
Matrix-Free Preconditioning in Online Learning

This appendix is organized as follows:

1. In Section A we prove some technical Lemmas used in our main results.

2. In Section B we prove Theorem 1.

3. In Section C we prove Theorem 2, and also provide a doubling-trick based algorithm that achieves the optimal log

factors in its regret bound.

4. In Section D we provide details about our empirical evaluation.

A. Technical Lemmas

We compute a useful Fenchel conjugate below:

Lemma 3. Let f(x) = a exp(bx) for a ≥ 0 and b ≥ 0. Then f⋆(y) = y
b

(

log
(

y
ab

)

− 1
)

for all y ≥ 0.

Proof. We want to maximize

yx− a exp(bx)

as a function of x. Differentiating, we have y − ab exp(bx) = 0, so that x = 1
b log

(

y
ab

)

(where we’ve used our assumption

about non-negativity of all variables). Then we simply substitute this value in to conclude the Lemma.

Next, we have a useful optimization solution:

Lemma 4. Suppose A,B,C,D are non-negative constants. Then

inf
x∈[0,1/2]

A

x

[

log

(

B

x

)

− C

]

+Dx ≤ 2max

√

√

√

√ADmax

[

log

(

B
√
D√
A

)

− C, 1

]

,

2Amax

[

log

(

B
√
4A2 +D√

A

)

− C, 1

]]

Proof. We will just guess a value for x:

x =

√
A√
D

√

√

√

√max

[

log

(

B
√
D√
A

)

− C, 1

]

Suppose that this quantity is in [0, 1/2] for now. Then we have

log

(

B

x

)

≤ log

(

B
√
D√
A

)

so that

A

x

[

log

(

B

x

)

− C

]

≤ A

x

[

log

(

B
√
D√
A

)

− C

]

≤

√

√

√

√AD

(

log

(

B
√
D√
A

)

− C

)

Thus we have:

A

x

[

log

(

B

x

)

− C

]

+Dx ≤ 2

√

√

√

√ADmax

[

log

(

B
√
D√
A

)

− C, 1

]

Matrix-Free Preconditioning in Online Learning

Now suppose instead that our guess is outside [0, 1/2]. Then we must have

4Amax

[

log

(

B
√
D√
A

)

− C, 1

]

≥ D

and also

2

√

√

√

√max

[

log

(

B
√
D√
A

)

− C, 1

]

≥
√
D√
A

So now with x = 1/2 we obtain:

A

x

[

log

(

B

x

)

− C

]

+Dx ≤ 2A(log(2B)− C) + 2Amax

[

log

(

B
√
D√
A

)

− C, 1

]

≤ 2A(log(2B)− C) + 2Amax

[

log

(

B
√
D√
A

)

− C, 1

]

≤ 4Amax

[

log

(

B
√
4A2 +D√

A

)

− C, 1

]

A.1. Proof of Lemma 2

Proof. Recall that WealthT (v) is the wealth of an algorithm that always uses betting fraction v. So long as ‖v‖ ≤ 1/2, we

have

WealthT (v) ≥ ǫ exp

(

−v ·
T
∑

t=1

gt −
T
∑

t=1

(v · gt)2
)

Setting X = −∑T
t=1 gt · ẘ

‖ẘ‖ , and Z =
∑T

t=1(gt · ẘ/‖ẘ‖)2 yields:

WealthT

(

c
ẘ

‖ẘ‖

)

≥ ǫ exp
(

cX − c2Z
)

By mild abuse of notation, we define the regret of our v-choosing algorithm at c ẘ
‖ẘ‖ as Rv

T (c), so that following (9) we can

write:

WealthT ≥ ǫ exp
(

cX − c2Z −Rv
T (c)

)

= fc(X) (12)

where we defined fc(X) = ǫ exp
(

cX − c2Z −Rv
T (c)

)

. Now by Lemmas 1 and 3, we obtain:

RT (ẘ) ≤ ǫ+ f⋆
c (‖ẘ‖)

= ǫ+
‖ẘ‖
c

[

log

(‖ẘ‖
ǫc exp(−c2Z −Rv

T (c))

