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Abstract

It is not easy to design and run Convolutional Neu-
ral Networks (CNNs) due to: 1) finding the opti-
mal number of filters (i.e., the width) at each layer
is tricky, given an architecture; and 2) the com-
putational intensity of CNNs impedes the deploy-
ment on computationally limited devices. Oracle
Pruning is designed to remove the unimportant
filters from a well-trained CNN, which estimates
the filters’ importance by ablating them in turn
and evaluating the model, thus delivers high accu-
racy but suffers from intolerable time complexity,
and requires a given resulting width but cannot
automatically find it. To address these problems,
we propose Approximated Oracle Filter Pruning
(AOFP), which keeps searching for the least im-
portant filters in a binary search manner, makes
pruning attempts by masking out filters randomly,
accumulates the resulting errors, and finetunes
the model via a multi-path framework. As AOFP
enables simultaneous pruning on multiple layers,
we can prune an existing very deep CNN with
acceptable time cost, negligible accuracy drop,
and no heuristic knowledge, or re-design a model
which exerts higher accuracy and faster inference.

1. Introduction
Convolutional Neural Networks (CNNs) have become an
important tool for many real-world applications and related
research areas (Collobert & Weston, 2008; LeCun et al.,
1990a; 1995). Nowadays, designing a CNN usually means
a tiring exploration in a vast design space, which usually
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includes the usage of non-linearities (ReLU, sigmoid or
none), downsampling (max / average pooling or stride-2
convolution), shortcut connections (He et al., 2016), etc.
With so many hyper-parameters in consideration, we still
have to make a hard decision every time we use a convo-
lutional layer: the number of filters, i.e., the width of the
layer. Since an unnecessarily wide conv layer usually leads
to meaningless parameters, heavy computational burdens,
and overfitting, we wish to set a proper width for each layer,
which is inherently tricky. In modern CNN architectures,
some practical guidelines on the number of filters are fol-
lowed. Taking VGG (Simonyan & Zisserman, 2014) for
example, when the feature maps are spatially downsampled
by 2×, the number of filters becomes 2×, so that the com-
putational burdens of each layer are kept roughly the same.
Apparently, such guidelines leave much room to improve
on the layer width for better accuracy and efficiency.

In this paper, destructive CNN width optimization refers to
the process which takes a well-trained tidy CNN as input
and produces an optimized one where some useless filters
are removed. In this context, our method can be categorized
into filter pruning, a.k.a. channel pruning (He et al., 2017)
or network slimming (Liu et al., 2017), a family of CNN
compression techniques, which features three strengths. 1)
Universality: filter pruning can handle any kinds of CNNs,
making no assumptions on the application field, the network
architecture or the deployment platform. 2) Effectiveness:
filter pruning effectively reduces the floating-point oper-
ations (FLOPs) of the network, which serve as the main
criterion of computational burdens. When a filter is pruned,
its output channel and the corresponding input channels
of the following layer are removed. That is, when several
conv layers stacked together are pruned respectively, the
total FLOPs are reduced quadratically. 3) Orthogonality:
filter pruning simply produces a thinner network with no
customized structure or extra operation, which is orthogonal
to other model compression and acceleration techniques.

A common paradigm of filter pruning is to evaluate the im-
portance of filters by some means (Polyak & Wolf, 2015; Hu
et al., 2016; Li et al., 2016; Molchanov et al., 2016; Abbasi-
Asl & Yu, 2017; Anwar et al., 2017; Yu et al., 2018), such
that the accuracy is not damaged severely by the removal of
the less important filters and can be recovered by finetuning.
Apparently, the quality of the filter importance evaluation
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plays a vital role in the entire pipeline. By recognizing the
unimportant filters, we diminish the accuracy drop, such that
it becomes easier for the finetuning process to restore the ac-
curacy. In this sense, the importance of filter can be defined
by the network’s accuracy drop with the filter ablated. If we
ablate a filter (i.e., mask out its outputs), test the model on
an assessment dataset, and observe a severe accuracy drop,
and then the filter can be defined as important.

The most straightforward and accurate algorithm to prune
filters greedily by importance, which is referred to as Oracle
Pruning (Molchanov et al., 2016), can be implemented in
a trial-and-error manner. For a specific layer, we ablate
a filter, test the model on the assessment dataset, record
the accuracy drop as the importance score, i.e., mean ac-
curacy reduction (Abbasi-Asl & Yu, 2017) or loss increase
(Molchanov et al., 2016), then restore the filter and move on
to the next filter. When all the filters have been tested, we
prune the filter with the least importance score. However,
when we start to prune the next filter, the relative importance
of the remaining filters may have been changed (Sect. 4.1),
so they should be tested in the same manner again. In this
way, we can slim a layer by always removing the filter with
the least importance score until we are satisfied with the
trade-off between accuracy and efficiency. However, for
today’s CNNs where a conv layer can comprise hundreds of
filters, the time complexity of Oracle Pruning is intolerable.
In order to acquire the importance score of filters with rea-
sonable time cost, some heuristic methods (Li et al., 2016;
Hu et al., 2016; Molchanov et al., 2016) have been proposed,
which suffer from inferior quality of importance estimation,
compared to Oracle Pruning (Fig. 3). Of note is that “oracle”
described here is only the most accurate greedy pruning
method. A better oracle would consider all combinations of
pruned filters, but of course, this is extremely expensive.

