
Submodular Cost Submodular Cover with an Approximate Oracle

A. Additional Approximation Results
A.1. The case of monotone submodular F

The main difficulty in proving Theorems 1 and 2 in Section 2.1 is that the ε-approximate oracle F is not monotone
submodular. In the event that F is monotone submodular, existing results for SCSC (Wolsey, 1982; Wan et al., 2010; Soma
& Yoshida, 2015) can be translated into results for SCSC with an ε-approximate oracle, as the following proposition shows.
Proposition 2. Let A be a bicriteria approximation algorithm for SCSC that takes as input f, c, τ and has approximation
ratio α, and feasibility guarantee τ − δ.

Suppose that we have two instances of SCSC: instance I1 with f, c, τ and instance I2 with F, c, τ − ε where F is an
ε-approximation to f . Then if we run A for I2 and A returns the set A, it is guaranteed that c(A) ≤ αc(A∗) and
f(A) ≥ τ − 2ε− δ where A∗ is the optimal solution to instance I1.

Proof. A∗ is a feasible solution to I2 since F (A∗) ≥ f(A∗)− ε ≥ τ − ε. Therefore αc(A∗) ≥ c(A). For the feasibility,
we have that f(A) ≥ F (A)− ε ≥ τ − 2ε− δ.

A.2. An alternative version of Theorem 1

The definitions and notation used in this section can be found in Section 1.3 of the paper.

The version of Theorem 1 in Section 2 requires that ε be small relative to the minimum marginal gain of an element added to
the greedy set, µ, over the duration of Algorithm 1. In particular, µ > 4εcmaxρ/cmin. Alternatively, we may ensure the
approximation ratio of Theorem 1 if ε is sufficiently small by exiting Algorithm 1 if Fτ (Ai)− Fτ (Ai−1) falls below an
input value, µ∗. The feasibility guarantee is weakened since Algorithm 1 does not necessarily run to completion, but not by
much if ε is sufficiently small. In particular, we have the following alternative version of Theorem 1.

Theorem 1 (Alternative) Suppose we have an instance of SCSC with n ≥ 1. Let F be a function that is ε-approximate to
f .

Let µ∗ > 0 be given. Suppose Algorithm 1 is run with input F , c, and τ , but we exit the algorithm at the first iteration
k such that Fτ (Ak) − Fτ (Ak−1) ≤ µ∗ and return A = Ak−1. Then f(A) ≥ τ − n((cmax/cmin)µ∗ + 2ε) and if
ε < µ∗/(4cmaxρ/cmin + 2), then

c(A) ≤ ρ

1− 4εcmaxρ
cmin(µ∗−2ε)

(
ln

(
α

β

)
+ 2

)
c(A∗)

where A∗ is the optimal solution to the instance of SCSC.

Proof of Theorem 1 (Alternative) Without loss of generality we re-define f = min{f, τ} and F = min{F, τ}. This
way, f = fτ and F = Fτ .

First, we prove the feasibility. If Algorithm 1 runs to completion, then the feasibility guarantee is clear since f(A) ≥ τ − ε.
Suppose that Algorithm 1 did not run to completion, but instead returned A = Ak−1 once F (Ak)−F (Ak−1) ≤ µ∗. Let xk
be the element that is selected in the kth iteration. Then for all x

∆F (A, x) ≤ c(x)

c(xk)
∆F (A, xk) ≤ cmax

cmin
µ∗.

Therefore for all x ∆f(A, x) ≤ ∆F (A, x) + 2ε ≤ (cmax/cmin)µ∗ + 2ε. By the submodularity of f we have that

τ − f(A) ≤ f(S)− f(A) ≤
∑
x

∆f(A, x) ≤ n
(
cmax
cmin

µ∗ + 2ε

)
and so the feasibility guarantee is proven.

The approximation ratio follows by using the same argument as in Theorem 1 where µ is replaced by µ∗ − 2ε since

µ = min{f(Ai)− f(Ai−1) : i ≤ k} ≥ min{F (Ai)− F (Ai−1) : i ≤ k} − 2ε > µ∗ − 2ε.