)

− 1

]

= ǫ+
‖ẘ‖
c

[

log

(‖ẘ‖
cǫ

)

+ c2Z +Rv
T (c)− 1

]

= ǫ+
‖ẘ‖
c

(log(‖ẘ‖/cǫ)− 1) + ‖ẘ‖cZ +
‖ẘ‖
c

Rv
T (c) (13)

B. Proof of Theorem 1

The following theorem provides a more detailed version of Theorem 1, including all constants:

Matrix-Free Preconditioning in Online Learning

Theorem 3. Suppose ‖gt‖⋆ ≤ 1 for some norm ‖ ·‖ for all t. Further suppose that INNEROPTIMIZER has outputs satisfying

‖vt‖ ≤ 1/2 and guarantees regret nearly linear in ‖̊v‖:

Rv
T (̊v) =

T
∑

t=1

zt · vt − zt · v̊ ≤ ǫ+ ‖̊v‖GT (̊v/‖̊v‖)

for some function GT (̊v/‖̊v‖) for any v̊ with ‖̊v‖ ≤ 1/2. Then if −
∑T

t=1 gt · ẘ
‖ẘ‖ ≥ 2GT (ẘ/‖ẘ‖), RECURSIVEOPTIMIZER

obtains

RT (ẘ) ≤ ǫ+ 4

√

√

√

√

√

(

4‖ẘ‖2 +
T
∑

t=1

(gt · ẘ)2
)

max

log

2
√

4‖ẘ‖2 +
∑T

t=1(gt · ẘ)2

ǫ

+ ǫ− 1, 1

and otherwise

RT (ẘ) ≤ ǫ+ 2‖ẘ‖GT (ẘ/‖ẘ‖)

Proof. First, observe that since ‖vt‖ ≤ 1/2 for all t, we must have WealthT ≥ 0 for all t and so

T
∑

t=1

gt · wt ≤ ǫ

Therefore, if −∑T
t=1 gt · ẘ

‖ẘ‖ < 2GT (ẘ/‖ẘ‖) we must have

RT (ẘ) =

T
∑

t=1

gt · wt − gt · ẘ

=

T
∑

t=1

gt · wt − ‖ẘ‖
T
∑

t=1

gt ·
ẘ

‖ẘ‖
≤ ǫ+ 2‖ẘ‖G(ẘ/‖ẘ‖)

Which proves one case of the Theorem. So now we assume −∑T
t=1 gt · ẘ

‖ẘ‖ ≥ 2GT (ẘ/‖ẘ‖).

Recall the inequality:

log(WealthT) ≥ log(ǫ) +

T
∑

t=1

−gt · v̊ − (gt · v̊)2 −Rv
T (̊v)

for any v̊ with ‖̊v‖ ≤ 1/2. Using our assumption on Rv
T , and setting v̊ = cẘ/‖ẘ‖ for some unspecified c ∈ [0, 1/2], we

have

log(WealthT) ≥ log(ǫ) +

T
∑

t=1

−gt · v̊ − (gt · v̊)2 − (ǫ+ ‖̊v‖G(̊v/‖̊v‖))

≥ −ǫ+ log(ǫ) +

T
∑

t=1

−cgt ·
ẘ

‖ẘ‖ − c2Z − cG

(

ẘ

‖ẘ‖

)

≥ −ǫ+ log(ǫ) +

T
∑

t=1

− c

2
gt ·

ẘ

‖ẘ‖ − c2Z

where we have defined Z =
∑T

t=1

(

gt · ẘ
‖ẘ‖

)2

. Now we define

f(X) = ǫ exp
(

−ǫ− c2Z +
c

2
X
)

Matrix-Free Preconditioning in Online Learning

to obtain

WealthT ≥ f

(

−
T
∑

t=1

gt ·
ẘ

‖ẘ‖

)

Then using Lemmas 1 and 3 we obtain:

RT (ẘ) ≤ ǫ+ f⋆(‖ẘ‖)

≤ ǫ+
2‖ẘ‖
c

[

log

(

2‖ẘ‖
cǫ

)

+ ǫ− 1

]

+ 2‖ẘ‖cZ

Now we optimize c ∈ [0, 1/2] using Lemma 4:

RT (ẘ) ≤ ǫ+ 4‖ẘ‖
√

(4 + Z)max

[

log

(

2‖ẘ‖
√
4 + Z

ǫ

)

+ ǫ− 1, 1

]

C. Proof of Theorem 2

The following theorem provides a more detailed version of Theorem 2, including all constants and logarithmic factors.

