Matrix-Free Preconditioning in Online Learning

This appendix is organized as follows:

1. In SectiorA we prove some technical Lemmas used in our main results.

2. In SectiorB we prove Theoren.

3. In SectionC we prove Theorer2, and also provide a doubling-trick based algorithm that achieves the optimal log
factors in its regret bound.

4. In SectiorD we provide details about our empirical evaluation.

A. Technical Lemmas

We compute a useful Fenchel conjugate below:
Lemma 3. Letf (x) = aexp(bx) fora Oandb 0. Thenf?(y)= £ log % 1 forally O.

Proof. We want to maximize
yx aexp(bx)

as a function ok. Differentiating, we havg abexp(bx) = 0, so thatx = % log % (where we've used our assumption
about non-negativity of all variables). Then we simply substitute this value in to conclude the Lemma. O

Next, we have a useful optimization solution:
Lemma 4. Supposé\; B; C; D are non-negative constants. Then

A B ZE " Bp5! "
inf = | - C +D 2 4U AD I — C:1;
X2[|g1;1:2]x og x X max max log ﬂer
" P ! #i
+
2A max log ypu C;1

Proof. We will just guess a value fot:

Suppose that this quantity is [@; 1=2] for now. Then we have
!
lo B lo Bp b
g X g 49?

so that
" p_! #
é lo E C é lo %B D C
X 9 X X 9 A
M p—! }
g B D

Thus we have:

U P! #
B H B D
log " C +Dx 2 AD max log ﬂsf C;1

Matrix-Free Preconditioning in Online Learning

Now suppose instead that our guess is outfi&=2]. Then we must have
" ! #
p_

4A max log EQTD C;1 D

and also

i B D pﬁ
2P max log ﬂaf C:1 pf

So now withx = 1 =2 we obtain:

" N #
A B BpD

X log < C +Dx 2A(log(2B) C)+2Amax log jlé)T C;1
" Bpﬁ! #
2A(log(2B) C)+2A max log j19T C1

" p ! #

2
4A max log EPAK;D C;1

A.1. Proof of Lemma?2

Proof. Recall thatWealth: (v) is the wealth of an algorithm that always uses betting fractioBo long akvk 1=2, we

have I
X X
Wealthr (v) exp v o) (v)2
t=1 t=1
- P w _Pr 2 vielde-
SettingX = =1 & ke @ndZ = (g w=kwk)“ yields:
w
Wealthy ¢— exp cX *Z

kwk

By mild abuse of notation, we de ne the regret of aichoosing algorithm at % asRY (c), so that following §) we can

write:
Wealthy exp cX ¢?Z RY¥(0) = f(X) (12)

where we de ned¢(X)= exp cX c®Z RY(c) . Now by Lemmasl and3, we obtain:

Rr(w) — +f2(kwk)

= + % lo Kk

B c 9 cexp(c2Z RY¥(0)

= +le|< log % +cZ+R¥(0 1

= 4 kﬂckaog(kwk:c) 1)+ kwkeZ + kﬂckRHC) (13)

B. Proof of Theorem1

The following theorem provides a more detailed version of Thedkgeimcluding all constants:

Matrix-Free Preconditioning in Online Learning

Theorem 3. Supposégik, 1for some nornk k for all t. Further suppose thdiNNEROPTIMIZER has outputs satisfying
kvik 1=2 and guarantees regret nearly linear kvk:

Y(v)= Zi Vi Zt V + kvkGr (v=kvk)
t=1

P
for some functioit (v=kvk) for anyv withkvk 1=2. Then if th1 O e 26T (W=kwk), RECURSIVEOPTIMIZER
obtains

o ~ ~

T 2 0 ¢ =) T 3

! P
X 2 kwk2+ L w)2

4kwk2 + (g w)2 max4log @ LG +
t=1

—~roo<

Rr(w) +4 1;15

and otherwise
Rt (w) + 2 kwkGt (w=kwk)

Proof. First, observe that sindertk 1=2 for all t, we must have Wealth O for allt and so

P
Therefore, if |, & % < 2Grt(w=kwk) we must have

X
Rr(w) = G W G W
t=1
X w
= o W kwk g K

t=1 t=1

+ 2 kwkG(w=kwk)
) P
Which proves one case of the Theorem. So now we assum(:;[=1 O wax 2Gt(w=kwk).