In this paper, we propose Approximated Oracle Filter Prun-
ing (AOFP), a multi-path training-time filter pruning frame-
work (Fig. 1), where we keep searching for the next fil-
ters to prune in a binary search manner and finetuning the
model in the meantime, which features high quality of im-
portance estimation, reasonable time complexity and no
need for heuristic knowledge. The codes are available
at https://github.com/ShawnDing1994/AOFP.
Our contributions are summarized as follows.

• We improve unimportant filters selection by analyzing
the outputs of the next layer only, rather than the final
outputs. However, instead of solving a linear regres-
sion problem layer-by-layer (Luo et al., 2017; 2018),
we ablate the filters randomly, then compute and accu-
mulate the change in the next layer’s outputs, which is
referred to as Damage Isolation. Doing so enables not
only the faster importance estimation but also mutually
independent pruning on all the layers simultaneously.

compute t

for conv2

conv1

loss

conv2

conv3

u(1) v(1)

u(2) v(2)

a batch of data

conv2

…

conv3

compute t

for conv1

gradients

update
F(1,1), F(1,2), F(1,3), F(1,4)

M(1,1), M(1,2), M(1,3), M(1,4)

F(2,1), … , F(2,6)
update

update params

shared

params

shared

Figure 1. Overview of AOFP, where conv1 and conv2 in a
CNN are being pruned simultaneously for example. Filters
F (1,1),F (1,2),F (2,1),F (2,4) have already been masked out, and
the algorithm is trying to pick the next unimportant one out of
{F (1,3),F (1,4)} and two out of {F (2,2),F (2,3),F (2,5),F (2,6)}.

We have shown that the structural change of every layer
in CNNs can be separately measured using only local
information, which may inspire future researches.

• Our experiments on CIFAR-10 and ImageNet have
shown the effectiveness of AOFP in significantly re-
ducing the parameters and FLOPs of several very deep
off-the-shelf CNNs including ResNet-152.

• We propose Destructive CNN Re-design, a CNN de-
sign paradigm, which aims at optimizing the width of
convolutional layers in order for higher accuracy and
faster inference. E.g., the first two layers of VGG both
have 64 filters, but we found out that 44 and 80 work
better. This process can be used as a final refining step
before a model is publicly released or deployed.

2. Related Work
Numerous researches (LeCun et al., 1990b; Hassibi & Stork,
1993; Castellano et al., 1997; Han et al., 2015b; Guo et al.,
2016) have proved it feasible to remove a large portion of pa-
rameters from neural networks without significant accuracy
drop. Furthermore, by removing filters instead of sporadic
connections from CNNs, we transform the wide convolu-
tional layers into narrower ones to reduce the FLOPs, mem-
ory footprint and power consumption significantly.

A straightforward way of filter pruning is to remove unim-
portant filters from a well-trained model. Some researchers
have discussed various metrics to measure filter importance.

https://github.com/ShawnDing1994/AOFP
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E.g., a prior work prunes filters by the accuracy reduction
with the filter ablated (Abbasi-Asl & Yu, 2017); magnitude-
based pruning (Li et al., 2016) considers the filters with
larger magnitude more likely to be important; APoZ-based
pruning (Hu et al., 2016) calculates the percentage of zeros
in the activated feature maps; some researchers use Taylor-
expansions (Molchanov et al., 2016). There are also some
inspiring works which pick up filters by no importance score
but by the channel contribution variance (Polyak & Wolf,
2015) or the Lasso regression (He et al., 2017).

A major drawback of the existing methods is the requirement
for heuristic knowledge. 1) The filter importance metrics
(Li et al., 2016; Molchanov et al., 2016; Hu et al., 2016) are
heuristic, as it is not clear why the proposed metrics reflect
the inherent importance of filters, and it is hard to judge if a
heuristic method outperforms another. 2) For iterative filter
pruning methods, the granularity, i.e., the number of filters
pruned at each step, is a key manually set hyper-parameter
and a critical trade-off to be solved. The fewer filters are
discarded once, the less damage is done to the model, which
means the less finetuning time is required for the network
to restore the accuracy; but more steps are needed to reach
a satisfactory compression rate. 3) It is difficult to decide
when to stop pruning, i.e., the resulting width of each layer.
Many works (Li et al., 2016; Hu et al., 2016; He et al., 2017)
have shown that some layers can be pruned by a large ratio
without accuracy drop, but some layers are sensitive, which
makes it hard to set layer-wise termination conditions.