Theorem 4. Suppose ‖gt‖∞ ≤ 1 for all t. Then for all ‖ẘ‖∞ ≤ 1/2, Algorithm 2 guarantees regret:

RT (ẘ) ≤ dǫ+ 2

d
∑

i=1

|ẘi|max

√

√

√

√

[

5

4η
+Gi

(

1 +
2

η

)]

max

[

log

(

|ẘi|(1 + 4Gi)η
√

2/η +Gi(1 + 2/η)

ǫ

)

− 1, 1

]

,

2max

[

log

(

|ẘi|(1 + 4Gi)
η
√

4 + 5/4η +Gi(1 + 2/η)

ǫ

)

− 1, 1

]]

≤ dǫ+ 2‖ẘ‖∞
d
∑

i=1

|ẘi|
‖ẘ‖∞

max

√

√

√

√

[

5

4η
+Gi

(

1 +
2

η

)]

max

[

log

(

(1 + 4Gi)η
√

5/4η +Gi(1 + 2/η)

2ǫ

)

− 1, 1

]

,

2max

[

log

(

(1 + 4Gi)
η
√

4 + 5/4η +Gi(1 + 2/η)

2ǫ

)

− 1, 1

]]

:= ǫd+ ‖ẘ‖∞G(ẘ/‖ẘ‖∞)

Proof. First, observe that Algorithm 2 is running d copies of a 1-dimensional algorithm, one per coordinate. Using the

classic diagonal trick, we can write

RT (ẘ) ≤
T
∑

t=1

〈gt, wt − ẘ〉 =
d
∑

i=1

T
∑

t=1

gt,i(wt,i − ẘ) =

d
∑

i=1

RT,i(ẘ)

where RT,i indicates the regret of the ith 1-dimensional optimizer. As a result, we will only analyze each dimension

individually and combine all the dimensions at the end. To make notation cleaner during this process, we drop the subscripts

i.

Next, we claim that it suffices to examine the regret of the xts rather than that of the wts. In particular, it holds that:

gt(wt − ẘ) ≤ g̃t(xt − ẘ)

We show this via case-work. First, if wt = xt the claim is immediate because gt = g̃t. Suppose gt(xt − wt) ≥ 0. Then

gt = g̃t and gtxt ≥ gtwt so that the claim follows. Finally, suppose gt(xt − wt) < 0. Then since xt 6= wt, we must

Matrix-Free Preconditioning in Online Learning

have wt = clip(xt,−1/2, 1/2) so that sign(xt) = sign(xt − wt) = sign(wt) and so sign(gt) = −sign(wt). Further, since

wt ∈ {−1/2, 1/2} and ẘ ∈ [−1/2, 1/2], sign(wt − ẘ) = sign(wt). Therefore gt(wt − ẘ) ≤ 0 = g̃t(xt − ẘ). Therefore

we can write:

T
∑

t=1

gt(wt − ẘ) ≤
T
∑

t=1

g̃t(xt − ẘ)

The RHS of the above is the regret of the xts with respect to the g̃ts, so we reduce to analyzing this regret. Eventually the

regret bound will be increasing in |g̃t|, and since |g̃t| ≤ |gt|, we can seamlessly transition to a regret bound in terms of the

gt.

Finally, observe that the xts are generated by a betting algorithm using betting-fractions vt. Inspection of the formula for vt
reveals that we can write:

vt = argmin
v∈[−1/2,1/2]

1

4η
Atv

2 +

T
∑

t=1

ztv

so that the vt are actually the outputs of an FTRL algorithm using regularizers At

4η v
2, which are At

2η -strongly convex. That is,

the xts are actually an instance of RECURSIVEOPTIMIZER.