Recall the inequality:

X
log(Wealthr) log() + g v (& V)? RY(V)

t=1

for anyv with kvk 1=2. Using our assumption oRY, and settingy = cw=kwk for some unspeci ed 2 [0; 1=2], we
have

log(Wealthr) log() + g v (g V) (+ kvkG(v=kvk))
t=1

X w w

+Iog()+t:1 Co ?Z G oK

c w

+log()+) >% ok 2z

t=1
where we havedened = [, & v - Nowwedene

f(X)= exp CZZ+gX

Matrix-Free Preconditioning in Online Learning

to obtain
I
X W
W -
ealthy f) O ok
t=1
Then using Lemmas and3 we obtain:
Rr(w) + f?(kwk)
+ 2K g @ + 1 +2kwkcZ
Now we optimizec 2 [0; 1=2] using Lemmad:
s p——
Rt (w) +4kwk (4+ Z)max log 2wk 4+ 2 + 11

C. Proof of Theorem?2

The following theorem provides a more detailed version of Thedgimcluding all constants and logarithmic factors.
Theorem 4. Supposdg; ky 1for all t. Then for allkwk; 1=2, Algorithm2 guarantees regret:

2y u D ! #
jwij(1+4G; 2= + Gi(1+2=
Rr(w) d +2 jwijmax4%j 4£+ Gi 1+ 2 max log wi(Gi) Gi) 11 ;
i=1
| " 0 ! ##
jWij(1+4G)) = 4+5=4 + G (1+2=
2max log jwij(i) i() 11
X ZM5 2 " 1+4G,) ' 54 612! *
i + i =4 + G (1+2=
d +2kwk; JWiJ max4!fj —+Gi 1+Z max log (1) i() 11 ;
i=1 kal 4 2
" o ! 4
2max log (1+4Gj) 4+5=4 + Gj(1+2=) 11

2
= d + kwky; G(w=kwk;)

Proof. First, observe that Algorithr is runningd copies of a 1-dimensional algorithm, one per coordinate. Using the
classic diagonal trick, we can write

X X xd
Rt (W) hoeswe wi = Oi (Wi W) = Rt (w)
t=1 i=1 t=1 i=1

whereR ;i indicates the regret of thigh 1-dimensional optimizer. As a result, we will only analyze each dimension
individually and combine all the dimensions at the end. To make notation cleaner during this process, we drop the subscripts
i.

Next, we claim that it suf ces to examine the regret of the rather than that of the; s. In particular, it holds that:
g(we W) &(xt W)

We show this via case-work. First,W; = X; the claim is immediate becauge= ;. Supposey(x; w;) 0. Then
o = & andgiX; gW; so that the claim follows. Finally, suppoggx; Ww;) < 0. Then sincex; 6 w;, we must

Matrix-Free Preconditioning in Online Learning

havew; = clip(x;; 1=2;1=2) so thatsign(x;) = sign(x; w;) = sign(w;) and scsign(g;) = sign(w;). Further, since
wy 2f 1=2;1=2gandw 2 [1=2;1=2], sign(w; w) = sign(w;). Thereforeg;(w; w) O0=g(X; w). Therefore
we can write:

X X
Ge(we W) (Xt W)

t=1 t=1

The RHS of the above is the regret of thes with respect to thg; s, so we reduce to analyzing this regret. Eventually the
regret bound will be increasing j&j, and sincge:j j gj, we can seamlessly transition to a regret bound in terms of the
O -

Finally, observe that the;s are generated by a betting algorithm using betting-fractiongspection of the formula for,
reveals that we can write:

. 1
Vi = argmin —AV2+ 7y
v2[1=2;1=2] t=1

so that they; are actually the outputs of an FTRL algorithm using regulariﬁer\sz, which are’;—‘—strongly convex. That s,
thexs are actually an instance oERURSIVEOPTIMIZER.

