
Matrix-Free Preconditioning in Online Learning

This appendix is organized as follows:

1. In SectionA we prove some technical Lemmas used in our main results.

2. In SectionB we prove Theorem1.

3. In SectionC we prove Theorem2, and also provide a doubling-trick based algorithm that achieves the optimal log
factors in its regret bound.

4. In SectionD we provide details about our empirical evaluation.

A. Technical Lemmas

We compute a useful Fenchel conjugate below:
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about non-negativity of all variables). Then we simply substitute this value in to conclude the Lemma.

Next, we have a useful optimization solution:
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Now suppose instead that our guess is outside[0; 1=2]. Then we must have
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So now withx = 1=2 we obtain:
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A.1. Proof of Lemma2

Proof. Recall thatWealthT (v) is the wealth of an algorithm that always uses betting fractionv. So long askvk � 1=2, we
have

WealthT (v) � � exp
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By mild abuse of notation, we de�ne the regret of ourv-choosing algorithm atc �w
k �wk asRv

T (c), so that following (9) we can
write:
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. Now by Lemmas1 and3, we obtain:
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B. Proof of Theorem1

The following theorem provides a more detailed version of Theorem1, including all constants:
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Theorem 3. Supposekgt k? � 1 for some normk�k for all t . Further suppose thatINNEROPTIMIZER has outputs satisfying
kvt k � 1=2 and guarantees regret nearly linear ink�vk:

Rv
T (�v) =

TX

t =1

zt � vt � zt � �v � � + k�vkGT (�v=k�vk)

for some functionGT (�v=k�vk) for any�v with k�vk � 1=2. Then if�
P T

t =1 gt � �w
k �wk � 2GT (�w=k�wk), RECURSIVEOPTIMIZER

obtains

RT (�w) � � + 4

vu
u
u
t

 

4k�wk2 +
TX

t =1

(gt � �w)2

!

max

2

4log

0

@
2
q

4k�wk2 +
P T

t =1 (gt � �w)2

�

1

A + � � 1; 1

3

5

and otherwise
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Proof. First, observe that sincekvt k � 1=2 for all t, we must have WealthT � 0 for all t and so
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to obtain
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Then using Lemmas1 and3 we obtain:
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C. Proof of Theorem2

The following theorem provides a more detailed version of Theorem2, including all constants and logarithmic factors.

Theorem 4. Supposekgt k1 � 1 for all t. Then for allk�wk1 � 1=2, Algorithm2 guarantees regret:
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:= �d + k�wk1 G(�w=k�wk1 )

Proof. First, observe that Algorithm2 is runningd copies of a 1-dimensional algorithm, one per coordinate. Using the
classic diagonal trick, we can write

RT (�w) �
TX

t =1

hgt ; wt � �wi =
dX

i =1

TX

t =1

gt;i (wt;i � �w) =
dX

i =1

RT;i (�w)

whereRT;i indicates the regret of thei th 1-dimensional optimizer. As a result, we will only analyze each dimension
individually and combine all the dimensions at the end. To make notation cleaner during this process, we drop the subscripts
i .

Next, we claim that it suf�ces to examine the regret of thex t s rather than that of thewt s. In particular, it holds that:

gt (wt � �w) � ~gt (x t � �w)

We show this via case-work. First, ifwt = x t the claim is immediate becausegt = ~gt . Supposegt (x t � wt ) � 0. Then
gt = ~gt andgt x t � gt wt so that the claim follows. Finally, supposegt (x t � wt ) < 0. Then sincex t 6= wt , we must
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havewt = clip(x t ; � 1=2; 1=2) so thatsign(x t ) = sign(x t � wt ) = sign(wt ) and sosign(gt ) = � sign(wt ). Further, since
wt 2 f� 1=2; 1=2g and�w 2 [� 1=2; 1=2], sign(wt � �w) = sign(wt ). Thereforegt (wt � �w) � 0 = ~gt (x t � �w). Therefore
we can write:
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The RHS of the above is the regret of thex t s with respect to the~gt s, so we reduce to analyzing this regret. Eventually the
regret bound will be increasing inj~gt j, and sincej~gt j � j gt j, we can seamlessly transition to a regret bound in terms of the
gt .
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Then using Lemma4 we get:
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Now we simply combine each of thed dimensional regret bounds and observe that in a one-dimension,Z =
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C.1. Optimal Logarithmic Factors