Thus by Lemma 2 we have

RT (ẘ) ≤ inf
c∈[0,1/2]

ǫ+
|ẘ|
c

(

log

(|ẘ|
cǫ

)

− 1

)

+ |ẘ|cZ +
|ẘ|
c
Rv

T

(

c
ẘ

|ẘ|

)

where Z =
∑T

t=1 g
2
t in this one-dimensional case.

Next we tackle Rv
T . To do this, we invoke the FTRL analysis of (McMahan, 2017) to claim:

Rv
T (x) ≤

AT

4η
x2 +

T
∑

t=1

z2t η

A2
t−1

≤ AT

4η
x2 + η

T
∑

t=1

z2t

5 +
∑t−1

i=1 z
2
i

Now observe that each zt satisfies |zt| ≤ 2|gt| ≤ 2 so that

T
∑

t=1

z2t

5 +
∑t−1

i=1 z
2
i

≤
T
∑

t=1

z2t

1 +
∑t

i=1 z
2
i

≤ log

(

1 +

T
∑

t=1

z2t

)

≤ log

(

1 + 4

T
∑

t=1

g2t

)

Therefore we have

Rv
T (x) ≤

5 + 4
∑T

t=1 g
2
t

4η
x2 + η log

(

1 + 4

T
∑

t=1

g2t

)

=
5 + 4Z

4η
x2 + log ((1 + 4Z)η)

Plugging back into the result from Lemma 2 we obtain:

RT (ẘ) ≤ inf
c∈[0,1/2]

ǫ+
|ẘ|
c

(

log

(|ẘ|(1 + 4Z)η

cǫ

)

− 1

)

+ |ẘ|c(5/4η + Z(1 + 2/η))

Matrix-Free Preconditioning in Online Learning

Then using Lemma 4 we get:

RT (ẘ) ≤ ǫ+ 2|ẘ|max

√

√

√

√

[

5

4η
+ Z

(

1 +
2

η

)]

max

[

log

(

|ẘ|(1 + 4Z)η
√

2/η + Z(1 + 2/η)

ǫ

)

− 1, 1

]

,

2max

[

log

(

|ẘ|(1 + 4Z)η
√

4 + 5/4η + Z(1 + 2/η)

ǫ

)

− 1, 1

]]

Now we simply combine each of the d dimensional regret bounds and observe that in a one-dimension, Z =
∑T

t=1 gt, i
2 =

Gi to obtain:

RT (ẘ) ≤ dǫ+ 2

d
∑

i=1

|ẘi|max

√

√

√

√

[

5

4η
+Gi

(

1 +
2

η

)]

max

[

log

(

|ẘi|(1 + 4Gi)η
√

5/4η +Gi(1 + 2/η)

ǫ

)

− 1, 1

]

,

2max

[

log

(

|ẘi|(1 + 4Gi)
η
√

4 + 5/4η +Gi(1 + 2/η)

ǫ

)

− 1, 1

]]

C.1. Optimal Logarithmic Factors

The previous analysis obtains logarithmic factors of the form log(|w|Z1/2+η/ǫ) for any given η > 0. For |w| > ǫ, this is

the same up to constant factors as the optimal bound log(|w|
√
Z/ǫ). However, for small w this is not so. In the small-ẘ

case, our bound is already an improvement on the previous exponent (Cutkosky & Orabona, 2018), which has an exponent

of 4.5 instead of 1/2 + η, but here we sketch how to remove η completely using the classic doubling trick. We present the

idea in one dimensional unconstrained problems only: conversion to constrained or high dimensional problems may be

accomplished via per-coordinate updates as in Theorem 4, or via the dimension-free reduction in (Cutkosky & Orabona,

2018). The idea is essentially the same as Algorithm 2, but instead of using a varying At, we use a fixed A and set η = 1.