Submodular Cost Submodular Cover with an Approximate Oracle

B. Proof of Theorem 1
The definitions and notation used in this section can be found in Section 1.3 of the paper.

Theorem 1 Suppose we have an instance of SCSC. Let F be a function that is ε-approximate to f .

Suppose we run Algorithm 1 with input F , c, and τ . Then f(A) ≥ τ − ε. And if µ > 4εcmaxρ/cmin,

c(A) ≤ ρ

1− 4εcmaxρ
cminµ

(
ln

(
α

β

)
+ 2

)
c(A∗)

where A∗ is an optimal solution to the instance of SCSC.

Proof of Theorem 1 The feasibility guarantee is clear from the stopping condition on the greedy algorithm: f(A) ≥
F (A)− ε ≥ τ − ε.

We now prove the upper bound on c(A) if µ > 4εcmaxρ/cmin. Without loss of generality we re-define f = min{f, τ} and
F = min{F, τ}. This way, f = fτ and F = Fτ . Notice that this does not change that F is an ε-approximation of f since
the error is absolute.

Let x1, ..., xk be the elements of A in the order that they were chosen by the greedy algorithm. If k = 0, then c(A) = 0 and
the approximation ratio is clear. For the rest of the proof, we assume that k ≥ 1.

We define a sequence of elements x̃1, ..., x̃k where

x̃i = argmaxx∈S\Ai−1

∆f(Ai−1, x)

c(x)
.

x̃i has the most cost-effective marginal gain of being added to Ai−1 according to f , while xi has the most cost-effective
marginal gain of being added to Ai−1 according to F . Note that the same element can appear multiple times in the sequence
x̃1, ..., x̃k. In addition, we have a lower bound on ∆f(Ai−1, x̃i):

∆f(Ai−1, x̃i) ≥
c(x̃i)

c(xi)
∆f(Ai−1, xi) ≥

cmin
cmax

µ. (1)

Our argument to bound c(A) will follow the following three steps: (a) We bound c(A) in terms of the costs of the elements
x̃1, ..., x̃k. (b) We charge the elements of A∗ with the costs of the elements x̃1, ..., x̃k, and bound c(A) in terms of the total
charge on all elements in A∗. (c) We bound the total charge on the elements of A∗ in terms of c(A∗).

(a) First, we bound c(A) in terms of the costs of the elements x̃1, ..., x̃k. At iteration i of Algorithm 1, the most cost-
effective element to add to the set Ai−1 according to F is xi. Using the fact that F is ε-approximate to f , we can bound
how much more cost-effective x̃i is compared to xi according to f as follows:

∆f(Ai−1, xi) + 2ε

c(xi)
≥ ∆F (Ai−1, xi)

c(xi)
≥ ∆F (Ai−1, x̃i)

c(x̃i)
≥ ∆f(Ai−1, x̃i)− 2ε

c(x̃i)

which implies that

∆f(Ai−1, xi)

c(xi)
+

2ε(c(xi) + c(x̃i))

c(xi)c(x̃i)
≥ ∆f(Ai−1, x̃i)

c(x̃i)
. (2)

∆f(Ai−1, xi) ≥ µ > 0 by assumption, and ∆f(Ai−1, x̃i) ≥ (cmin/cmax)µ > 0 by Equation (1). Therefore we can
re-arrange Equation (2) to be

c(x̃i)

∆f(Ai−1, x̃i)
+ αi ≥

c(xi)

∆f(Ai−1, xi)
, where αi =

2ε(c(xi) + c(x̃i))

∆f(Ai−1, x̃i)∆f(Ai−1, xi)
. (3)



Submodular Cost Submodular Cover with an Approximate Oracle

Inequality (3) and the submodularity of c imply that

c(A) ≤
k∑
i=1

c(xi) =

k∑
i=1

∆f(Ai−1, xi)
c(xi)

∆f(Ai−1, xi)

≤
k∑
i=1

∆f(Ai−1, xi)

(
c(x̃i)

∆f(Ai−1, x̃i)
+ αi

)

=

k∑
i=1

∆f(Ai−1, xi)
c(x̃i)

∆f(Ai−1, x̃i)
+

k∑
i=1

2ε(c(x̃i) + c(xi))

∆f(Ai−1, x̃i)
. (4)

