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Abstract
We study the policy evaluation problem in multi-
agent reinforcement learning. In this problem, a
group of agents work cooperatively to evaluate
the value function for the global discounted ac-
cumulative reward problem, which is composed
of local rewards observed by the agents. Over a
series of time steps, the agents act, get rewarded,
update their local estimate of the value function,
then communicate with their neighbors. The local
update at each agent can be interpreted as a dis-
tributed consensus-based variant of the popular
temporal difference learning algorithm TD(0).

While distributed reinforcement learning algo-
rithms have been presented in the literature, al-
most nothing is known about their convergence
rate. Our main contribution is providing a finite-
time analysis for the convergence of the dis-
tributed TD(0) algorithm. We do this when the
communication network between the agents is
time-varying in general. We obtain an explicit
upper bound on the rate of convergence of this
algorithm as a function of the network topology
and the discount factor. Our results mirror what
we would expect from using distributed stochastic
gradient descent for solving convex optimization
problems.

1. Introduction
Reinforcement learning (RL) offers a general paradigm for
learning optimal policies in stochastic control problems
based on simulation (Sutton & Barto, 1998; Bertsekas &
Tsitsiklis, 1999; Szepesvari, 2010). In this context, an agent
seeks to find an optimal policy through interacting with the
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environment, often modeled as a Markov Decision Process
(MDP), with the goal of optimizing its long-term future
reward (or cost). During the last few years, RL has been
recognized as a crucial solution for solving many challeng-
ing practical problems, such as, autonomous driving (Chen
et al., 2015), robotics (Gu et al., 2017), helicopter flight
(Abbeel et al., 2007), board games (Silver et al., 2016), and
power networks (Kar et al., 2013).

A central problem in RL is to estimate the accumulative
reward (value function) for a given stationary policy of an
MDP, often referred to as the policy evaluation problem.
This problem arises as a subproblem in the important policy
iteration method in RL (Sutton & Barto, 1998; Bertsekas &
Tsitsiklis, 1999). Perhaps, the most popular method for solv-
ing this problem is temporal-difference learning (TD(λ)),
originally proposed by Sutton (Sutton, 1988) and analyzed
explicitly for various scenarios in (Dayan, 1992; Gurvits
et al., 1994; Pineda, 1997; Tsitsiklis & Roy, 1997; 1999).
This method approximates the long-term future cost as a
function of current state, and depends on a scalar λ ∈ [0, 1]
that controls a trade-off between the accuracy of the approx-
imation and the susceptibility to simulation noise. In this
paper, we focus on the special case λ = 0, i.e., the TD(0)
algorithm with function approximation, which has received
a great success for solving many complicated problems in-
volving a very large state space (Tesauro, 1995; Mnih et al.,
2015; Silver et al., 2016). This algorithm has a straightfor-
ward implementation, and can be executed incrementally as
observation are made.

Our interest in this paper is to study the policy evaluation
problem in multi-agent reinforcement learning (MARL),
where a group of agents operate in an environment. We are
motivated by broad applications of the multi-agent paradigm
within engineering, for example, mobile sensor networks
(Cortes et al., 2004; Ogren et al., 2004), cell networks (Ben-
nis et al., 2013), and power networks (Kar et al., 2013). In
this context, each agent takes its own action based on the
current state, and consequently a new state is determined.
Moreover, the agents receive different local rewards, which
are the functions of their current state, their new state, and
their action. We assume that each agent only knows its own
local reward. Their goal is to cooperatively evaluate the
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global accumulative reward based only on their local inter-
actions. For solving this problem, our focus is to consider a
distributed variant of TD(0) algorithm with linear function
approximation, where our goal is to provide a finite-time
analysis of such distributed TD(0) in the context of MARL.
To the best of our knowledge, such finite-time analysis for
distributed TD(0) is not available in the existing literature.