Apart from pruning by importance, some other methods
train the model under certain constraints (e.g., group Lasso
(Roth & Fischer, 2008)) in order to zero out some filters (Al-
varez & Salzmann, 2016; Wen et al., 2016; Ding et al., 2018)
or make them identical for removal (Ding et al., 2019).

Moreover, some other CNN compression and acceleration
techniques have also been intensively studied, including ten-
sor low rank expansion (Jaderberg et al., 2014), parameter
quantization (Han et al., 2015a), knowledge distillation (Hin-
ton et al., 2015), DCT-based fast convolution (Wang et al.,
2016), feature map compacting (Wang et al., 2017b), etc.
Of note is that AOFP is complementary to these methods.

3. Approximated Oracle Filter Pruning
3.1. Formulation

Let i be the layer index, M (i) ∈ Rhi×wi×ci be an hi × wi

feature map with ci channels and M (i,j) = M
(i)
:,:,j be the j-

th channel. The parameters of conv layer i with kernel size
ri × si reside in the kernel tensor K(i) ∈ Rri×si×ci−1×ci

and the bias term b(i) ∈ Rci , so we use P (i) = (K(i), b(i))
to denote the parameters of layer i. In this paper, filter j
at layer i refers to the tuple comprising the trained param-
eters related to the output channel j of layer i, F (i,j) =

(K
(i)
:,:,:,j , b

(i)
j ), and we denote the set of all such filters at

layer i by Fi. This layer takes M (i−1) ∈ Rhi−1×wi−1×ci−1

as input and outputs M (i). Let ∗ be the 2-D convolution
operator, an arbitrary output channel j is

M (i,j) = σ(i)((

ci−1∑
k=1

M (i−1,k) ∗K(i)
:,:,k,j) + b

(i)
j ) , (1)

where K(i)
:,:,k,j is the k-th input channel of the j-th filter, i.e.,

a 2-D convolution kernel, function σ(i) denotes the possible
following operations such as non-linearities. For simplicity,
we rewrite this transformation as a function ζ(i),

M (i) = ζ(i)(M (i−1),Fi) . (2)

Importance-based filter pruning methods define the impor-
tance of filters in terms of some measures, score the filters
by some means, then prune the unimportant parts and re-
construct the network using the remaining parameters. Let
T be the filter importance score value, δ be the threshold
and Ii be the filter index set of layer i (e.g., if conv5 has
four filters, then I5 = {1, 2, 3, 4}), the remaining set, i.e.,
the index set of the filters which survive the pruning, is
Ri = {j ∈ Ii | T (F (i,j)) > δ}. We prune the other filters
by reconstructing the network using the remaining parame-
ters sliced from the original kernel and bias term. That is,

P (i) ← (K
(i)
:,:,:,Ri

, b
(i)
Ri

) . (3)

If the conv layer is followed by a batch normalization (Ioffe
& Szegedy, 2015) layer, its parameters should be handled in
the same way as the bias term b. The input channels of the
following layer corresponding to the pruned filters should
also be discarded,

P (i+1) ← (K
(i+1)
:,:,Ri,:

, b(i+1)) . (4)

3.2. Rethinking Oracle Pruning

In this subsection, we focus on the situation where we prune
q filters from a layer which originally has c filters. Oracle
Pruning assesses a filter’s importance by looking at the
model’s accuracy drop when the filter is ablated. Formally,
let F be the original filter set of the CNN, L(x, y,F) be
the accuracy-related loss value (e.g., cross-entropy loss for
classification tasks) generated with the given filter set, X
and Y be the examples and labels of the assessment dataset,
which is a subset of the training dataset, the scoring process
aims to obtain the importance score for each filter F by

T (F ) =
∑

(x,y)∈(X,Y )

(L(x, y,F − F )− L(x, y,F)) , (5)

where L(x, y,F − F ) is the loss value computed without
filter F , i.e., with the corresponding feature map channel
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removed or equivalently masked out. In this way, we can
slim a layer by always removing the filter with the least
T value and re-scoring the remaining filters for q times.
Compared to the heuristic approaches, where T is computed
in other ways, an obvious strength of Oracle Pruning is the
accuracy, while its weakness is the high time complexity.
Specifically, using an assessment dataset of γ examples, the
time complexity of Oracle Pruning is O(cqγ), because we
need to ablate every remaining filter in turn (O(c)) then test
on the assessment dataset (O(γ)) to pick up a single filter
to prune, and this scoring process is conducted for q times.