We now bound the second term on the right side of Equation (4) by

k∑
i=1

2ε(c(x̃i) + c(xi))

∆f(Ai−1, x̃i)
=

k∑
i=1

2εc(x̃i)

∆f(Ai−1, x̃i)
+

k∑
i=1

2εc(xi)

∆f(Ai−1, x̃i)

≤
k∑
i=1

2εc(xi)

∆f(Ai−1, xi)
+

k∑
i=1

2εc(xi)

∆f(Ai−1, x̃i)

≤ 4εcmax
cminµ

k∑
i=1

c(xi)

≤ 4εcmaxρ

cminµ
c(A). (5)

The second to last inequality in Equation (5) follows from the fact that ∆f(Ai−1, xi) ≥ µ ≥ (cmin/cmax)µ, and that by
Equation (1) ∆f(Ai−1, x̃i) ≥ (cmin/cmax)µ. The last inequality in Equation (5) uses the definition of the curvature ρ of c.

Combining Equations (4) and (5) gives us the following bound on c(A) in terms of the costs of the elements x̃1, ..., x̃k:

(
1− 4εcmaxρ

cminµ

)
c(A) ≤

k∑
i=1

∆f(Ai−1, xi)

∆f(Ai−1, x̃i)
c(x̃i). (6)

(b) Next, we charge the elements of A∗ with the costs of the elements x̃1, ..., x̃k, and bound c(A) in terms of the total
charge on all elements in A∗. By this we mean that we give each y ∈ A∗ a portion of the total cost of the elements x̃1, ..., x̃k.
In particular, we give each y ∈ A∗ a charge of w(y), defined by

w(y) =

k∑
i=1

(πi(y)− πi+1(y))ωi, where ωi =
c(x̃i)

∆f(Ai−1, x̃i)
, and πi(y) =

{
∆f(Ai−1, y) i ∈ {1, ..., k}
∆f(A, y) i = k + 1

.

Recall that ∆f(Ai−1, x̃i) > 0 for all i by Equation (1), and so we can define ωi as above. Wan et al. charged the elements
of A∗ with the cost of elements x1, ..., xk analogously to the above. We charge with the cost of elements x̃1, ..., x̃k because
they exhibit diminishing cost-effectiveness, i.e. ωi − ωi−1 ≥ 0 for all i ∈ {1, ..., k}, which is needed to proceed with the
argument. Because we choose x1, ..., xk with F , which is not monotone submodular, x1, ..., xk do not exhibit diminishing
cost-effectiveness even if we replace f with F in the definition of w(y) above. We now follow an argument analogous to
Wan et al. but with the elements x̃1, ..., x̃k in order to prove Equation (9).



Submodular Cost Submodular Cover with an Approximate Oracle

Consider any y ∈ A∗. We can re-write w(y) as

w(y) =

k∑
i=1

(πi(y)− πi+1(y))ωi

=

k∑
i=1

πi(y)ωi −
k∑
i=1

πi+1(y)ωi

= π1(y)ω1 +

k∑
i=2

πi(y)ωi −
k∑
i=2

πi(y)ωi−1 − πk+1(y)ωk

= π1(y)ω1 −∆f(A, y)ωk +

k∑
i=2

(ωi − ωi−1)πi(y).

Summing over y ∈ A∗, we have

∑
y∈A∗

w(y) = ω1

∑
y∈A∗

π1(y) +

k∑
i=2

(ωi − ωi−1)
∑
y∈A∗

πi(y)−
∑
y∈A∗

∆f(A, y)ωk. (7)

On the other hand, starting with Equation (6), we see that(
1− 4εcmaxρ

µcmin

)
c(A) ≤

k∑
i=1

∆f(Ai−1, xi)

∆f(Ai−1, x̃i)
c(x̃i)