The previous analysis obtains logarithmic factors of the formlog(jwjZ 1=2+ � =�) for any given� > 0. For jwj > � , this is
the same up to constant factors as the optimal boundlog(jwj

p
Z=� ). However, for smallw this is not so. In the small-�w

case, our bound is already an improvement on the previous exponent (Cutkosky & Orabona, 2018), which has an exponent
of 4:5 instead of1=2 + � , but here we sketch how to remove� completely using the classic doubling trick. We present the
idea in one dimensional unconstrained problems only: conversion to constrained or high dimensional problems may be
accomplished via per-coordinate updates as in Theorem4, or via the dimension-free reduction in (Cutkosky & Orabona,
2018). The idea is essentially the same as Algorithm2, but instead of using a varyingA t , we use a�xed A and set� = 1 .
We restart the algorithm with a doubled value forA whenever we observe2Z = 2

P
g2
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during one epoch of �xedA-value. Following identical analysis as in Theorem4, we observe that

Rv
T (x) �

A
2

x2 +
1
2

TX

t =1

z2
t

A

�
A
2

x2 +
1
2

TX

t =1

4g2
t

A

�
TX

t =1

g2
t x2 + 1 = Zx 2 + 1

Then applying Theorem2 we have

Rk
T (�w) � inf

c2 [0;1=2]
� +

j �wj
c

�
log

�
j �wj
c�

�
� 1

�
+ 2 j �wjcZk +

j �wj
c

= � +
j �wj
c

log
�

j �wj
c�

�
+ 2 j �wjcZk

whereRk
T indicates regret in thekth epoch andZk is the value ofZ in thekth epoch. Optimizingc, we obtain:

RT (�w) � � + 2 j �wj max

2

4

s

2Zk max
�
log

�
j �wj

p
2Zk

�

�
; 1

�
; 2 max

�
log

�
j �wj

p
4 + 2Zk

�

�
; 1

�
3

5



Matrix-Free Preconditioning in Online Learning

Let Z be the true value ofZ (i.e. Z =
P T

t =1 g2
t across all epochs, in contrast to aZk ). Then we have
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D. Experimental Details

In this Section we describe our experiments in detail. All of our neural network experiments were conducted using the
Tensor2Tensor library (Vaswani et al., 2018). We evaluated RECURSIVEOPTIMIZER on several datasets included in the
library, including MNIST and CIFAR-10 image classi�cation, LM1B language modeling with 32k, and IMDB sentiment
analysis tasks. On CIFAR-10, we used a ResNet model (He et al., 2016) (ResNet-32), on MNIST we used a simple two
layer fully connected network as well as logistic regression, and for the remaining tasks we used the Transformer model
(Vaswani et al., 2017).

We used� = 1 :0 in RECURSIVEOPTIMIZER. For our baseline optimizers Adam and Adagrad, we used default parameters
provided by Tensor2Tensor for each dataset when available. Often these were not available for Adagrad, in which case we
manually tuned the learning rate on a small exponentially spaced grid. Experiments with larger models or data sets, i.e.
CIFAR-10 and LM1B, ran on single NVIDIA P100 GPU, the rest on single NVIDIA K1200 GPU.

D.1. Choice of Inner Optimizer

Our analysis uses a Follow-the-Regularized-Leader algorithm in the inner optimizer DIAGOPTIMIZER to choose the
inner-most betting fractionvt . However, according to Theorem1, we may useanyoptimizer with a suf�ciently good regret
guarantee as the inner optimizer. Since our initial submission, (Kempka et al., 2019) proposed the SCINOL algorithm that
obtains regret similar to DIAGOPTIMIZER (albeit with somewhat worse logarithmic factors). However, we found that using
SCINOL resulted in much better performance on the Transformer model tasks, so we used it as the inner optimizer in all
experiments. We conjecture that our algorithm is inheriting some of the scale-invariance properties of SCINOL, which
allows it to be more robust. We stress that this is still theoretically sound - the only change will be a small increase in the
logarithmic factors.