Thus by Lemm& we have
- jwj jwij . wio, w
R f — | — 1 Z+ —R —
(W) 2 [I(?;1=21 T 99 Twjes T TRy CJWJ

P - , ,
whereZ = |, @2 in this one-dimensional case.

Next we tackleRY . To do this, we invoke the FTRL analysis dfi¢Mahan 2017 to claim:

At X 4

RY(x) —x2+ !
4 t=1 AIZ 1
At 2 X th
x4+ —P
4 =1 5+ i 7

Now observe that each satis esjz;j 2jgj 2sothat

X 72 X 22
5+ 172 1+ L z2
t=1 i=1 “i t=1 i=1 ||
a
log 1+ 722
t=1 |
a
log 1+4 ¢
t=1
Therefore we have
P !
5+4 | P X
RY (x) Afit‘lgtx2 + log 1+4 ¢
t=1
5+47

= 25 Hlog (1+42))

Plugging back into the result from Lemr2ave obtain:

RT (W) inf + M |Og M

1 +jwjc(5=4 +Z(1+2=
c2[0;1=2] c c wje(()

Matrix-Free Preconditioning in Online Learning

Then using Lemmd we get:

2y . D ! #
- 2 jwj(L+4z 2= +Z(1+2=
Rt (w) +2jwj max4%J 43 +Z 1+ - max log wi() () 11 ;
" p ! it
jwij(l + +5=4 + +2=
2max log jwj(1+4z) 4+5=4 Z(1+2=) 11

P
Now we simply combine each of thiedimensional regret bounds and observe that in a one-dimersion, th1 Q%=
G; to obtain:

2

V T
xd i i L= : —
Rr(w) d +2 jwijmax4p 43 +G 1+ Z max log wij(1+4G;) 54 + Gi(1+2=) 11

i=1

4L
H

o p ! ##
(1 +4G; +5=4 + Gj(1+2=
2max log jwij(1+4G;) 4+5=4 + Gj(1+2=) 11

C.1. Optimal Logarithmic Factors

The previous analysis obtains logarithmic factors of the Igtmlyﬁiijm* =) for any given > 0. Forjwj > |, thisis

the same up to constant factors as the optimal bdom@wj Z=). However, for smallv this is not so. In the smali

case, our bound is already an improvement on the previous exp@akbéky & Orabona2018, which has an exponent

of 4:5instead ofl=2 + , but here we sketch how to removeompletely using the classic doubling trick. We present the

idea in one dimensional unconstrained problems only: conversion to constrained or high dimensional problems may be
accomplished via per-coordinate updates as in Thedtemvia the dimension-free reduction i6ftkosky & Orabona

2018. The idea is essentially the same as Algorithrbut instead of using a valf,yinlgl, we use axed A andset =1.

We restart the algorithm with a doubled value fowhenever we obsen2Z =2 @2 > A . Let us analyze this scheme

during one epoch of xedh-value. Following identical analysis as in Theordnpwe observe that

Y oxte s A

Then applying Theorerd we have

K : jwj jwij o jwj
RT (w) c2[l(§1;11::2] + c log c 1 +2jwjczy + c
_ jwi jwj oo
= + = log . + 2jwjcZy

whereR-kr indicates regret in thkth epoch and is the value oZ in thekth epoch. Optimizing, we obtain:

2s 5 D 3
P & jp— i T
W <k 2k ;1 ; 2max log W) 2% sk 4+2z¢

Rr(w) +2jwjmax4 2Z, max log 195

Matrix-Free Preconditioning in Online Learning

P
LetZ be the true value o (i.e.Z = thl g? across all epochs, in contrast tZg). Then we have
ZM u } i 3

