000

Supplementary Material Learning to Convolve: A Generalized Weight-Tying Approach

Anonymous Authors¹

Here we provide proofs of the equivariance properties of the of the group convolution and unitary group convolution. We also show example of filters and activations.

1. Equivariance Of The Group Convolution

Here we provide a copy of Cohen & Welling (2016)'s equivariance proof of the discrete group convolution. For a signal $f: X \to \mathbb{R}$, filter $\psi: X \to \mathbb{R}$, domain X, group G, and group action \mathcal{L}_g where $\mathcal{L}_g[f](x) = f(\mathcal{L}_g^{-1}[x])$, we have

$$[\mathcal{L}_t[f] \star_G \psi](g) = \sum_{x \in X} \mathcal{L}_t[f](x)\psi(\mathcal{L}_g^{-1}[x])$$
(1)

$$=\sum_{x\in G}f(\mathcal{L}_t^{-1}[x])\psi(\mathcal{L}_g^{-1}[x])$$
(2)

$$=\sum_{x'\in G}f(x')\psi(\mathcal{L}_g^{-1}[\mathcal{L}_t[x']])$$
(3)

$$= \sum_{x' \in G} f(x')\psi(\mathcal{L}_{g^{-1}t}[x']])$$
(4)

$$= \sum_{x' \in G} f(x')\psi(\mathcal{L}_{(t^{-1}g)^{-1}}[x']]) \qquad (5)$$

$$= [f \star_G \psi](t^{-1}g) \tag{6}$$

$$= \mathcal{L}_t[f \star_G \psi](g) \tag{7}$$

n line 1 to 2 we use

From line 1 to 2 we used the definition $\mathcal{L}_g[f](x) = f(\mathcal{L}_g^{-1}[x])$; from line 2 to 3 we performed as change of variables $x' = \mathcal{L}_t^{-1}[x]$ or equally $x = \mathcal{L}_t[x']$; from line 3 to 4 we applied the composition rule for actions; from line 4 to 5 we used the rule $(ab)^{-1} = b^{-1}a^{-1}$ and in the remaining lines we used the definitions of the group convolution and actions.

2. The Equivariance Loss

In the equivariance loss we make use of the following statement

$$\mathcal{R}_{S}[f] \star_{\mathbb{Z}^{d}} \mathcal{R}_{R}[\psi] = \mathcal{R}_{S}[f \star_{\mathbb{Z}^{d}} \mathcal{R}_{S^{-1}R}[\psi]].$$
(8)

The derivation is as follows. We begin by noting that the roto-translation operator can be written $\mathcal{L}_{R,z} = \mathcal{T}_z \mathcal{R}_R$, where \mathcal{T}_z is the translation operator and \mathcal{R}_R is the rotation operator. Then we consider the convolution of an *S*-rotated image $\mathcal{R}_S[f]$ and filters ψ

$$[\mathcal{R}_S[f] \star_G \psi](R, z) = \sum_{x \in G} \mathcal{R}_S[f](x) \mathcal{T}_z[\mathcal{R}_R[\psi]](x) \quad (9)$$

$$= [\mathcal{R}_S[f](x) \star_G \mathcal{R}_R[\psi]](x) \quad (10)$$

which constitutes the LHS of the expression. Now for the RHS.

$$\mathcal{R}_S[f] \star_{\mathbb{Z}^d} \mathcal{R}_R[\psi] \tag{11}$$

$$= [\mathcal{L}_{S,0}[f] \star_G \psi](R,z) \tag{12}$$

$$=\sum_{x\in G}\mathcal{L}_{S,0}[f](x)\mathcal{L}_{R,z}[\psi](x)$$
(13)

$$= \sum_{x \in G} f(x) \mathcal{L}_{(S,0)^{-1}} [\mathcal{L}_{R,z}[\psi]](x)$$
(14)

$$= \sum_{x \in G} f(x) \mathcal{L}_{(S^{-1},0)}[\mathcal{L}_{R,z}[\psi]](x)$$
 (15)

$$= \sum_{x \in G} f(x) \mathcal{L}_{(S^{-1}R, S^{-1}z)}[\psi](x)$$
(16)

$$= \sum_{x \in G} f(x) \mathcal{L}_{(S^{-1}R, S^{-1}z)}[\psi](x)$$
(17)

$$=\sum_{x\in G}f(x)\mathcal{T}_{S^{-1}z}[\mathcal{R}_{S^{-1}R}[\psi]](x) \qquad (18)$$

$$= \sum_{x \in G} f(x) \mathcal{R}_{S^{-1}R}[\psi](x - S^{-1}z) \qquad (19)$$

$$= [f \star_{\mathbb{Z}^d} \mathcal{R}_{S^{-1}R}[\psi]](S^{-1}z) \tag{20}$$

$$\mathcal{R}_S[f \star_{\mathbb{Z}^d} \mathcal{R}_{S^{-1}R}[\psi]](z) \tag{21}$$

which constitutes the RHS of the expression.

=

3. Architecture

Here we detail the architecture used in our experiments.

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

Table 1. The architectures of the translational and roto-translational equivariant models. After every convolution we place a batch normalization layer and a ReLU nonlinearity. Across the two models we have fixed the number of channels, such that the number of parameters is roughly the same. 'convN' stands for a standard translational convolution of size $N \times N$ and 'GconvN' stands for a roto-translational group convolution. Horizontal lines correspond to max pooling of kernel size 2 and stride 2. The global max pool corresponds to a max pool over the spatial dimensions and the orientation dimensions of the activation tensor.

004	orientation annensions of the activation tensor.	
065	TRANSLATIONAL	ROTO-TRANSLATIONAL
066	conv3-96	Gconv-33
067	conv3-96	Gconv-33
068	conv3-96	Gconv-33
069	conv3-192	Gconv-67
070	conv3-192	Gconv-67
071	conv3-192	Gconv-67
072	conv3-192	Gconv-67
073	conv1-192	Gconv-67
074	conv1-192	Gconv-67
075	global max pool	global max pool
076	softmax-layer	softmax-layer

3.1. Visualization of bases and reconstructions

References

Cohen, T. and Welling, M. Group equivariant convolutional networks. In *Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, pp. 2990–2999, 2016.

Figure 1. A basis with 9 elements at 8 orientations from an PAR-TIAL model. $\{e_R^i\}_{i,R}$

Figure 2. A set of filters from the first layer of an PARTIAL model. $\mathcal{R}_R[\psi_k]$

ing the basis. The loss is normalized to the scale of the loss,

otherwise it would be too small to distinguish anything.

Figure 5. A set of 10 pairs from the reconstruction task, when training the basis. The columns represent in order: the input, the target, the reconstruction, the loss.

158 159 160 161 162 163 164