D.2. Momentum Analog

In our experiments we found that augmenting RECURSIVEOPTIMIZER with the “momentum”-like offsets for parameter-free
online learning proposed by (Cutkosky & Boahen, 2017b; Cutkosky & Orabona, 2018) improved the empirical performance
on CIFAR-10, so all of our results show two curves for RECURSIVEOPTIMIZER, both with and without momentum (except
for the synthetic experiments, in which we did not use momentum). In brief, this consists of replacing each iteratewt with
wt + wt where

wt =
tX

t 0=1

kgt 0k2
?wt 0

P t
t 0=1 kgt 0k2

?

D.3. Dealing with unknown bound ongt

Our theory requireskgt k? � 1 wherek � k is the1 norm. Although we may replace1 with any known boundgmax, it
is not possible to simply ignore this requirement in implementing the algorithm: doing so may cause wealth to become
negative, which will completely destabilize the algorithm since it will be implicitly differentiating the logarithm of a negative
number. However, we do not wish to have to provide this bound to the algorithm, so we adopt a simple heuristic. We
maintaingmax , the maximum value ofkgt k1 we have observed so far during the course of the optimization. Then instead of
providinggt to RECURSIVEOPTIMIZER, we providegt =gmax . Ideally,gmax will only increase during the very beginning of
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the optimization, after which we will simply be rescaling the gradients by a constant factor. Since our regret bounds are
nearly scale-free, this should hopefully have negligible effect on the performance. Note that it is actually impossible to
design an algorithm that maintains regret nearly linear ink�wk while also being adaptive to the unknown �nal value ofgmax

(Cutkosky & Boahen, 2017a).

D.4. Initial Betting Fraction

Prior results on coin-betting in deep learning (Orabona & Tommasi, 2017) suggest that a valuable heuristic is to keep the
initial betting fraction smaller than some moderate constant. This has the effect of preventing the initial step taken by
the algorithm from being too large. We choose to apply this heuristic to the betting fraction of the inner-optimizer -not
the betting fraction of the outer optimizer. Note that SCINOL is also a coin-betting algorithm, so it still makes sense to
apply the heuristic in this manner. We clip the inner betting fraction of dimensioni to be always at most� = 0 :1 untilP

v2
t;i � 1 wherevt is the gradient passed to the inner betting fraction. This trick has no theoretical basis, but seems to

provide signi�cant improvement in the deep learning experiments.

D.5. Empirical Results

Now we plot our performance on the benchmarks. We record performance on train and test set, both in terms of number of
iterations as well as wall clock time. Generally from eight possible combinations of train, test-top-1 accuracy, loss-steps,
time curves we show train loss and test accuracy both by steps and time, other combinations are indistinguishably similar
and omitted for brevity. For LM1B and Penn Tree Bank language models we include the log perplexity metric as well.

With regard to ef�ciency observe that the right hand side plots of Figures3 and8 whose x-axis is wall clock time are
rather similar to left hand side plots based on number of iterations. For a more accurate view, Figure9 shows that
RECURSIVEOPTIMIZER is somewhat slower than both Adam and Adagrad. It is evident that the algorithm requires
more computation, although only by a constant factor. We made essentially no effort to optimize our code. We expect
that with more careful implementation these numbers can be improved. Secondly, Adam (more speci�cally LazyAdam
used by Tensor2Tensor framework) and Adagrad optimizers handle sparse and dense gradients differently. Our current
implementation treats sparse gradients as if they were dense ignoring their sparsity which is detrimental for large vocabulary
embeddings.

Observe that on the convex logistic regression task, all optimizers converge to the same minimum of train loss, as theory
predicts. On the non-convex neural network tasks, RECURSIVEOPTIMIZER seems to be marginally better than the baselines
on the Transformer task, but slightly worse than Adam on CIFAR-10. Interestingly, the momentum heuristic was helpful on
CIFAR-10, but seemed detrimental on the Transformer tasks. We suspect that RECURSIVEOPTIMIZER is held back on these
non-convex tasks by the somewhat global nature of our update. Because our iterates arevt Wealtht � 1, it is easily feasible for
the iterate to change quite dramatically in a single round as wealth becomes larger. In contrast, proximal methods such as
Adam or Adagrad enforce some natural stability in their iterates. In future, we plan to develop a version of our techniques
that also enforces some natural stability, which may be more able to realize gains in the non-convex setting.