A straightforward way to alleviate the computational bur-
dens is to prune several filters once at a time, trading accu-
racy for efficiency. However, as all the filters at a conv layer
compose a highly non-linear system (Mozer & Smolensky,
1989), removing a filter can affect the relative importance
of other filters, inevitably resulting in poor accuracy (Fig.
3). We refer to the number of filters pruned at a time as the
granularity g. Except for lower accuracy, another downside
of granular pruning is that we introduce an extra hyper-
parameter g, which may require heuristic knowledge and
human efforts to tune. For example, we can estimate the
redundancy of a layer by pruning some filters and observing
the accuracy drop in advance, such that we set g to a larger
value to reduce the time cost if the layer seems to be highly
redundant, or adopt a smaller g to prune more carefully.

3.3. Damage Isolation

The essence of Oracle Pruning is to observe the conse-
quences of the temporary removal of filters, i.e., to observe
the feedback of many pruning attempts, which is generated
by computing the final loss value. In this way, even when
we are trying to prune a low-level layer, we still need to
feed the input data through the entire network to obtain the
feedback. Even worse, using such a feedback loop, we can
only deal with one layer at a time, because as we ablate the
filters in a specific layer, the subsequent information flow of
the network is changed, such that the scoring processes of
the higher-level layers are affected. Therefore, we seek to
shorten the feedback loop for faster inference and mutually
independent parallel filter scoring on every layer.

Our proposed approach is based on an intuition that a CNN
can be viewed as a state machine, where the feature maps
(states) are transformed by the operations performed by conv
layers (Eq. 2). So essentially, the change in the filters at
layer i, i.e., the change in M (i), is isolated by the subse-
quent layer i+ 1, because layer i+ 2 and the higher-level
layers cannot see the change in M (i). Taking the extreme
case for example, if we prune some filters at layer i, but
observe no difference in M (i+1), we can claim that the
pruning does no damage to the model because the input
states to the remaining part of the network are not changed.

Inspired by this, we propose to calculate the approximated
importance score T ′ based on the output of the next layer,

T ′(F ) =
1

|X|
∑
x∈X

t(F , x) , (6)

where F is a filter at layer i, t is the isolated damage sample
which reflects how much the output of layer i+ 1 on input
example x is deviated by the pruning attempt on F ,

t(F , x) =
||M (i+1)(x)− ζ(i+1)(M

(i)
F (x),F (i+1))||22

||M (i+1)(x)||22
.

(7)
Here M

(i)
F (x) is the output of layer i derived without F ,

M
(i)
F (x) = ζ(i)(M (i−1)(x),Fi − F ) . (8)

Except for Euclidean distance, other distance functions may
work as well, which are beyond the scope of this paper.

3.4. Multi-path Training-time Pruning Framework

It is common to finetune the whole model after each time
of pruning (Li et al., 2016; Molchanov et al., 2016; Hu
et al., 2016; Abbasi-Asl & Yu, 2017), i.e., the scoring and
finetuning processes are serial. To reduce the time cost, we
propose a multi-path training-time pruning framework (Fig.
1) to parallelize the scoring and finetuning.

Specifically, when we prune a certain conv layer i, the com-
putation flow after it is split into two paths, which are re-
ferred to as the base path and the scoring path, respectively.
E.g., Fig. 1 shows two scoring paths which each contain
only one conv layer (conv2, conv3) as we are pruning conv1
and conv2 simultaneously. The base path forwards the out-
puts of layer i through a base mask u(i) ∈ Rci initialized as
1. The j-th channel of the output of the next layer becomes

M (i+1,j) = σ(i+1)((

ci∑
k=1

u
(i)
k M (i,k) ∗K(i+1)

:,:,k,j) + b
(i+1)
j ) .

(9)
It is obvious that setting u(i)k = 0 is equivalent to removing
the k-th filter at layer i. At the endpoint of the base path, the
original loss value is calculated, the gradients are derived
and the model parameters are updated. Meanwhile, the
scoring path goes through a scoring mask v(i) ∈ Rci , the
masked M (i) is fed into layer i+1, then the isolated damage
sample t is computed and stored in memory.

During the training process, for each batch of input data, we
randomly set some bits in the scoring mask to zero, such
that the corresponding filters are ablated on the scoring path
but still kept on the base path. The t value is computed by
comparing the corresponding feature maps on the base and
scoring paths, and if it is large, we learn that the ablated
filters are important for the current batch of data. With more
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and more samples collected, we become more and more
confident to tell which filters are the least important. When
enough samples have been collected, we approximate T ′ for
each filter j in the layer by

T̂ (F (i,j)) = mean(T (i,j)) , (10)

where T (i,j) is a set which records all the t values collected
with filter j ablated.

