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right\}(16)
\end{aligned}
$$

with

$$
\begin{equation*}
\varphi(Q, f, b, c) \doteq \int_{x} b \cdot(f(\boldsymbol{x})+c) \mathrm{d} Q(\boldsymbol{x}) \tag{17}
\end{equation*}
$$

and we recall

$$
\begin{equation*}
(h \circ a)_{\ell, \psi}=\left(-\underline{L}^{\prime}\right) \circ \psi^{-1} \circ h \circ a . \tag{18}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\min _{h \in \mathcal{H}} & \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}\left[\max _{a \in \mathcal{A}} \ell(\mathrm{Y}, h \circ a(\mathrm{X}))\right] \\
\geq & \min _{h \in \mathcal{H}} \max _{a \in \mathcal{A}} \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}[\ell(\mathrm{Y}, h \circ a(\mathrm{X}))] \tag{19}\\
\geq & \min _{h \in \mathcal{H}} \max _{a \in \mathcal{A}} \max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right\} \\
\geq & \max _{a \in \mathcal{A}} \min _{h \in \mathcal{H}} \max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right\} \\
& =\max _{a \in \mathcal{A}} \max \left\{0, \min _{h \in \mathcal{H}}\left(\underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right)\right\} \\
= & \max _{a \in \mathcal{A}} \max \left\{0, \underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot \max _{h \in \mathcal{H}}\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right\} \\
= & \max _{a \in \mathcal{A}}\left(\underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot \max _{h \in \mathcal{H}}\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right)_{+} \\
= & \left(\underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot \min _{a \in \mathcal{A}} \max _{h \in \mathcal{H}}\left(\varphi\left(P,(h \circ a)_{\ell, \psi}, \pi, 2 \underline{L}(1)\right)-\varphi\left(N,(h \circ a)_{\ell, \psi}, 1-\pi,-2 \underline{L}(0)\right)\right)\right) \\
= & \left(\underline{L}\left(\frac{1}{2}\right)-\frac{1}{2} \cdot \min _{a \in \mathcal{A}} \gamma_{\mathcal{H}, a}^{g}(P, N, \pi, 2 \underline{L}(1), 2 \underline{L}(0))\right)_{+} \\
= & \left(\ell-\frac{1}{2} \cdot \min _{a \in \mathcal{A}} \gamma_{\mathscr{H}, a}^{g}(P, N, \pi, 2 \underline{L}(1), 2 \underline{L}(0))\right)_{+} \\
= & \left(\ell-\frac{1}{2} \cdot \min _{a \in \mathcal{A}} \beta_{a}\right)_{+}, \tag{20}
\end{align*}
$$

as claimed for the statement of Theorem ?? (we have let $g \doteq\left(-\underline{L}^{\prime}\right) \circ \psi^{-1}$). Hence, if, for some $\varepsilon \in[0,1]$,

$$
\begin{equation*}
\exists a \in \mathcal{A}: \gamma_{\mathfrak{H}, a}^{g}(P, N, \pi, 2 \underline{L}(1), 2 \underline{L}(0)) \leq 2 \varepsilon \cdot \ell^{\circ} \tag{21}
\end{equation*}
$$

then

$$
\begin{align*}
\min _{h \in \mathcal{H}} \mathrm{E}_{(\mathrm{X}, \mathrm{Y}) \sim D}\left[\max _{a \in \mathcal{A}} \ell(\mathrm{Y}, h \circ a(\mathrm{X}))\right] \geq & \left(\ell^{\circ}-\varepsilon \cdot \ell^{\circ}\right)_{+} \\
& =(1-\varepsilon) \cdot \ell^{\circ}, \tag{22}
\end{align*}
$$

which ends the proof of Corollary $\mathbf{?} \boldsymbol{?}$ if ℓ is proper composite with link ψ. If it is proper canonical, then $\left(-\underline{L}^{\prime}\right) \circ \psi^{-1}=\operatorname{Id}$ and so $\gamma_{\mathcal{H}, a}^{g}=\gamma_{\mathcal{H}, a}$ in (21).

Remark 1 Theorem ?? and Corollary ?? are very general, which naturally questions the optimality of the condition in Corollary ?? to defeat \mathcal{H} - and therefore the optimality of the Monge adversaries to appear later. Inspecting their proof shows that suboptimality comes essentially from the use of Fenchel-Young inequality in (12). There are ways to strenghten this result for subclasses of losses, which might result in fine in the characterisation of different but arguably more specific adversaries.