We restart the algorithm with a doubled value for A whenever we observe 2Z = 2
∑

g2t > A. Let us analyze this scheme

during one epoch of fixed A-value. Following identical analysis as in Theorem 4, we observe that

Rv
T (x) ≤

A

2
x2 +

1

2

T
∑

t=1

z2t
A

≤ A

2
x2 +

1

2

T
∑

t=1

4g2t
A

≤
T
∑

t=1

g2t x
2 + 1 = Zx2 + 1

Then applying Theorem 2 we have

Rk
T (ẘ) ≤ inf

c∈[0,1/2]
ǫ+

|ẘ|
c

(

log

(|ẘ|
cǫ

)

− 1

)

+ 2|ẘ|cZk +
|ẘ|
c

= ǫ+
|ẘ|
c

log

(|ẘ|
cǫ

)

+ 2|ẘ|cZk

where Rk
T indicates regret in the kth epoch and Zk is the value of Z in the kth epoch. Optimizing c, we obtain:

RT (ẘ) ≤ ǫ+ 2|ẘ|max

√

2Zk max

[

log

(|ẘ|
√
2Zk

ǫ

)

, 1

]

, 2max

[

log

(|ẘ|
√
4 + 2Zk

ǫ

)

, 1

]

Matrix-Free Preconditioning in Online Learning

Let Z be the true value of Z (i.e. Z =
∑T

t=1 g
2
t across all epochs, in contrast to a Zk). Then we have

Rk
T (ẘ) ≤ ǫ+ 2|ẘ|max

√

√

√

√2Zk max

[

log

(

|ẘ|
√
2Z

ǫ

)

, 1

]

, 2max

[

log

(|ẘ|
√
4 + 2Z

ǫ

)

, 1

]

Then summing over all epochs, we obtain

RT (ẘ) ≤ O

ǫ log(Z) + |ẘ|max

√

√

√

√Zmax

[

log

(

|ẘ|
√
2Z

ǫ

)

, 1

]

, log(Z)max

[

log

(|ẘ|
√
4 + 2Z

ǫ

)

, 1

]

D. Experimental Details

In this Section we describe our experiments in detail. All of our neural network experiments were conducted using the

Tensor2Tensor library (Vaswani et al., 2018). We evaluated RECURSIVEOPTIMIZER on several datasets included in the

library, including MNIST and CIFAR-10 image classification, LM1B language modeling with 32k, and IMDB sentiment

analysis tasks. On CIFAR-10, we used a ResNet model (He et al., 2016) (ResNet-32), on MNIST we used a simple two

layer fully connected network as well as logistic regression, and for the remaining tasks we used the Transformer model

(Vaswani et al., 2017).

We used ǫ = 1.0 in RECURSIVEOPTIMIZER. For our baseline optimizers Adam and Adagrad, we used default parameters

provided by Tensor2Tensor for each dataset when available. Often these were not available for Adagrad, in which case we

manually tuned the learning rate on a small exponentially spaced grid. Experiments with larger models or data sets, i.e.

CIFAR-10 and LM1B, ran on single NVIDIA P100 GPU, the rest on single NVIDIA K1200 GPU.

D.1. Choice of Inner Optimizer

Our analysis uses a Follow-the-Regularized-Leader algorithm in the inner optimizer DIAGOPTIMIZER to choose the

inner-most betting fraction vt. However, according to Theorem 1, we may use any optimizer with a sufficiently good regret

guarantee as the inner optimizer. Since our initial submission, (Kempka et al., 2019) proposed the SCINOL algorithm that

obtains regret similar to DIAGOPTIMIZER (albeit with somewhat worse logarithmic factors). However, we found that using

SCINOL resulted in much better performance on the Transformer model tasks, so we used it as the inner optimizer in all

experiments. We conjecture that our algorithm is inheriting some of the scale-invariance properties of SCINOL, which

allows it to be more robust. We stress that this is still theoretically sound - the only change will be a small increase in the

logarithmic factors.