With all the filters scored, we pick up g filters with the lowest
T̂ value, fix the corresponding bits in u(i) and v(i) to zero,
such that the filters are masked out permanently. Of note is
that changing some bits in u(i) affects the back-propagation
through the base path, thus the network’s accuracy will be
restored by finetuning. In the meantime as finetuning, we
choose the next g filters to prune through the scoring path.
We refer to the process of choosing one or more filters to
prune (in the meantime as recovering the damage caused
by the last pruning) as a move. When some termination
conditions have been met, we remove the filters according
to the base mask by Eq. 3, 4 withRi = {j|u(i)j = 1}, such
that the layer is slimmed with no further accuracy drop.

Such a multi-path framework enables parallel scoring and
pruning on multiple layers, i.e., we can prune layer i ac-
cording to the outputs of layer i+ 1 and prune layer i+ 1
according to layer i+2 simultaneously. Scoring a low-level
conv layer does not affect the higher-level ones because ev-
ery scoring process compares the outputs of the scoring path
with the base path unaffected by the pruning attempts (i.e.,
the changes of the scoring masks) on the previous layers.

Note that though we randomly mask out channels in a
dropout-like (Srivastava et al., 2014; Molchanov et al., 2017)
manner, we do not rescale the remaining parts for compen-
sation as we do when using dropout for regularization.

3.5. Binary Filter Search

In this subsection, we discuss and solve three problems
of the proposed framework. 1) On a specific layer, the
finetuning process makes the parallel scoring inaccurate.
When g filters have been masked out permanently, i.e., the
corresponding bits in the two masks have been fixed to zero,
the network needs a period to recover, during which the
filter importance assessment is not accurate. Namely, since
the remaining filters vary during the finetuning period after
the last pruning, the t values obtained in this period do not
accurately reflect the actual importance of the filters which
are being scored. 2) The optimal value of the granularity g
is hard to resolve. 3) It is heuristic to decide when to stop
pruning, as we do not know the optimal resulting width.

Inspired by the idea of incremental refinement, we propose
to search for the least important filters in a binary search
manner. Concretely, at the beginning of each move, all the

Algorithm 1 Approximated Oracle Filter Pruning

1: Input: the target layer i of the original CNN, refine-
ment threshold θ, search cost φ

2: Base mask u← 1
3: while True do
4: Search space A ← {j|uj = 1}
5: repeat
6: Loss record set T (i,j) ← {}, ∀ j ∈ A
7: repeat
8: Randomly choose |A|/2 elements out of A as

the ablated filter index setH
9: Initialize v ← u, let vj ← 0, ∀ j ∈ H

10: Generate and forward a batch of input data, com-
pute the t value as Eq. 7, record it for the ablated
filters by T (i,j) ← T (i,j) ∪ {t} , ∀ j ∈ H

11: Back-prop gradients, update parameters
12: until φ batches have been forwarded
13: Compute T̂ for each filter j ∈ A as Eq. 10
14: Pick up |A|/2 filters with the smallest T̂ value as

the picked set B
15: Max damage p = max({T̂ (F (i,j)) | ∀ j ∈ B})
16: Let A ← B
17: until p < θ or |B| = 1
18: if p < θ , then
19: Let uj ← 0, ∀ j ∈ B // prune the picked filters
20: else
21: break // p ≥ θ and |B| = 1, stop refining
22: end if
23: end while
24: Prune layer i by Eq. 3, 4 withRi = {j|uj = 1}
25: Return

remaining filters compose the search spaceA. We first score
every filter in A and pick up |A|/2 filters as the picked set
B which are most likely to be unimportant. Though the
network has not become stable (if this is not the first move),
the assessment is not accurate indeed, but accurate enough
for such a coarse-grained search. When B is obtained, the
network finetuned through the base path has become more
stable, so we abandon the collected samples and start a more
fine-grained search by lettingA ← B, searching for the less
important half of the picked set (i.e., a quarter of the last
search space). As we use imprecise samples to do coarse
searches and high-quality samples to search accurately, the
samples collected in the meantime as finetuning are fully
utilized, and the accuracy of importance scoring is guaran-
teed. We refer to the number of collected t samples needed
to complete one step of binary search as the search cost φ.

Except for accurate assessment, Binary Filter Search also
helps the decision of the granularity g and the judgment of
the termination conditions in a natural way, freeing us from
heavy works on layer sensitivity analysis experiments (He
et al., 2017; Li et al., 2016; Hu et al., 2016) and heuristic
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Figure 2. Flow chart of AOFP on a single layer.

manually set controlling conditions. Essentially, at each
step of binary search, the picked set can be regarded as the
least important |B| filters. If we finish the current move by
pruning them, |B| serves exactly as the granularity g. So in
the context of binary search, the problem of deciding g and
the termination conditions can be simply solved as follows:

• If the current picked set B is good enough, finish the
current move with g = |B| (i.e., permanently mask out
the filters in B and start a new move); otherwise, see if
it is possible to continue refining (|B| > 1 or |B| = 1).