= ∆f(Ak−1, xk)ωk +

k−1∑
i=1

∆f(Ai−1, xi)ωi

= ∆f(Ak−1, xk)ωk +

k−1∑
i=1

(

k∑
j=i

∆f(Aj−1, xj)−
k∑

j=i+1

∆f(Aj−1, xj))ωi

=

k∑
i=1

k∑
j=i

∆f(Aj−1, xj)ωi −
k−1∑
i=1

k∑
j=i+1

∆f(Aj−1, xj)ωi

= ω1

k∑
j=1

∆f(Aj−1, xj) +

k∑
i=2

k∑
j=i

∆f(Aj−1, xj)ωi −
k∑
i=2

k∑
j=i

∆f(Aj−1, xj)ωi−1

= ω1

k∑
j=1

∆f(Aj−1, xj) +

k∑
i=2

(ωi − ωi−1)

k∑
j=i

∆f(Aj−1, xj). (8)

In order to find a link between Equations (7) and (8), we first notice that for any i ∈ {1, ..., k}

k∑
j=i

∆f(Aj−1, xj) = f(Ak)− f(Ai−1) ≤
∑
y∈A∗

∆f(Ai−1, y) =
∑
y∈A∗

πi(y).

In addition, for any i ∈ {1, ..., k}

ωi − ωi−1 =
c(x̃i)

∆f(Ai−1, x̃i)
− c(x̃i−1)

∆f(Ai−2, x̃i−1)

≥ c(x̃i)

∆f(Ai−2, x̃i)
− c(x̃i−1)

∆f(Ai−2, x̃i−1)

≥ c(x̃i−1)

∆f(Ai−2, x̃i−1)
− c(x̃i−1)

∆f(Ai−2, x̃i−1)
= 0.



Submodular Cost Submodular Cover with an Approximate Oracle

We may therefore link Equations (7) and (8) to see that(
1− 4εcmaxρ

µcmin

)
c(A) ≤ ω1

k∑
j=1

∆f(Aj−1, xj) +

k∑
i=2

(ωi − ωi−1)

k∑
j=i

∆f(Aj−1, xj)

≤
∑
y∈A∗

w(y) +
∑
y∈A∗

∆f(A, y)ωk. (9)

Consider y ∈ A∗. f(A) is not necessarily τ since the stopping condition for Algorithm 1 is only that F (A) ≥ τ . In this
case, if ∆f(A, y) 6= 0 for y ∈ A∗ (which implies that y /∈ Ak−1) then by the submodularity of f

∆f(A, y)ωk = ∆f(A, y)
c(x̃k)

∆f(Ak−1, x̃k)
≤ ∆f(A, y)

c(y)

∆f(Ak−1, y)
≤ ∆f(A, y)

c(y)

∆f(A, y)
= c(y).

Therefore we can bound c(A) in terms of the total charge on all elements in A∗:(
1− 4εcmaxρ

µcmin

)
c(A) ≤

∑
y∈A∗

w(y) +
∑
y∈A∗

c(y) ≤
∑
y∈A∗

w(y) + ρc(A∗). (10)

(c) Finally, we bound the total charge on the elements of A∗ in terms of c(A∗).

We first define a value `y for every y ∈ A∗. For each y ∈ A∗, if π1(y) = 0 we set `y = 0, otherwise `y is the value in
{1, ..., k} such that if i ∈ {1, ..., `y} then πi(y) > 0, and if i ∈ {`y + 1, ..., k} then πi(y) = 0. Such an `y can be set since
f is submodular and monotonic. Then

w(y) =

`y∑
i=1

(πi(y)− πi+1(y))ωi

≤
`y∑
i=1

(πi(y)− πi+1(y))
c(y)

πi(y)

≤ c(y)

`y−1∑
i=1

πi(y)− πi+1(y)

πi(y)

+ 1


≤ c(y)

`y−1∑
i=1

(ln(πi(y))− ln(πi+1(y))) + 1


= c(y)

(
ln(π1(y))− ln(π`y (y)) + 1

)
≤ c(y)

(
ln

(
α

β

)
+ 1

)
. (11)

The third to last inequality follows since

πi(y)− πi+1(y)

πi(y)
=

∫ πi(y)

πi+1(y)

1

πi(y)
dx ≤

∫ πi(y)

πi+1(y)

1

x
dx = ln(πi(y))− ln(πi+1(y)).