1.1. Existing Literature

Despite its simple implementation, theoretical analysis for
the performance of TD is quite complicated. In general, TD
method is not the true stochastic gradient descent (SGD)
for solving any static optimization problems, making it chal-
lenging to characterize the consistency and quantify the
progress of this method. A dominant approach to study
the asymptotic convergence of TD learning is to use tools
from stochastic approximation (SA), specifically, the or-
dinary differential equation (ODE) method. In particular,
Tsitsiklis and Van Roy considered a policy evaluation prob-
lem on a discounted MDP for both finite and infinite state
spaces with linear function approximation (Tsitsiklis & Roy,
1997). By viewing TD as a stochastic approximation for
solving a suitable Bellman equation, they characterized the
almost sure convergence of this method based on the ODE
approach. That is, under the right conditions, the SA update
asymptotically follows the trajectory of a stable ODE. The
convergence of SA is then equivalent to the convergence of
this ODE solution, which can be shown by using Lyapunov
theorem in control theory. Following this work, Borkar and
Meyn provided a general and unified framework for the
convergence of SA with broad applications in RL (Borkar
& Meyn, 2000). More general results in this area can be
found in the monograph by Borkar (Borkar, 2008).

While the asymptotic convergence of TD algorithms is well-
known, very little is known about their finite-time analysis
(or the rate of convergence). Indeed, it is not obvious how
to derive such convergence rate by using ODE approach.
A concentration bound was given in (Thoppe & Borkar;
Borkar, 2008) for the SA algorithm under a strict stability
assumption of the iterates. Recently, a finite-time analysis
of TD(0) algorithm with linear function approximation was
simultaneously studied in (Dalal et al., 2018; Bhandari et al.,
2018) for a single agent problem. These works carefully
characterize the progress of TD(0) update and derive its
convergence rate by utilizing the standard techniques of
SGD and the results in (Tsitsiklis & Roy, 1997).

Within the context of MARL, an asymptotic convergence of
the distributed gossiping TD(0) with linear function approx-
imation was probably first studied in (Mathkar & Borkar,
2017), where the authors utilize the standard techniques of
ODE approach. Such results were also studied implicitly
in the context of distributed actor-critic methods in (Zhang

et al., 2018). On the other hand, unlike recent works about
finite-time analysis in a single agent setup (Dalal et al., 2018;
Bhandari et al., 2018), the rate of convergence of distributed
TD(0) is missing in the existing literature of MARL, which
is the focus of this paper.

Finally, we mention some related RL methods for solving
policy evaluation problems in both single agent RL and
MARL, such as, the gradient temporal difference methods
studied in (Sutton et al., 2009b;a; Liu et al., 2015; Macua
et al., 2015; Stanković & Stanković, 2016; Wai et al., 2018),
least squares temporal difference (LSTD) (Bradtke & Barto,
1996; Tu & Recht, 2018), and least squares policy evaluation
(LSPE) (Nedić & Bertsekas, 2003; Yu & Bertsekas, 2009).
Although they share some similarity with TD learning, these
methods belong to a different class of algorithms, which
involve more iteration complexity in their updates.

1.2. Main Contributions

In this paper, we study a distributed variant of the TD(0)
algorithm for solving a policy evaluation problem in MARL.
Our distributed algorithm is composed of the popular con-
sensus step and local TD(0) updates at the agents. Our
main contribution is to provide a finite-time analysis for
the convergence of distributed TD(0) over time-varying
networks. We obtain an explicit upper bound on the rate
of convergence of this algorithm as a function of the net-
work topology and the discount factor. Our results mirror
what we would expect from using distributed SGD for solv-
ing convex optimization problems. For example, when the
stepsizes are chosen independently with the problem’s pa-
rameters, the function value estimated at each agent’s time-
weighted estimates converges to a neighborhood around the
optimal value at a rate O(1 / k) under constant stepsizes
and asymptotically converges to the optimal value at a rate
O(1 /

√
k + 1) under time-varying stepsizes. Moreover, our

rates also show the dependence on the network topology
and the discount factor associated with the accumulative
reward. These convergence rates mirrors the ones from
using distributed stochastic gradient descent for solving con-
vex optimization problems. On the other hand, we observe
the same results in the case of strongly convex optimiza-
tion problems for both constant and time-varying stepsizes,
when the stepsizes are chosen based on some knowledge
of the problem’s parameter. We note that such an explicit
formula for the rate of distributed TD(0) algorithm is not
available in the literature.