P 7 P
jwj 2Z jwj 4+27 15

;1 ; 2max log

RX(w) +2jwj ma\x4%l 27, max log

Then summing over all epochs, we obtain
: 2 Py
jwj 2Z jwj 4+27 .1 5A

Rr(w) O@ log(Z)+ jwj max4!fj Z max log ;1 ; log(Z)max log

D. Experimental Details

In this Section we describe our experiments in detail. All of our neural network experiments were conducted using the
Tensor2Tensor libranMaswani et al.2018. We evaluated RCURSIVEOPTIMIZER on several datasets included in the
library, including MNIST and CIFAR-10 image classi cation, LM1B language modeling with 32k, and IMDB sentiment
analysis tasks. On CIFAR-10, we used a ResNet mddiek(al, 2016 (ResNet-32), on MNIST we used a simple two

layer fully connected network as well as logistic regression, and for the remaining tasks we used the Transformer model
(Vaswani et al.2017).

We used = 1:0in RECURSIVEOPTIMIZER. For our baseline optimizers Adam and Adagrad, we used default parameters
provided by Tensor2Tensor for each dataset when available. Often these were not available for Adagrad, in which case we
manually tuned the learning rate on a small exponentially spaced grid. Experiments with larger models or data sets, i.e.
CIFAR-10 and LM1B, ran on single NVIDIA P100 GPU, the rest on single NVIDIA K1200 GPU.

D.1. Choice of Inner Optimizer

Our analysis uses a Follow-the-Regularized-Leader algorithm in the inner optimizeidP TIMIZER to choose the
inner-most betting fractiox;. However, according to Theoretnwe may useny optimizer with a suf ciently good regret
guarantee as the inner optimizer. Since our initial submissiemepka et al.2019 proposed the 8INOL algorithm that

obtains regret similar to G OPTIMIZER (albeit with somewhat worse logarithmic factors). However, we found that using
ScINOL resulted in much better performance on the Transformer model tasks, so we used it as the inner optimizer in all
experiments. We conjecture that our algorithm is inheriting some of the scale-invariance propertiés ©f.Swhich

allows it to be more robust. We stress that this is still theoretically sound - the only change will be a small increase in the
logarithmic factors.

D.2. Momentum Analog

In our experiments we found that augmentingd®RSIVEOPTIMIZER with the “momentum”-like offsets for parameter-free
online learning proposed by (itkosky & Boahen2017h Cutkosky & Orabona2018 improved the empirical performance
on CIFAR-10, so all of our results show two curves f&dURSIVEOPTIMIZER, both with and without momentum (except
for the synthetic experiments, in which we did not use momentum). In brief, this consists of replacing eactvjtesitte
w; + Wy where

X KgokZwio
=7 pladkane
t0=1 t0=1 kgtok?

E
|

D.3. Dealing with unknown bound ong;

Our theory requireggik, 1 wherek kisthel norm. Although we may replackwith any known boundjmay, it

is not possible to simply ignore this requirement in implementing the algorithm: doing so may cause wealth to become
negative, which will completely destabilize the algorithm since it will be implicitly differentiating the logarithm of a negative
number. However, we do not wish to have to provide this bound to the algorithm, so we adopt a simple heuristic. We
maintaingmax , the maximum value dfg; k; we have observed so far during the course of the optimization. Then instead of
providingg; to RECURSIVEOPTIMIZER, We provideg: =gnax - ldeally,gmax Will only increase during the very beginning of

Matrix-Free Preconditioning in Online Learning

the optimization, after which we will simply be rescaling the gradients by a constant factor. Since our regret bounds are
nearly scale-free, this should hopefully have negligible effect on the performance. Note that it is actually impossible to
design an algorithm that maintains regret nearly linedwk while also being adaptive to the unknown nal valuegafax
(Cutkosky & Boahen20173.