3 Proof sketch of Corollary ??

Recall that $\beta_{a}=\gamma_{\mathcal{H}, a}\left(P, N, \frac{1}{2}, 2 \underline{L}(1), 2 \underline{L}(0)\right)$. We prove the following, more general result which does not assume $\pi=1 / 2$ nor $\gamma_{\text {hard }}^{\ell}=0$.

Corollary 2 Suppose ℓ is canonical proper and let \mathcal{H} denote the unit ball of a reproducing kernel Hilbert space (RKHS) of functions with reproducing kernel κ. Denote

$$
\begin{equation*}
\mu_{a, Q} \doteq \int_{x} \kappa(a(\boldsymbol{x}), .) \mathrm{d} Q(\boldsymbol{x}) \tag{23}
\end{equation*}
$$

the adversarial mean embedding of a on Q. Then

$$
\begin{aligned}
& 2 \cdot \gamma_{\mathcal{H}, a}(P, N, \pi, 2 \underline{L}(1), 2 \underline{L}(0)) \\
& \quad=\gamma_{\text {hard }}^{\ell}+\left\|\pi \cdot \mu_{a, P}-(1-\pi) \cdot \mu_{a, N}\right\|_{\mathcal{H}}
\end{aligned}
$$

Proof It comes from the reproducing property of \mathcal{H},

$$
\begin{align*}
2 & \cdot \gamma_{\mathcal{H}, a}(P, N, \pi, 2 \underline{L}(1), 2 \underline{L}(0)) \\
& =\gamma_{\text {hard }}^{\ell}+\max _{h \in \mathcal{H}}\left\{\pi \cdot \int_{X} h \circ a(\boldsymbol{x}) \mathrm{d} P(\boldsymbol{x})-(1-\pi) \cdot \int_{X} h \circ a(\boldsymbol{x}) \mathrm{d} N(\boldsymbol{x})\right\} \\
& =\gamma_{\text {hard }}^{\ell}+\max _{h \in \mathcal{H}}\left\{\pi \cdot\left\langle h, \int_{x} \kappa(a(\boldsymbol{x}), .) \mathrm{d} P(\boldsymbol{x})\right\rangle_{\mathcal{H}}-(1-\pi) \cdot\left\langle h, \int_{X} \kappa(a(\boldsymbol{x}), .) \mathrm{d} N(\boldsymbol{x})\right\rangle_{\mathcal{H}}\right\} \\
& =\gamma_{\text {hard }}^{\ell}+\max _{h \in \mathcal{H}}\left\{\left\langle h, \pi \cdot \mu_{a, P}-(1-\pi) \cdot \mu_{a, N}\right\rangle_{\mathcal{H}}\right\} \\
& =\gamma_{\text {hard }}^{\ell}+\left\|\pi \cdot \mu_{a, P}-(1-\pi) \cdot \mu_{a, N}\right\|_{\mathcal{H}}, \tag{24}
\end{align*}
$$

as claimed, where the last equality holds for the unit ball.

4 Proof of Theorem ??

We first show a Lemma giving some additional properties on our definition os Lipschitzness.
Lemma 3 Suppose \mathcal{H} is (u, v, K)-Lipschitz. If c is symmetric, then $\{u \circ h-v \circ h\}_{h \in \mathcal{H}}$ is $2 K-$ Lipschitz. If c satisfies the triangle inequality, then $u-v$ is bounded. If c satisfies the identity of indiscernibles, then $u \leq v$.

Proof If c is symmetric, then we just add two instances of (??) with \boldsymbol{x} and \boldsymbol{y} permuted, reorganize and get:

$$
\begin{aligned}
& u \circ h(\boldsymbol{x})-v \circ h(\boldsymbol{y})+u \circ h(\boldsymbol{y})-v \circ h(\boldsymbol{x}) \leq K \cdot(c(\boldsymbol{x}, \boldsymbol{y})+c(\boldsymbol{y}, \boldsymbol{x})), \forall h \in \mathcal{H}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} . \\
& \Leftrightarrow(u \circ h-v \circ h)(\boldsymbol{x})-(u \circ h-v \circ h)(\boldsymbol{y}) \leq 2 K c(\boldsymbol{x}, \boldsymbol{y}), \forall h \in \mathcal{H}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} .
\end{aligned}
$$

and we get the statement of the Lemma. If c satisfies the triangle inequality, then we add again two instances of (??) but this time as follows:

$$
\begin{aligned}
u \circ h(\boldsymbol{x})-v \circ h(\boldsymbol{y})+u \circ h(\boldsymbol{y})-v \circ h(\boldsymbol{z}) & \leq K \cdot(c(\boldsymbol{x}, \boldsymbol{y})+c(\boldsymbol{y}, \boldsymbol{z})), \forall h \in \mathcal{H}, \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{X} . \\
\Leftrightarrow u \circ h(\boldsymbol{x})-v \circ h(\boldsymbol{z})+\Delta(\boldsymbol{y}) & \leq K c(\boldsymbol{x}, \boldsymbol{z}), \forall h \in \mathcal{H}, \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{X},
\end{aligned}
$$

where $\Delta(\boldsymbol{y}) \doteq u \circ h(\boldsymbol{y})-v \circ h(\boldsymbol{y})$. If c is finite for at least one couple $(\boldsymbol{x}, \boldsymbol{z})$, then we cannot have $u-v$ unbounded in $\cup_{h} \operatorname{Im}(h)$. Finally, if c satisfies the identity of indiscernibles, then picking $\boldsymbol{x}=\boldsymbol{y}$ in (??) yields $u \circ h(\boldsymbol{x})-v \circ h(\boldsymbol{x}) \leq 0, \forall h \in \mathcal{H}, \forall \boldsymbol{x} \in \mathcal{X}$ and so $(u-v)\left(\cup_{h} \operatorname{Im}(h)\right) \cap \mathbb{R}_{+} \subseteq\{0\}$, which, disregarding the images in \mathcal{H} for simplicity, yields $u \leq v$.

We now prove TheoremthOTA. In fact, we shall prove the following more general Theorem.
Theorem 4 Fix any $\varepsilon>0$ and proper loss ℓ with link ψ. Suppose $\exists c: X \times X \rightarrow \mathbb{R}$ such that:
(1) \mathcal{H} is $(\pi \cdot g,(1-\pi) \cdot g, K)$-Lipschitz with respect to c, where g is defined in (??);
(2) \mathcal{A} is δ-Monge efficient for cost c on marginals P, N for

$$
\begin{equation*}
\delta \leq 2 \cdot \frac{2 \varepsilon \ell^{\circ}-\gamma_{h a r d}^{\ell}}{K} \tag{25}
\end{equation*}
$$

Then \mathcal{H} is ε-defeated by \mathcal{A} on ℓ.
Proof We have for all $a \in \mathcal{A}$,

$$
\begin{align*}
& \max _{h \in \mathcal{H}}(\varphi(P, h \circ a, \pi, 2 \underline{L}(1))-\varphi(N, h \circ a, 1-\pi,-2 \underline{L}(0))) \\
& \quad=\gamma_{\text {hard }}^{\ell}+\frac{1}{2} \cdot \max _{h \in \mathcal{H}}\left(\int_{x} \pi \cdot g \circ h \circ a(\boldsymbol{x}) \mathrm{d} P(\boldsymbol{x})-\int_{x}(1-\pi) \cdot g \circ h \circ a\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} N\left(\boldsymbol{x}^{\prime}\right)\right), \tag{26}
\end{align*}
$$

where we recall $g \doteq\left(-\underline{L}^{\prime}\right) \circ \psi^{-1}$. Let us denote for short

$$
\begin{equation*}
\Delta \doteq \max _{h \in \mathcal{H}}\left(\int_{X} \pi \cdot g \circ h \circ a(\boldsymbol{x}) \mathrm{d} P(\boldsymbol{x})-\int_{x}(1-\pi) \cdot g \circ h \circ a\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} N\left(\boldsymbol{x}^{\prime}\right)\right) . \tag{27}
\end{equation*}
$$

\mathcal{H} being $(\pi \cdot g,(1-\pi) \cdot g, K)$-Lipschitz for cost c, since

$$
\mathcal{H} \subseteq\left\{h \in \mathbb{R}^{X}: \pi g \circ h \circ a(\boldsymbol{x})-(1-\pi) g \circ h \circ a\left(\boldsymbol{x}^{\prime}\right) \leq K c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right), \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}\right\},
$$

it comes after letting for short $\Psi \doteq \pi g \circ h \circ a, \chi \doteq(1-\pi) g \circ h \circ a$,

$$
\begin{align*}
\Delta & \leq \max _{\Psi(\boldsymbol{x})-\chi\left(\boldsymbol{x}^{\prime}\right) \leq K c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right)}\left(\int_{X} \Psi(\boldsymbol{x}) \mathrm{d} P(\boldsymbol{x})-\int_{X} \chi(\boldsymbol{x}) \mathrm{d} N(\boldsymbol{x})\right) \\
& \leq K \inf _{\mu \in \Pi(P, N)} \int c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right) \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) . \tag{28}
\end{align*}
$$