2. Centralized Temporal-Difference Learning
We briefly review here the problem of policy evaluation for
a given stationary policy µ over a Markov Decision Process
(MDP). This will facilitate our development of multi-agent
reinforcement learning in the next section. We consider a
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discounted reward MDP defined by 5-tuple (S,U ,P,R, γ),
where S is a finite set of states, S = {1, . . . , n}. In addition,
U is the set of control actions, P is the set of transition
probability matrices associated with the Markov chain,R is
the reward function, and γ ∈ (0, 1) is the discount factor.

At each time k ≥ 0, the agent observes the current state
s(k) = i and applies an action µ(s(k)), where µ : S → U .
The system then moves to the next state s′(k) = j with some
probability pij(µ(i)) decided by the action µ(i). Moreover,
the agent receives the instantaneous reward r(k). That is,
for each transition from i to j an immediate reward r is
observed according toR(i, j). In the sequel, since the policy
is stationary, we drop µ in our notation for convenience. The
discounted accumulative reward J∗ : S → R associated
with this Markov chain is defined for all i ∈ S as

J∗(i) , E

[ ∞∑
k=0

γkR(s(k), s′(k))
∣∣∣ s(0) = i

]
, (1)

which is the solution of the following Bellman equation
(Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1999)

J∗(i) =

n∑
j=1

pij [R(i, j) + γJ∗(j)] , ∀i ∈ S. (2)

We are interested in the case when the number of states is
very large, and so computing J∗ exactly may be intractable.
To mitigate this, we use low-dimensional approximation J̃
of J∗, restricting J̃ to be in a linear subspace. While more
advanced nonlinear approximations using, for example, neu-
ral nets as in the recent works (Mnih et al., 2015; Silver
et al., 2016) may lead to more powerful approximations, the
simplicity of the linear model allows us to analyze it in de-
tail. The linear function approximation J̃ is parameterized
by a weight vector θ ∈ RK , with

J̃(i, θ) =

K∑
`=1

θ`φ`(i), (3)

for a given set of K feature vectors φ` : S → R, ` ∈
{1, . . . ,K}, where K � n. Let φ(i) be a vector defined as

φ(i) = (φ1(i), . . . , φK(i))T ∈ RK .

And let Φ ∈ Rn×K be a matrix, whose i−th row is the
row vector φ(i)T and whose `−th column is the vector
φ` = (φ`(1), . . . , φ`(n))T ∈ Rn, that is

Φ =

 | |
φ1 · · · φK
| |

 =

 — φ(1)T —
· · · · · · · · ·
— φ(n)T —

 .
Thus, J̃(θ) = Φθ, giving the gradient of J̃ w.r.t θ as

∇J̃ = ΦT and ∇J̃(i, θ) = φ(i), ∀i ∈ S.

The goal now is to find a J̃ that is the best approximation of
J∗ based on the generated data by applying the stationary
policy µ on the MDP. That is, we seek an optimal weight
θ∗ such that the distance between J̃ and J∗ is minimized.
For solving this problem, we are interested in the TD(0)
algorithm, which is equivalent to a stochastic approximation
for solving the Bellman equation (2) (Bertsekas & Tsitsiklis,
1999). In particular, we assume that at each time k there is
an oracle giving one data tuple (s(k), s′(k), r(k)), probably
through simulation. The method of TD(0) then updates θ as

θ(k + 1) = θ(k) + α(k)d(k)∇J̃(s(k), θ(k)), (4)

where d(k) ∈ R is the temporal difference at time k

d(k) = r(k) + γJ̃(s′(k), θ(k))− J̃(s(k), θ(k)).

Here, d(k) represents the difference between the outcome
r(k) + γJ̃(s′(k), θ(k)) of the current stage and the current
estimate J̃(s(k), θ(k)). Thus, d(k) provides us an indicator
whether to increase or decrease our current variable θ(k).