We sum inequality (11) over all y ∈ A∗ to get that∑
y∈A∗

w(y) ≤
(

ln

(
α

β

)
+ 1

) ∑
y∈A∗

c(y) ≤ ρ
(

ln

(
α

β

)
+ 1

)
c(A∗). (12)

Finally, we combine inequality (10) and inequality (1) to see that(
1− 4εcmaxρ

cminµ

)
c(A) ≤

∑
y∈A∗

w(y) + ρc(A∗) ≤ ρ
(

ln

(
α

β

)
+ 1

)
c(A∗) + ρc(A∗).

If µ > (4εcmaxρ)/(cmin), this completes the proof of the approximation guarantee in the theorem statement.



Submodular Cost Submodular Cover with an Approximate Oracle

C. Proof of Theorem 2
The definitions and notation used in this section can be found in Section 2.1 of the paper.

Theorem 2 Suppose we have an instance of SCSC. Let F be a function that is ε-approximate to f .

Suppose we run Algorithm 1 with input F , c, and τ . Then f(A) ≥ τ − ε. And if µ > 4εcmaxρ/cmin, then for any
γ ∈ (0, 1− 4εcmaxρ/cminµ),

c(A) ≤ ρ

1− 4εcmaxρ
cminµ

− γ

(
ln

(
nαρ

γµ

)
+ 2

)
c(A∗)

where A∗ is an optimal solution to the instance of SCSC.

Proof of Theorem 2 The argument for the proof of Theorem 2 is the same as Theorem 1, except for part (c) which is what
we present here. In particular, we have gotten to the point of the proof of Theorem 1 where we have proven that(

1− 4εcmaxρ

cminµ

)
c(A) ≤

∑
y∈A∗

w(y) + ρc(A∗). (1)

Let λ > 0. We first define a value my for every y ∈ A∗. For each y ∈ A∗, if π1(y) ≤ λ we set my = 0, otherwise my is
the value in {1, ..., k} such that if i ∈ {1, ...,my} then πi(y) > λ, and if i ∈ {my + 1, ..., k} then πi(y) ≤ λ. Such an my

can be set since f is submodular and monotonic. Then

w(y) =

my∑
i=1

(πi(y)− πi+1(y))ωi +

k∑
i=my+1

(πi(y)− πi+1(y))ωi. (2)

A similar analysis as in the proof of Theorem 1 can be used to show that
my∑
i=1

(πi(y)− πi+1(y))ωi ≤ c(y)
(

ln
(α
λ

)
+ 1
)
. (3)

The remaining part of inequality (2) can be bounded by

k∑
i=my+1

(πi(y)− πi+1(y))ωi ≤
k∑

i=my+1

(πi(y)− πi+1(y))
c(xi)

∆f(Ai−1, xi)

≤
k∑

i=my+1

πi(y)
c(xi)

∆f(Ai−1, xi)

<

k∑
i=my+1

λ
c(xi)

µ

≤ λρ

µ
c(A). (4)

Summing Equation (2) over all y ∈ A∗ and applying the upper bounds in Equations (3) and (4) gives us that∑
y∈A∗

w(y) ≤ ρ
(

ln
(α
λ

)
+ 1
)
c(A∗) +

λρn

µ
c(A) (5)

By combining Equations (5) and (1), we have that(
1− 4εcmaxρ

cminµ
− λρn

µ

)
c(A) ≤ ρ

(
ln
(α
λ

)
+ 2
)
c(A∗).

If we set λ = (γµ)/(nρ) we have the approximation ratio in the theorem statement.



Submodular Cost Submodular Cover with an Approximate Oracle

D. Application and Experiments
Influence Threshold (IT) (Non-Simulation) In contrast to the version of IT in Section 3 of the paper, we may define IT
to directly use the influence model as follows.

Let G = (V,E) be a social network where nodes V represents users, edges E represent social connections, and D is a
probability distribution over subsets of E that represents the probability of a set of edges being “alive”. Activation of users
in the social network starts from an initial seed set and then propagates across alive edges. For X ⊆ S, f(X) is the expected
number of reachable nodes in V from X when a set of alive edges is sampled from D. c : 2V → R≥0 is a monotone
submodular function that gives the cost of seeding a set of users. The Influence Threshold problem (IT) is to find a seed set
A such that c(A) is minimized and f(A) ≥ τ .

f as Average Reachability One popular choice for the distribution D is the Independent Cascade (IC) model (Kempe
et al., 2003). In the IC model, every edge has a probability assigned to it wE : E → [0, 1]. Each edge e is independently
alive with probability wE(e). However, computing the expected influence f under the IC model is #P -hard and therefore
impractical to compute (Chen et al., 2010).