See for example (Villani, 2009, Section 4) for the last inequality. Now, if some adversary $a \in \mathcal{A}$ is δ-Monge efficient for cost c, then

$$
\begin{equation*}
K \cdot \inf _{\mu \in \Pi(P, N)} \int c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right) \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \leq K \delta . \tag{29}
\end{equation*}
$$

From Theorem ??, if we want \mathcal{H} to be ε-defeated by \mathcal{A}, then it is sufficient from (26) that a satisfies

$$
\begin{equation*}
\gamma_{\text {hard }}^{\ell}+\frac{1}{2} \cdot K \delta \leq 2 \varepsilon \ell^{\circ}, \tag{30}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
\delta \leq 2 \cdot \frac{2 \varepsilon \ell^{\circ}-\gamma_{\text {hard }}^{\ell}}{K} \tag{31}
\end{equation*}
$$

as claimed.

Remark 1 note that unless $\pi=1 / 2, c$ cannot be a distance in the general case fot Theorem ??: indeed, the identity of indiscernibles and Lemma3enforce $(1-2 \pi) \cdot g \geq 0$ and so g cannot take both signs, which is impossible whenever ℓ is canonical proper as $g=\mathrm{Id}$ in this case. We take it as a potential difficulty for the adversary which, we recall, cannot act on π.

Remark 2 In the light of recent results (Cissé et al., 2017; Cranko et al., 2018; Miyato et al., 2018), there is an interesting corollary to Theorem ?? when $\pi=1 / 2$ using a form of Lipschitz continuity of the link of the loss .

Corollary 5 Suppose loss ℓ is proper with link ψ and furthermore its canonical link satisfies, some $K_{\ell}>0$:

$$
(\underline{L})^{\prime}(y)-(\underline{L})^{\prime}\left(y^{\prime}\right) \leq K_{\ell} \cdot\left|\psi(y)-\psi\left(y^{\prime}\right)\right|, \forall y, y^{\prime} \in[0,1] .
$$

Suppose furthermore that (i) $\pi=1 / 2$, (ii) \mathcal{H} is K_{h}-Lipschitz with respect to some non-negative c and (iii) \mathcal{A} is δ-Monge efficient for cost c on marginals P, N for

$$
\begin{equation*}
\delta \leq \frac{4 \varepsilon \ell^{\circ}-2 \gamma_{h a r d}^{\ell}}{K_{\ell} K_{h}} \tag{32}
\end{equation*}
$$

Then \mathcal{H} is ε-defeated by \mathcal{A} on ℓ.
Proof The domination condition on links,

$$
\begin{equation*}
(\underline{L})^{\prime}(y)-(\underline{L})^{\prime}\left(y^{\prime}\right) \leq K_{\ell} \cdot\left|\psi(y)-\psi\left(y^{\prime}\right)\right|, \forall y, y^{\prime} \in[0,1], \tag{33}
\end{equation*}
$$

implies g is Lipschitz and letting $y \doteq \psi^{-1} \circ h \circ a(\boldsymbol{x}), y^{\prime} \doteq \psi^{-1} \circ h \circ a\left(\boldsymbol{x}^{\prime}\right)$, we obtain equivalently $g \circ h \circ a(\boldsymbol{x})-g \circ h \circ a(\boldsymbol{x}) \leq K_{\ell} \cdot\left|h \circ a(\boldsymbol{x})-h \circ a\left(\boldsymbol{x}^{\prime}\right)\right|, \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}$. But \mathcal{H} is K_{h}-Lipschitz with respect to some non-negative c, so we have $\left|h \circ a(\boldsymbol{x})-h \circ a\left(\boldsymbol{x}^{\prime}\right)\right| \leq K_{h} c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right)$, and so bringing these two inequalities together, we have from the proof of Theorem ?? that Δ now satisfies

$$
\begin{equation*}
\Delta \leq \frac{K_{\ell} K_{h}}{2} \cdot \inf _{\mu \in \Pi(P, N)} \int c\left(a(\boldsymbol{x}), a\left(\boldsymbol{x}^{\prime}\right)\right) \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \tag{34}
\end{equation*}
$$

so to be ε-defeated by \mathcal{A} on ℓ, we now want that a satisfies

$$
\begin{equation*}
\gamma_{\mathrm{hard}}^{\ell}+\frac{K_{\ell} K_{h}}{2} \cdot \delta \leq 2 \varepsilon \ell^{\circ} \tag{35}
\end{equation*}
$$

resulting in the statement of the Corollary.