In (Tsitsiklis & Roy, 1997), to study the convergence of
TD(0), the authors viewed J∗ as a fixed point of the Bellman
operator T : Rn → Rn defined as

(T J)(i) =

n∑
j=1

pij {R(i, j) + γJ(j)} , ∀i ∈ S.

and showed that {θ(k)} generated by TD(0) converges to
θ∗ almost surely, where θ∗ is the unique solution of the
projected Bellman equation Π T (Φθ∗) = Φθ∗, and satisfies

‖Φθ∗ − J∗‖D ≤
1

1− γ
‖Π J∗ − J∗‖D. (5)

Here, Π J denotes the projection of a vector J to the linear
subspace spanned by the feature vectors φ`

Π J = arg min
y∈span{φ`}

‖y − J‖D,

where ‖J‖2D = JTDJ is the weighted norm of J associated
with the n × n diagonal matrix D, whose diagonal entry
are (π(1), . . . , π(n)), the stationary distribution associated
with P . Moreover, we denote by ‖ · ‖ the Euclidean and
Frobenius norms for a vector and a matrix, respectively.

As shown in (Tsitsiklis & Roy, 1997) θ∗ satisfies Aθ∗ = b,
where A is positive definite, i.e., xTAx > 0 ∀x, and

A = Eπ
[
φ(s)(φ(s)− γφ(s′))T

]
, b = Eπ[rφ(s)]. (6)

It is worth noting that although TD(0) can be viewed
as a stochastic approximation method for solving (2),
it is not a SGD method since the temporal direction
d(k)∇J̃(s(k), θ(k)) is not a true stochastic gradient of any
static objective function. This makes analyzing the finite-
time convergence of TD(0) more challenging since standard
techniques of SGD are not applicable. Our focus, therefore,
is to provide such a finite-time analysis for the distributed
variant of TD(0) algorithm in the context of MARL.
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3. Multi-Agent Reinforcement Learning
We consider a multi-agent reinforcement learning system
of N agents modeled by a Markov decision process. We
assume that the agents can communicate with each other
through a given sequence of time-varying undirected graphs
G(k) = (V, E(k)), where V = {1, . . . , N} and E(k) =
V × V are the vertex and edge sets at time k, respectively.
This framework can be mathematically characterized by a
6-tuple (S, {Uv},P, {Rv}, γ,G(k)) for v ∈ V at each time
step k. Here, S = {1, . . . , n} is the global finite state space
observed by the agents, Uv is the set of control available to
each agent v, andRv is each agent’s reward function.

At any time k, each agent v observes the current states
s(k) and applies an action µv(k) ∈ Uv, where µv is a
stationary policy of agent v. Based on the joint actions of
the agents, the system moves to the new state s′(k) and agent
v receives an instantaneous local reward rv(k), defined by
Rv(s(k), s′(k)) for each transition of states. The goal of
the agents is to cooperatively find the total accumulative
reward J∗ over the network defined as

J∗(i) , E

[ ∞∑
k=0

γk

N

∑
v∈V
Rv(s(k), s′(k))

∣∣∣ s(0) = i

]
, (7)

which also satisfies the following Bellman equation

J∗(i) =

n∑
j=1

pij

{
1

N

∑
v∈V
Rv(i, j) + γJ∗(j)

}
, i ∈ S.

Similar to the centralized problem, we are interested in
finding a linear approximation J̃ of J∗ as given in Eq. (3).
In addition, since each agent knows only its own reward
function, the agents have to cooperate to find J̃ . In the
following, for solving such problem we provide a distributed
variant of the TD(0) algorithm presented in Section 2, where
the agents only share their estimates of the optimal θ∗ to
its neighbors but not their local rewards. Similar to the
centralized problem (a.k.a Eq. (6)), θ∗ satisfies

Aθ∗ =
1

N

∑
v∈V

bv, (8)

where the positive defnite matrix A and bv are defined as

A = Eπ
[
φ(s)(φ(s)− γφ(s′))T

]
, bv = Eπ[rvφ(s)]. (9)

3.1. Distributed Consensus-Based TD(0) Learning

In this section, we study a distributed consensus-based vari-
ant of the centralized TD(0) method, formally stated in
Algorithm 1. In particular, agent v maintains their own es-
timate θv ∈ RK of the optimal θ∗. At any iteration k ≥ 0,
each agent v only receives the estimates θu from its neigh-
bors u ∈ Nv(k), whereNv(k) := {u ∈ V | (v, u) ∈ E(k)}

Algorithm 1 Distributed TD(0) Algorithm

1. Initialize: Each agent v arbitrarily initializes θv(0) ∈ X
and the sequence of stepsizes {α(k)}k∈N.
Set θ̂v(0) = θv(0) and Sv(0) = 0.