• If |B| > 1, we continue refining by letting A ← B;
otherwise, it suggests that the single least important
filter is still too important, so we stop pruning the layer.

We introduce a global hyper-parameter, the refinement
threshold θ, which is used to compare with the max T̂ value
(Eq. 10) of the filters in B to judge if the picked set is good
(unimportant) enough. We say B is good enough if

max({T̂ (F (i,j)) | ∀ j ∈ B}) < θ . (11)

Intuitively, θ indicates the upper limit of the damage we can
endure for a single step of pruning. E.g., with θ = 0.02,
we consider it acceptable to prune one or more filters with
2% isolated damage. With a larger θ, we tend to prune with
larger granularity, and vice versa.

In this way, another design concern is settled naturally, that
is, how many filters to randomly ablate for a batch of input
data. We randomly ablate |A|/2 filters out of the search
space A at a time, and the reason is simple: according to
our discussions above, the collected t values should reflect
the expected damage if we prune the current picked set,
i.e., the t values should be derived with |B| filters ablated,
and |B| = |A|/2. The AOFP algorithm on a single layer
is outlined in Fig. 2 and formally described in Alg. 1. In
practice, we apply AOFP on every layer simultaneously.

4. Experiments
4.1. Comparison of Filter Pruning Metrics

In this subsection, we present a comparison of Oracle Prun-
ing, AOFP and other heuristic methods using AlexNet
(Krizhevsky et al., 2012) on ImageNet (Deng et al., 2009).
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Figure 3. Comparison of filter pruning metrics on AlexNet.

We use the simplified version of AlexNet (GoogLe, 2017a),
which is composed of five stacked conv layers and three
fully-connected layers with no LRU or cross-GPU connec-
tions. For faster convergence, batch normalization (Ioffe &
Szegedy, 2015) is applied on every conv layer. We compare
these metrics by pruning filters one by one from the first
layer without finetuning. Fig. 3 shows the Top-1 accuracy
on the validation set with varying number of pruned filters.
For Oracle Pruning, APoZ-based and Taylor-expansion-
based, we use randomly sampled 10,000 training examples
as the assessment dataset. For AOFP, we set the search cost
φ such that the total number of examples consumed equals
that of Oracle Pruning. As we are pruning only one layer,
we apply Binary Filter Search to collect the final loss value
instead of the isolated damage. For Oracle Pruning 10×,
we use 100,000 examples to score a filter. For Degraded
Oracle, no re-scoring processes are conducted, i.e., the im-
portance scores collected at the very beginning are used
to guide the pruning till the end. For the curve labeled as
Index, we prune filters from the first one to the 64th, which
is essentially equivalent to random guess.

Our observations are as follows. 1) By comparing Degraded
Oracle and Oracle Pruning, we conclude that re-computing
importance scores after each step of Oracle Pruning is es-
sential, as a CNN is a highly non-linear system, and the
removal of a filter can affect the relative importance of other
filters. This discovery is consistent with the observations
of prior works (Mozer & Smolensky, 1989; Sharma et al.,
2017) that neural networks do not distribute the learning
representation equitably across neurons. 2) AOFP is almost
as good as Oracle Pruning. 3) The extra costs of Oracle
Pruning 10× bring marginal accuracy improvement.

4.2. AOFP for Automatic CNN Compression

Abundant experiments are conducted using several com-
mon networks on CIFAR-10 (Krizhevsky & Hinton, 2009)
and ImageNet, including AlexNet, VGG, and ResNets, to
validate the effectiveness of AOFP, which is measured by
the FLOPs and accuracy of the pruned model. For repro-
ducibility and comparability, we use the same VGG version
as other works (Li et al., 2016; Liu et al., 2017), and the
same ResNet structures as the official tensorflow/slim mod-
els (GoogLe, 2017b). All the original models are trained
from scratch, and the FLOPs of every model are calculated
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Table 1. Pruned VGG on CIFAR-10. The resulting models with
different FLOPs are labeled from A1 to A5.