5 Proof of Theorem??

Denote $a^{J} \doteq a \circ a \circ \ldots \circ a$ (J times). We have by definition

$$
\begin{align*}
& C_{\Phi}\left(a^{J}, P, N\right) \doteq \inf _{\mu \in \Pi(P, N)} \int_{X}\left\|\Phi \circ a^{J}(\boldsymbol{x})-\Phi \circ a^{J}\left(\boldsymbol{x}^{\prime}\right)\right\|_{\mathcal{H}} \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \\
&= \inf _{\mu \in \Pi(P, N)} \int_{X}\left\|\Phi \circ a \circ a^{J-1}(\boldsymbol{x})-\Phi \circ a \circ a^{J-1}\left(\boldsymbol{x}^{\prime}\right)\right\|_{\mathcal{H}} \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \tag{36}\\
& \leq(1-\eta) \cdot \inf _{\mu \in \Pi(P, N)} \int_{X}\left\|\Phi \circ a^{J-1}(\boldsymbol{x})-\Phi \circ a^{J-1}\left(\boldsymbol{x}^{\prime}\right)\right\|_{\mathcal{H}} \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \\
& \vdots \\
& \leq(1-\eta)^{J} \cdot \inf _{\mu \in \Pi(P, N)} \int_{X}\left\|\Phi(\boldsymbol{x})-\Phi\left(\boldsymbol{x}^{\prime}\right)\right\|_{\mathcal{H}} \mathrm{d} \mu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \tag{37}\\
&=(1-\eta)^{J} \cdot W_{1}^{\Phi}
\end{align*}
$$

where we have used the assumption that a is η-contractive and the definition of W_{1}^{Φ}. There remains to bound the last line by δ and solve for J to get the statement of the Theorem. We can also stop at (36) to conclude that \mathcal{A} is δ-Monge efficient for $\delta=(1-\eta) \cdot W_{1}^{\Phi}$. The number of iterations for \mathcal{A}^{J} to be δ-Monge efficient is obtained from (37) as

$$
\begin{equation*}
J \geq \frac{1}{\log \left(\frac{1}{1-\eta}\right)} \cdot \log \frac{W_{1}^{\Phi}}{\delta} \tag{38}
\end{equation*}
$$

which gives the statement of the Theorem once we remark that $\log (1 /(1-\eta)) \geq \eta$.

6 Proof of Lemma??

The proof follows from the observation that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime}$ in \mathcal{S},

$$
\begin{equation*}
\left\|a(\boldsymbol{x})-a\left(\boldsymbol{x}^{\prime}\right)\right\|=\lambda\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|, \tag{39}
\end{equation*}
$$

where $\|$.$\| is the metric of \mathcal{X}$. Thus, letting a denote a mixup to \boldsymbol{x}^{*} adversary for some $\lambda \in[0,1]$, we have $C(a, P, N)=\lambda \cdot W_{1}(\mathrm{~d} P, \mathrm{~d} N)$, where $W_{1}(\mathrm{~d} P, \mathrm{~d} N)$ denotes the Wasserstein distance of order 1 between the class marginals. $\delta>0$ being fixed, all mixups to \boldsymbol{x}^{*} adversaries in \mathcal{A} that are also δ-Monge efficient are those for which:

$$
\begin{equation*}
\lambda \leq \frac{\delta}{W_{1}(\mathrm{~d} P, \mathrm{~d} N)} \tag{40}
\end{equation*}
$$

and we get the statement of the Lemma.

Figure 1: Visualising the toy example for the case $\alpha=0.5$. Clockwise from top left: (a) the clean class conditional distributions, (b) the class distributions mapped by the adversary a, (c) the transport cost c under the adversarial mapping a, (d) the corresponding optimal transport μ.

7 Experiments

Figure 1 includes detailed plots for the $\alpha=0.5$ case of the numerical toy example.

References

Amari, S.-I. and Nagaoka, H. Methods of Information Geometry. Oxford University Press, 2000.
Buja, A., Stuetzle, W., and Shen, Y. Loss functions for binary class probability estimation ans classification: structure and applications, 2005. Technical Report, University of Pennsylvania.

Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks: improving robustness to adversarial examples. In $34^{\text {th }}$ ICML, 2017.

Cranko, Z., Kornblith, S., Shi, Z., and Nock, R. Lipschitz networks and distributional robustness. CoRR, abs/1809.01129, 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. In ICLR' $18,2018$.

Reid, M.-D. and Williamson, R.-C. Composite binary losses. JMLR, 11:2387-2422, 2010.
Shuford, E., Albert, A., and Massengil, H.-E. Admissible probability measurement procedures. Psychometrika, pp. 125-145, 1966.

Villani, C. Optimal transport, old and new. Springer, 2009.