D.4. Initial Betting Fraction

Prior results on coin-betting in deep learnir@rébona & Tommasi2017) suggest that a valuable heuristic is to keep the
initial betting fraction smaller than some moderate constant. This has the effect of preventing the initial step taken by
the algorithm from being too large. We choose to apply this heuristic to the betting fraction of the inner-optinuter -
the betting fraction of the outer optimizer. Note thatl SOL is also a coin-betting algorithm, so it still makes sense to
gpply the heuristic in this manner. We clip the inner betting fraction of dimernsioe always at most = 0:1 until

vtz;i 1 wherev, is the gradient passed to the inner betting fraction. This trick has no theoretical basis, but seems to
provide signi cant improvement in the deep learning experiments.

D.5. Empirical Results

Now we plot our performance on the benchmarks. We record performance on train and test set, both in terms of number of
iterations as well as wall clock time. Generally from eight possible combinations of train, test-top-1 accuracy, loss-steps,
time curves we show train loss and test accuracy both by steps and time, other combinations are indistinguishably similar
and omitted for brevity. For LM1B and Penn Tree Bank language models we include the log perplexity metric as well.

With regard to ef ciency observe that the right hand side plots of Fig@rasd8 whose x-axis is wall clock time are

rather similar to left hand side plots based on number of iterations. For a more accurate view,9Fstores that
RECURSIVEOPTIMIZER is somewhat slower than both Adam and Adagrad. It is evident that the algorithm requires
more computation, although only by a constant factor. We made essentially no effort to optimize our code. We expect
that with more careful implementation these numbers can be improved. Secondly, Adam (more speci cally LazyAdam
used by Tensor2Tensor framework) and Adagrad optimizers handle sparse and dense gradients differently. Our current
implementation treats sparse gradients as if they were dense ignoring their sparsity which is detrimental for large vocabulary
embeddings.

Observe that on the convex logistic regression task, all optimizers converge to the same minimum of train loss, as theory
predicts. On the non-convex neural network tasks¢ BRSIVEOPTIMIZER seems to be marginally better than the baselines

on the Transformer task, but slightly worse than Adam on CIFAR-10. Interestingly, the momentum heuristic was helpful on
CIFAR-10, but seemed detrimental on the Transformer tasks. We suspect&thakRIVEOPTIMIZER is held back on these
non-convex tasks by the somewhat global nature of our update. Because our iteratiéealéh ., it is easily feasible for

the iterate to change quite dramatically in a single round as wealth becomes larger. In contrast, proximal methods such as
Adam or Adagrad enforce some natural stability in their iterates. In future, we plan to develop a version of our techniques
that also enforces some natural stability, which may be more able to realize gains in the non-convex setting.

Matrix-Free Preconditioning in Online Learning

0.92 4

0.90

4
0
©

Test accuracy

0.86 1

0.84 1

0.82

—— Adam

~—— Adagrad

—— Recursive

—— Recursive+Momentum

600000 800000 1000000

Steps

0 200000 400000

(a) Test accuracy vs steps

Train loss (log scale)

,_.
<

10-4 4

—— Adam
—— Adagrad
—— Recursive
—— Recursive+Momentum

T T T T
150000 200000 250000 300000

Steps

T T T
0 50000 100000

(c) Train loss vs steps

Test accuracy

0.84

Train loss (log scale)

1074

—— Adam

~——— Adagrad

—— Recursive

—— Recursive+Momentum

0 2 4 6 8 10
Hours

(b) Test accuracy vs time

—— Adam
—— Adagrad
—— Recursive
—— Recursive+Momentum

T T
0.0 0.5 1.0 15 2.0 25 3.0
Hours

(d) Train loss vs time

Figure 3. CIFAR-10 with ResNet-32

0.92 4

0.90 4

0.88

Test accuracy
)
®
o

0.84 1
0.82 —— Adam
’ ~——— Adagrad
—— Recursive
0.80 —— Recursive+Momentum
0 2000 4000 6000 8000 10000

Steps

(a) Test accuracy vs steps

2.0

18

1.6

14

Train loss

1.2

1.0

0.8

—— Adam

~—— Adagrad

—— Recursive

—— Recursive+Momentum

(b) Train loss vs steps

Figure 4. MNIST with logistic regression