Result Top-1 FLOPs FLOPs↓%
base 93.38 313M -
AOFP-A1 93.81 215M 31.32
(Li et al., 2016) 93.40 206M 34.20
AOFP-A2 94.03 186M 40.51
(Liu et al., 2017) 93.80 - 51.00
(Huang et al., 2018) 91.67 - 55.20
AOFP-A3 93.84 124M 60.17
(Xu et al., 2018) 93.29 120M 61.46
AOFP-A4 93.47 108M 65.27
(Zhou et al., 2018) 92.33 - 74.81
AOFP-A5 93.28 77M 75.27

in the same manner as (He et al., 2016). Of note is that we
perform AOFP on every target layer simultaneously. Con-
cretely, for a specific layer, when the returning condition in
Alg. 1 is satisfied, the AOFP process is restarted, i.e., we
finish the current move without changing the base mask and
start the next move. After each move on any conv layer,
we calculate the reduced global FLOPs based on the model
architecture and the current values of all the base masks,
and stop pruning when the reduced FLOPs reach a target
level (e.g., above 60% for the model labeled as AOFP-A3
in Table. 1). Then we reconstruct a narrower network fol-
lowing Eq. 3, 4 for every layer, finetune the model, and test
it on the validation dataset using a single central crop.

On CIFAR-10, we use VGG-16 for a quick sanity check.
The base model is trained from scratch for 600 epochs to
ensure the convergence, with the standard data augmenta-
tion, i.e., padding to 40× 40, random cropping and flipping.
We use a batch size of 64 and a learning rate initialized to
5×10−2 then decayed by 0.1 every 200 epochs. We perform
AOFP on all of the 13 layers with search cost φ = 20, 000,
θ = 0.01 and a constant learning rate of 1 × 10−3. On
ImageNet, we first prune all the conv layers of AlexNet with
φ = 4, 000, θ = 0.02 and a learning rate of 1× 10−3. For
ResNets, since there are more layers being simultaneously
pruned, we increase the search cost to φ = 8, 000 for better
filter scoring and damage recovery. These hyper-parameters
are casually set without careful tuning. Of note is that, on
ResNets, due to the constraints of the shortcut connections,
only the internal layers (i.e., the first and second layers in
each block which are not directly added to the identity map-
ping) are pruned, as a common practice (Luo et al., 2017;
Luo & Wu, 2018; Wang et al., 2017a).

As it turns out (Table. 1, 2), these networks can be pruned
significantly even with an increase in accuracy due to the
optimized network structure, which is consistent with the
observations in other works (Liu et al., 2017; Li et al., 2016).
And if we wish to trade accuracy for efficiency, AOFP can
reduce the computational burdens by a large margin, demon-

Table 2. Pruning on ImageNet. The competitors include ThiNet
(Luo et al., 2017), NISP (Yu et al., 2018), Channel Pruning (He
et al., 2017), SPP (Wang et al., 2017a), Autopruner (Luo & Wu,
2018), ISTA-based (Ye et al., 2018), C-SGD (Ding et al., 2019).

Result Top-1 Top-5 FLOPs ↓%
Alex base 55.71 79.45 838M -
Alex AOFP-B1 56.54 79.95 578M 30.98
Alex AOFP-B2 56.17 79.53 492M 41.33

Res50 base 75.34 92.56 3.85G -
Res50 AOFP-C1 75.63 92.69 2.58G 32.88
Res50 ThiNet-70 72.04 90.67 2.44G 36.75
Res50 NISP 0.89↓ - - 44.01
Res50 Chan-Pr - 90.80 - 50.00
Res50 SPP - 90.40 - 50.00
Res50 Autopr 74.76 92.15 - 51.21
Res50 ThiNet-50 71.01 90.02 1.70G 55.76
Res50 C-SGD-50 74.54 92.09 1.70G 55.76
Res50 AOFP-C2 75.11 92.28 1.66G 56.73

Res101 base 76.63 93.29 7.57G -
Res101 AOFP-D1 76.88 93.49 5.29G 30.11
Res101 ISTA 75.27 - 4.47G 40.95
Res101 AOFP-D2 76.40 93.07 3.77G 50.19

Res152 base 77.37 93.52 11.28G -
Res152 AOFP-E1 77.47 93.76 6.12G 45.72
Res152 AOFP-E2 77.00 93.49 4.13G 63.36
Res152 AOFP-E3 76.40 93.02 2.85G 74.69
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Figure 4. Layer width of pruned models. Left: VGG on CIFAR-10.
Right: ResNet-152 on ImageNet (only the pruned layers).

strating not only higher pruning ratios but also less accuracy
drop than other methods. Moreover, the increased network
depth does not hinder the application of AOFP, because we
simultaneously prune every layer in a mutually interdepen-
dent manner, and do not suffer from the notorious problem
of error propagation and amplification in filter importance
estimation (Yu et al., 2018), thanks to Damage Isolation.