2. Iteration: For k = 0, 1, . . . , agent v ∈ V implements
a. Exchange θv(k) with agent u ∈ Nv(k)

b. Observe a tuple (s(k), s′(k), rv(k))
c. Execute local updates

yv(k) =
∑

u∈Nv(k)

Wvu(k)θu(k)

dv(k) = rv(k) + θv(k)
T
(
γφ(s′(k))− φ(s(k))

)
θv(k + 1) =

[
yv(k) + α(k)dv(k)φ(s(k))

]
X

(10)

d. Update the output

Sv(k + 1) = Sv(k) + α(k)

θ̂v(k + 1) =
S(k)θ̂v(k) + α(k)θv(k)

S(k + 1)

is the set of node v’s neighbors at time k. Agent v then
observes one data tuple (s(k), s′(k), rv(k)) returned by the
oracle, following an update to its estimate θv(k + 1) by
using Eq. (10). Here, Wvu(k) is the weight which agent v
assigns for θu(k). Finally, [·]X denotes the projection to a
set X ⊂ RK , whose condition is given shortly.

The update of Eq. (10) has a simple interpretation: agent
v first computes yv by forming a weighted average of its
own value θv and the values θu received from its neighbor
u ∈ Nv, with the goal of seeking consensus on their esti-
mates. Agent v then moves along its own temporal direction
dv(k)∇J̃(s(k), θv(k)) to update its estimate, pushing the
consensus point toward θ∗. In Eq. (10) each agent v only
shares θv with its neighbors but not its immediate reward rv .
In a sense, the agents implement in parallel N local TD(0)
methods and then combine their estimate through consensus
steps to find the global approximate reward J̃ .

3.2. Convergence Rates of Distributed TD(0)

We state here the main results of this paper, the convergence
rates of the distributed TD(0) algorithm. In particular, we
provide an explicit formula for the upper bound on the rates
of TD(0) for both constant and diminishing stepsizes. Our
bounds mirror the results that we would expect from the
ones using distributed SGD for solving convex optimization
problems. For ease of exposition, we delay the analysis of
these results to Sections 4.2 and 4.3.

Our main results are established based on the assumption
that the data tuple {(s(k), s′(k), rv(k)} are sampled i.i.d
from stationary distribution for all k and v. However, within
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a tuple, s′(k) and rv(k) are dependent on s(k). We note that
the i.i.d condition is often assumed in the literature when
dealing with the rates of RL algorithms, see for example;
(Dalal et al., 2018; Bhandari et al., 2018). Such a condition
is not easy to remove since the dependence between samples
can make the analysis become extremely complicated in
general. One possible way to collect i.i.d samples is to
generate independently a number of trajectories and using
first-visit methods, see (Bertsekas & Tsitsiklis, 1999). On
the other hand, sampling from stationary distribution can be
done by taking last samples of a long trajectory.

Moreover, we make the following fairly standard assump-
tions in the existing literature of consensus and reinforce-
ment learning (Tsitsiklis & Roy, 1997; Dalal et al., 2018;
Bhandari et al., 2018; Nedić et al., 2018). To the rest of this
paper, we will assume that these assumptions always hold.

Assumption 1. There exists an integer B such that the fol-
lowing graph is connected for all positive integers `

(V , E(`B) ∪ E(`B + 1) . . . ∪ E((`+ 1)B − 1)).

Assumption 2. There exists a positive constant β such
that W(k) = [Wvu(k)] ∈ RN×N is doubly stochastic
and Wvv(k) ≥ β ∀v ∈ V . Moreover, Wvu(k) ∈ [β, 1) if
(v, u) ∈ Nv(k) otherwise Wvu(k) = 0 for all v, u ∈ V .

Assumption 3. The Markov chain associated with P is
irreducible.