As an alternative to working directly with the influence model Kempe et al. proposed a simulation-based approach to
approximating it: Random samples from D are drawn, and for every X ⊆ S f(X) is approximated by the average number
of reachable nodes from X over the samples. The resulting approximation of f is unbiased, converges to the expected value,
and is monotone submodular. This simulation-based approach is also advantageous since it can be used for more complex
models than IC or for instances generated from traces (Cohen et al., 2014).

Because the average reachability is monotone submodular, it is easy to translate approximation results for IT where f is
replaced by the average reachability into approximation results for IT (see Proposition 2 of Appendix A).

Additional Experimental Setup Details We use two real social networks: the Facebook ego network (Leskovec &
Mcauley, 2012) with n = 4039, and the ArXiV General Relativity collaboration network with n = 5242 (Leskovec et al.,
2007), which we refer to as GrQc.

Influence propagation follows the Independent Cascade (IC) model (Kempe et al., 2003). The probabilities assigned to
the edges wE : E → [0, 1] follow the weighted cascade model (Kempe et al., 2003). In the weighted cascade model, an
edge that goes from u ∈ V to v ∈ V is assigned probability q

dv
where dv is the number of incoming edges to node v and

q ∈ (0, 1]. For facebook q = 0.5, and for GrQc q = 0.8.

The average reachability oracle, f , is over N = 25000 random realizations of the influence graph. The approximate average
reachability oracle of Cohen et al., F , is computed over these realizations with various oracle errors ε and the greedy
algorithm is run using these oracles. For comparison, we also run the greedy algorithm with f .

For the cost function c : 2V → R≥0, we choose a cost cv for each v ∈ V by sampling from a normal distribution with mean
1 and standard deviation 0.1, and then define c(X) =

∑
x∈X cx.

To select the parameter γ when computing the ratio of Theorem 2, we discretize the domain of γ, compute the ratio on each
of the points, and select the γ that gives the smallest approximation ratio.

Additional Experimental Results The experimental results presented in Section 3 of the paper consider a modular cost
function. However, the approximation results presented in Theorems 1 and 2 are for general submodular cost functions. In
this section, we present additional experimental results analogous to those in Section 3 of the paper but with non-modular
cost function.

Recall from Section 1.3 that a measure of how far a function is from being is modular is measured by its curvature,
ρ ∈ [1,∞). Our approximation ratios in Theorems 1 and 2 depend on ρ: the smaller ρ, and hence the closer to being
modular the function is, the better the approximation ratio.

Notice that the greedy algorithm, presented in Section 1.3, chooses elements only according to singleton costs. Therefore,
the experimental results in Section 3 of the paper can easily be extended to cost functions that are not modular by simply
computing the ratio for different values of cost curvature, ρ; higher values of ρ would require smaller epsilon to get the same
ratio.



Submodular Cost Submodular Cover with an Approximate Oracle

(a) facebook, r1, ρ = 1.0 (b) facebook, r1, ρ = 1.2 (c) facebook, r1, ρ = 1.4 (d) facebook, r1, ρ = 1.6

(e) facebook, r2, ρ = 1.0 (f) facebook, r2, ρ = 1.2 (g) facebook, r2, ρ = 1.4 (h) facebook, r2, ρ = 1.6

Figure 4. The approximation ratios of Theorem 1 (r1) and an upper bound on that of Theorem 2 (r2) at thresholds indicated by the markers.

The approximation ratio of Theorem 1 on the Facebook dataset is plotted in Figures 4(a) to 4(d) for varying curvature ρ, and
that of Theorem 2 is plotted in Figures 4(e) to 4(h). As ρ increases, the approximation ratios are subtly greater. The greater
that ρ is, the greater µ must be relative to ε in order to have the approximation ratios of Theorems 1 and 2. This results in the
ratios of Theorems 1 and 2 not being guaranteed at lower thresholds for larger ρ.


