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Here we provide proofs of the equivariance properties of
the of the group convolution and unitary group convolution.
We also show example of filters and activations.

1. Equivariance Of The Group Convolution
Here we provide a copy of Cohen & Welling (2016)’s equiv-
ariance proof of the discrete group convolution. For a signal
f : X → R, filter ψ : X → R, domain X , group G, and
group action Lg where Lg[f ](x) = f(L−1g [x]), we have

[Lt[f ] ?G ψ](g) =
∑
x∈X
Lt[f ](x)ψ(L−1g [x]) (1)

=
∑
x∈G

f(L−1t [x])ψ(L−1g [x]) (2)

=
∑
x′∈G

f(x′)ψ(L−1g [Lt[x
′]]) (3)

=
∑
x′∈G

f(x′)ψ(Lg−1t[x
′]]) (4)

=
∑
x′∈G

f(x′)ψ(L(t−1g)−1 [x′]]) (5)

= [f ?G ψ](t
−1g) (6)

= Lt[f ?G ψ](g) (7)

From line 1 to 2 we used the definition Lg[f ](x) =
f(L−1g [x]); from line 2 to 3 we performed as change of
variables x′ = L−1t [x] or equally x = Lt[x

′]; from line 3 to
4 we applied the composition rule for actions; from line 4 to
5 we used the rule (ab)−1 = b−1a−1 and in the remaining
lines we used the definitions of the group convolution and
actions.
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2. The Equivariance Loss
In the equivariance loss we make use of the following state-
ment

RS [f ] ?Zd RR[ψ] = RS [f ?Zd RS−1R[ψ]]. (8)

The derivation is as follows. We begin by noting that the
roto-translation operator can be written LR,z = TzRR,
where Tz is the translation operator andRR is the rotation
operator. Then we consider the convolution of an S-rotated
imageRS [f ] and filters ψ

[RS [f ] ?G ψ](R, z) =
∑
x∈G
RS [f ](x)Tz[RR[ψ]](x) (9)

= [RS [f ](x) ?G RR[ψ]](x) (10)

which constitutes the LHS of the expression. Now for the
RHS.

RS [f ] ?Zd RR[ψ] (11)
= [LS,0[f ] ?G ψ](R, z) (12)

=
∑
x∈G
LS,0[f ](x)LR,z[ψ](x) (13)

=
∑
x∈G

f(x)L(S,0)−1 [LR,z[ψ]](x) (14)

=
∑
x∈G

f(x)L(S−1,0)[LR,z[ψ]](x) (15)

=
∑
x∈G

f(x)L(S−1R,S−1z)[ψ](x) (16)

=
∑
x∈G

f(x)L(S−1R,S−1z)[ψ](x) (17)

=
∑
x∈G

f(x)TS−1z[RS−1R[ψ]](x) (18)

=
∑
x∈G

f(x)RS−1R[ψ](x− S−1z) (19)

= [f ?Zd RS−1R[ψ]](S
−1z) (20)

= RS [f ?Zd RS−1R[ψ]](z) (21)

which constitutes the RHS of the expression.

3. Architecture
Here we detail the architecture used in our experiments.
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Table 1. The architectures of the translational and roto-translational
equivariant models. After every convolution we place a batch
normalization layer and a ReLU nonlinearity. Across the two
models we have fixed the number of channels, such that the number
of parameters is roughly the same. ‘convN ’ stands for a standard
translational convolution of size N ×N and ‘GconvN ’ stands for
a roto-translational group convolution. Horizontal lines correspond
to max pooling of kernel size 2 and stride 2. The global max pool
corresponds to a max pool over the spatial dimensions and the
orientation dimensions of the activation tensor.

TRANSLATIONAL ROTO-TRANSLATIONAL

conv3-96 Gconv-33
conv3-96 Gconv-33
conv3-96 Gconv-33

conv3-192 Gconv-67
conv3-192 Gconv-67
conv3-192 Gconv-67
conv3-192 Gconv-67
conv1-192 Gconv-67
conv1-192 Gconv-67

global max pool global max pool
softmax-layer softmax-layer

3.1. Visualization of bases and reconstructions
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Figure 1. A basis with 9 elements at 8 orientations from an PAR-
TIAL model. {eiR}i,R
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Figure 2. A set of filters from the first layer of an PARTIAL model.
RR[ψk]
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Figure 3. A set activations from an PARTIAL model’s layer 6.
RR[f ] ?Zd RS [ψ]

Input Target Reconstruction Difference

Figure 4. A set of 2 pairs from the reconstruction task, when train-
ing the basis. The loss is normalized to the scale of the loss,
otherwise it would be too small to distinguish anything.

Figure 5. A set of 10 pairs from the reconstruction task, when
training the basis. The columns represent in order: the input, the
target, the reconstruction, the loss.