Assumption 4. All the local rewards are uniformly
bounded, i.e., there exist constants Cv, for all v ∈ V such
that |Rv(s, s′) | ≤ Cv , for all s, s′ ∈ S.

Assumption 5. The feature vectors {φ`}, for all ` ∈
{1, . . . ,K}, are linearly independent, i.e., the matrix Φ
has full column rank. In addition, we assume that all feature
vectors φ(s) are uniformly bounded, i.e., ‖φ(s)‖ ≤ 1.

Assumption 6. The convex compact set X ⊂ RK contains
the fixed point θ∗ of the projected Bellman equation.

Assumption 1 ensures the long-term connectivity and infor-
mation propagation between the agents, while Assumption 2
imposes the underlying topology of G(k) where each agent
only communicates with its neighbors. Assumptions 1 and
2 yield the following condition (Nedić et al., 2018)

‖W(k) . . .W(k + B − 1)QΘ‖ ≤ η‖QΘ‖. ∀Θ, (11)

In Eq. (11), Θ ∈ RN×K and Q ∈ RN×N are defined as

Θ ,

 — θT1 —
· · · · · · · · ·
— θTN —

 , Q = I− 1

N
11T , (12)

where I and 1 are the identity matrix and the vector in RN
with all entries equal to 1, respectively. Moreover, denote by
σ2(W(k)) the second largest singular value of W(k) and

η ∈ (0, 1) a parameter representing the spectral properties
of the sequence of graphs {G(k)} defined as

η = min

{
1− 1/(2N3), sup

k≥0
σ2(W(k))

}
. (13)

For convinience, we define δ := η
1
B . Assumption 3 guar-

antees that there exists a unique stationary distribution π
with positive entries, while under Assumption 4 the accu-
mulative reward J∗ is well defined. Under Assumption 5,
the projection operator Π is well defined. If there are some
dependent φ`, we can simply disregard those dependent fea-
ture vectors. Moreover, the uniform boundedness of φ` can
be guaranteed through feature normalization.

Finally, Assumption 6 is used to guarantee the stability of
agents’ updates, which is often assumed in the literature
of MARL and stochastic approximation, see for example;
(Zhang et al., 2018; Borkar, 2008). We note that this pro-
jection step is only used for the purpose of our convergence
analysis. In practice, we may not need this step to imple-
ment Algorithm 1 since the consensus step likely keeps the
agents’ estimates close to each other while the TD direction
drives these estimates to an optimal solution.
Denote by σmin and σmax the smallest and largest singular
value of A, respectively. Let R0 = maxθ∈X ‖θ − θ∗‖. We
now present our first results, the convergence rates of the
approximate value function estimated at each agent’s output
to the optimal value. That is, we provide the speed of con-
vergence of J̃(θ̂v(k)) to Φθ∗, for each v ∈ V . These results
are established based on proper conditions on stepsizes α(k)
chosen independently of the problem’s parameters.

Theorem 1. Let θv(k), for all v ∈ V , be generated by
Algorithm 1. In addition, given the constant L > 0 in
Lemma 1, let β0 and β1 be two positive constants defined as

β0 = E
[
‖θ̄(0)− θ∗‖2

]
+
α(0)E [‖Θ(0)‖] (L+ 2NσmaxR0)

Nη(1− δ)

β1 =
4L(L+NσmaxR0)

Nη(1− δ)
· (14)

1. If α(k) = α for some positive constant α then ∀v ∈ V

‖J̃(θ̂v(k))− J̃(θ∗)‖2D ≤
β0

α(1− γ)

1

k + 1
+

β1α

(1− γ)
· (15)

2. If {α(k)} = 1 /
√
k + 1 for all k ≥ 0 then ∀v ∈ V

‖J̃(θ̂v(k))− J̃(θ∗)‖2D ≤
β0 + β1(1 + ln(k + 1))

2(1− γ)
√
k + 1

· (16)