Of note is that AOFP automatically detects the easy-to-
prune layers without heuristic knowledge or manually set
control conditions, which is a significant strength compared
to other approaches where we have to empirically decide the
width of every layer in advance (Li et al., 2016; Luo et al.,
2017; Wang et al., 2017a). By visualizing the structure of
the pruned networks in Fig. 4, we learn that conv2,4,5,6
of VGG are more sensitive to pruning, but conv1 and the
top six layers can be pruned dramatically for free, as AOFP
chooses to prune these layers aggressively to achieve high
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Table 3. AOFP pruned v.s. uniformly slimmed VGG. All the mod-
els are tested on an Nvidia GTX 1080Ti GPU or E5-2680 CPU
with batch size 64, measured in examples/sec.

Top-1 FLOPs CPU GPU Speedup

VGG base 93.38 313M 343 6336 -
AOFP-A3 93.84 124M 683 13903 2.19×
Uniform 92.88 126M 560 10224 1.61×

pruning ratios. Similarly, AOFP converts the original tidy
ResNet-152 to a more efficient one without human inter-
vention. One concern about the irregularly shaped models
is that the varying width of layers may cause GPU mem-
ory bottlenecks, so it may not result in real acceleration,
though the FLOPs are reduced. However, our pruned VGG
outperforms a uniformly slimmed counterpart in both ac-
curacy and speed (Table. 3). Concretely, we construct a
VGG model where every layer is 69% of its original width,
such that the FLOPs becomes 126M, which is comparable
to our pruned model labeled as AOFP-A3. We train it from
scratch for 600 epochs and test it on both CPU and GPU. It
is not clear why AOFP-A3 runs faster than the counterpart,
but evidently, the discrimination towards irregularly shaped
CNNs is just a kind of stereotype.

4.3. AOFP for Global Progressive Pruning

Binary Filter Search enables not only the full use of the low-
quality samples but also the adaptive pruning granularity.
We present in Fig. 5 the width of each layer of ResNet-152
(AOFP-E1). We pick the first layer in each of the four stages
as the representatives, which originally have 64, 128, 256
and 512 filters, respectively. As AOFP proceeds, we show
the remaining percentage of filters. Then we plot the re-
maining width of each layer every 20,000 batches. It can
be observed that: 1) AOFP automatically figures out that
the first layer in stage2 can be pruned significantly, and
chooses to prune it with large granularity (8 filters every
time) at the beginning, then gradually reduces the granular-
ity in order for more fine-grained pruning. However, AOFP
always prunes 16 filters from the first layer in stage5. 2)
The adaptive granularity enables global progressive pruning,
i.e., the reduction in the total FLOPs does not come from
the extreme squeeze of several layers, nor pruning some at
the beginning and others at the end. Instead, the network
structure shrinks globally, steadily and progressively, which
is more likely to result in high accuracy.

4.4. AOFP for Destructive CNN Re-design

The above experiments are focused on pruning an existing
mature CNN architecture for compression and acceleration.
We then seek to use AOFP to re-design the CNN in order to
reach a higher level of accuracy with the same computational
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Figure 5. Left: the remaining percentage of filters at the first layer
in the four stages respectively. Right: the remaining width of all
the pruned layers every 20,000 batches with a batch size of 128.

Table 4. Results of CNN Re-design by AOFP.
Top-1 FLOPs CPU GPU

VGG base 93.38 313M 343 6336
Scaled 1.5× 93.95 703M 205 3228
Re-design-pruned 94.03 312M 351 8099
Re-design-scratch 93.69 312M - -

Res50 base 75.34 3.85G 14.4 437
Scaled 1.25× 76.60 5.28G 11.2 353
Re-design-pruned 76.47 3.83G 14.2 430
Re-design-scratch 76.30 3.83G - -

budgets. To this end, we first train a scaled network from
scratch and then apply AOFP until its FLOPs are reduced to
the same level as the original model. In this way, we obtain
a network where some layers are wider than the original
architecture and some are narrower, so we call this process
CNN Re-design. Concretely, we first scale the width of
VGG and ResNet-50 (only the internal layers) by 1.5×
and 1.25×, respectively, and apply AOFP using the same
hyper-parameters as Sect. 4.2. Though the pruned models
outperform the baselines by a clear margin (Table. 4), we
still need to figure out whether the improvement is due to
the better structure or the parameters initialized using the
scaled model, so a counterpart with the same structure is
trained from scratch, which delivers an accuracy higher than
the baseline but lower than the pruned model. In this way,
we safely claim the superiority of our optimized models
over the tidy baselines. We present the discovered structures
in the appendix to encourage further studies.

5. Conclusion
We proposed Approximated Oracle Filter Pruning (AOFP),
which features high quality of importance estimation, rea-
sonable time complexity and no need for heuristic knowl-
edge. We proposed a new CNN design paradigm, where we
scale the network and apply AOFP to optimize its width to
reach a higher level of accuracy without extra computational
budgets, which can be used for refinement before a CNN
is released. We empirically found out that the structural
change in CNNs can be analyzed with local information
only, which may inspire further theoretical researches.
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