D.2. Momentum Analog

In our experiments we found that augmenting RECURSIVEOPTIMIZER with the “momentum”-like offsets for parameter-free

online learning proposed by (Cutkosky & Boahen, 2017b; Cutkosky & Orabona, 2018) improved the empirical performance

on CIFAR-10, so all of our results show two curves for RECURSIVEOPTIMIZER, both with and without momentum (except

for the synthetic experiments, in which we did not use momentum). In brief, this consists of replacing each iterate wt with

wt + wt where

wt =

t
∑

t′=1

‖gt′‖2⋆wt′
∑t

t′=1 ‖gt′‖2⋆

D.3. Dealing with unknown bound on gt

Our theory requires ‖gt‖⋆ ≤ 1 where ‖ · ‖ is the ∞ norm. Although we may replace 1 with any known bound gmax, it

is not possible to simply ignore this requirement in implementing the algorithm: doing so may cause wealth to become

negative, which will completely destabilize the algorithm since it will be implicitly differentiating the logarithm of a negative

number. However, we do not wish to have to provide this bound to the algorithm, so we adopt a simple heuristic. We

maintain gmax, the maximum value of ‖gt‖1 we have observed so far during the course of the optimization. Then instead of

providing gt to RECURSIVEOPTIMIZER, we provide gt/gmax. Ideally, gmax will only increase during the very beginning of

Matrix-Free Preconditioning in Online Learning

the optimization, after which we will simply be rescaling the gradients by a constant factor. Since our regret bounds are

nearly scale-free, this should hopefully have negligible effect on the performance. Note that it is actually impossible to

design an algorithm that maintains regret nearly linear in ‖ẘ‖ while also being adaptive to the unknown final value of gmax

(Cutkosky & Boahen, 2017a).

D.4. Initial Betting Fraction

Prior results on coin-betting in deep learning (Orabona & Tommasi, 2017) suggest that a valuable heuristic is to keep the

initial betting fraction smaller than some moderate constant. This has the effect of preventing the initial step taken by

the algorithm from being too large. We choose to apply this heuristic to the betting fraction of the inner-optimizer - not

the betting fraction of the outer optimizer. Note that SCINOL is also a coin-betting algorithm, so it still makes sense to

apply the heuristic in this manner. We clip the inner betting fraction of dimension i to be always at most η = 0.1 until
∑

v2t,i ≥ 1 where vt is the gradient passed to the inner betting fraction. This trick has no theoretical basis, but seems to

provide significant improvement in the deep learning experiments.

D.5. Empirical Results

Now we plot our performance on the benchmarks. We record performance on train and test set, both in terms of number of

iterations as well as wall clock time. Generally from eight possible combinations of train, test-top-1 accuracy, loss-steps,

time curves we show train loss and test accuracy both by steps and time, other combinations are indistinguishably similar

and omitted for brevity. For LM1B and Penn Tree Bank language models we include the log perplexity metric as well.

With regard to efficiency observe that the right hand side plots of Figures 3 and 8 whose x-axis is wall clock time are

rather similar to left hand side plots based on number of iterations. For a more accurate view, Figure 9 shows that

RECURSIVEOPTIMIZER is somewhat slower than both Adam and Adagrad. It is evident that the algorithm requires

more computation, although only by a constant factor. We made essentially no effort to optimize our code. We expect

that with more careful implementation these numbers can be improved. Secondly, Adam (more specifically LazyAdam

used by Tensor2Tensor framework) and Adagrad optimizers handle sparse and dense gradients differently. Our current

implementation treats sparse gradients as if they were dense ignoring their sparsity which is detrimental for large vocabulary

embeddings.

Observe that on the convex logistic regression task, all optimizers converge to the same minimum of train loss, as theory

predicts. On the non-convex neural network tasks, RECURSIVEOPTIMIZER seems to be marginally better than the baselines

on the Transformer task, but slightly worse than Adam on CIFAR-10. Interestingly, the momentum heuristic was helpful on

CIFAR-10, but seemed detrimental on the Transformer tasks. We suspect that RECURSIVEOPTIMIZER is held back on these

non-convex tasks by the somewhat global nature of our update. Because our iterates are vtWealtht−1, it is easily feasible for

the iterate to change quite dramatically in a single round as wealth becomes larger. In contrast, proximal methods such as

Adam or Adagrad enforce some natural stability in their iterates. In future, we plan to develop a version of our techniques

that also enforces some natural stability, which may be more able to realize gains in the non-convex setting.