As shown in Eq. (15), our rate mirrors what we would
expect in using distributed SGD for solving a convex opti-
mization problem with a constant stepsize, i.e., the conver-
gence of the function value to a neighborhood around the
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optimal value occurs at O(1 / k + 1). In addition, the rate
of the distributed TD(0) also depends inversely on 1 − γ
and 1 − δ. Here, the term 1 / (1 − γ) is expected, as can
been seen from Eq. (5). Moreover, 1 − δ is the spectral
gap of W and its inverse represents the connectivity of the
underlying communication graph between agents. For dif-
ferent graphs, we have different values of δ, see for example
(Nedić et al., 2018). Similar observation holds for the case
of time-varying stepsizes α(k) = 1 /

√
k + 1, where we

would expect an asymptotic rate at O(1 /
√
k + 1), with the

same dependence on the inverse of 1− γ and 1− δ.

Second, we derive the convergence rate of θ̂v(k), for all
v ∈ V , to the optimal solution θ∗, where σmin of A is
assumed to be known. In particular, the stepsizes α(k) are
chosen based on this σmin. We again observe the same rates
as we would expect from using distributed SGD for solving
strongly convex optimization problems. In addition, these
rates depend on the condition number σmax/σmin of A, as
often observed in distributed SGD.
Theorem 2. Let θv(k), for all v ∈ V , be generated by
Algorithm 1. In addition, given the constant L > 0 in
Lemma 1, let β2 and β3 be two positive constants defined as

β2 =
4(L+NσmaxR0)E [‖Θ(0)‖]

Nη

β3 =
16L(L+NσmaxR0)

Nη(1− δ)
·

(17)

1 If α(k) = α ∈ (0, 1/σmin) then ∀v ∈ V
E[‖θv(k)− θ∗‖2] ≤ 2E

(
‖θ̄(0)− θ∗‖2 + 2‖Θ(0)‖2

)
ρk

+
β2

1− ρ
α+

β3
(1− ρ)(1− δ)

α2, (18)

where ρ = max{1− σminα, δ} ∈ (0, 1).
2 If α(k) = α0 / (k+ 1) where α0 > 1 / σmin then ∀v ∈ V

E
[
‖θ̂v(k)− θ∗‖2

]
≤
(

β2
2σmin(1− δ)

+
α0β3
4σmin

)
ln(k + 1)

k + 1
· (19)

4. Finite-Time Analysis of Distributed TD(0)
In this section, our goal is to provide the proofs of the
main results in this paper, that is, the proofs of Theorems
1 and 2. We start by introducing more notation and stating
some preliminary results corresponding to the updates of
consensus and TD steps.

4.1. Notation and Preliminary Results

Using A, bv are given in Eq. (9) we denote by

hv(k) = bv −Aθv(k)

Mv(k) = dv(k)φ(s(k))− [bv −Aθv(k)],
(20)

Then, we rewrite Eq. (10) as

yv(k) =
∑

u∈Nv(k)

Wvu(k)θu(k)

θ̃v(k) = yv(k) + α(k)(hv(k) +Mv(k))

ev(k) = θ̃v(k)− [θ̃v(k)]X

θv(k + 1) =
[
θ̃v(k)

]
X

= θ̃v(k)− ev(k),

(21)

Thus, using W(k) in Assumption 2 and Θ in Eq. (12), the
matrix form of Eq. (21) is

Y(k) = W(k)Θ(k)

Θ̃(k) = W(k)Θ(k) + α(k)(H(k) + M(k))

E(k) = Θ̃(k)− [Θ̃(k)]X

Θ(k + 1) = Θ̃(k)−E(k),

(22)

where H(k), M(k), and E(k) are the matrices, whose
v−th rows are hv(k)T , Mv(k)T , and ev(k)T , respectively.
Moreover, [Θ̃(k)]X is the row-wise projection of Θ̃(k).
Given the vectors θv we denote by θ̄ their average, i.e.,
θ̄ , 1 /N

∑
v∈V θv. Thus, Assumption 2 and Eq. (22) gives

θ̄(k + 1) = θ̄(k) + α(k)(h̄(k) + m̄(k))− ē(k), (23)

Finally, we provide here some preliminary results, which
are useful to derive our main results in the next section. For
convenience, we put their proofs in the supplementary doc-
ument. We first provides an upper bound for the consensus
error defined at time k as Θ(k)− 1θ̄(k)T = QΘ(k) in the
following lemma, where Q is given in Eq. (12).
Lemma 1. Let θv(k), for all v ∈ V , be generated by Al-
gorithm 1. Let {α(k)} be a nonnegative nonincreasing
sequence of stepsizes. Then there exists a constant L > 0
such that
1. The consensus error QΘ(k) satisfies

‖QΘ(k)‖ ≤ δk ‖Θ(0)‖
η

+
2L

η

k−1∑
t=0

δk−1−tα(t). (24)

2. In addition, we obtain
k∑
t=0

α(t)‖QΘ(t)‖ ≤ α(0)‖Θ(0)‖
η(1− δ)

+
2L

η(1− δ)

k∑
t=0

α2(t).

(25)

Second, we provide an upper bound in expectation for the
optimal distance ‖θ̄(k)− θ∗‖.
Lemma 2. Let θv(k), for all v ∈ V , be generated by Al-
gorithm 1. In addition, let {α(k)} be a nonnegative nonin-
creasing sequence of stepsizes. Then we have

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ E[‖θ̄(k)− θ∗‖2] + 2α(k)E[(θ̄(k)− θ∗)T h̄(k)]

+
4L2α2(k)

N
+

2L

N
α(k)E[‖QΘ(k)‖]. (26)
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4.2. Proof of Theorem 1

By Eq. (8) we have b̄ = Aθ∗. Thus, Eq. (20) gives

h̄(k) = b̄−Aθ̄(k) = A(θ∗ − θ̄(k))

= A(θ∗ − θu(k)) + A(θu(k)− θ̄(k)). (27)

Recall that J̃(θ̄(k)) = Φθ̄(k). In addition, since the data
are sampled i.i.d from the stationary distribution, we have
ΦTDΦ = E

[
φ(s)φ(s)T

]
. Thus, given a θ ∈ RK consider

‖J̃(θ)− J̃(θ∗)‖2D = (θ − θ∗)TΦTDΦ(θ − θ∗)
= E

[
(θ − θ∗)Tφ(s)φ(s)T (θ − θ∗)

]
= E

[
‖φ(s)T (θ − θ∗)‖2

]
. (28)

Fix an index u ∈ V . Using Eq. (27) we consider

E
[
(θ̄(k)− θ∗)T h̄(k)

]
= E

[
(θu(k)− θ∗)T h̄(k)

]
+ E

[
(θ̄(k)− θu(k))T h̄(k)

]
(27)
= E

[
(θu(k)− θ∗)TA(θ∗ − θu(k))

]
+ 2E

[
(θu(k)− θ∗)TA(θu(k)− θ̄(k))

]
+ E

[
(θ̄(k)− θu(k))TA(θu(k)− θ̄(k))

]
≤ E

[
(θu(k)− θ∗)TA(θ∗ − θu(k))

]
+ 2E

[
(θu(k)− θ∗)TA(θu(k)− θ̄(k))

]
≤ E

[
(θu(k)− θ∗)TA(θ∗ − θu(k))

]
+ 2σmaxR0E

[
‖θu(k)− θ̄(k)‖

]
, (29)

where the first inequality is due to A is positive definite.
Using the definition of A in Eq. (9) and Eqs. (27) and (28)
we analize the first term on the right-hand side of Eq. (29)

E
[
(θu(k)− θ∗)TA(θ∗ − θu(k))

]
= E

[
(θu(k)− θ∗)Tφ(s)

(
φ(s)− γφ(s′)

)T
(θ∗ − θu(k))

]
= −E

[
(θu(k)− θ∗)Tφ(s)φ(s)T (θu(k)− θ∗)

]
+ γE

[
(θu(k)− θ∗)Tφ(s)φ(s′)T (θu(k)− θ∗)

]
≤ −E

[
‖φ(s)T (θu(k)− θ∗)‖2

]
+ γ
√

E [‖φ(s)T (θu(k)− θ∗)‖2]
√

E [‖φ(s′)T (θu(k)− θ∗)‖2]

= −(1− γ)E
[
‖φ(s)T (θu(k)− θ∗)‖2

]
(28)
= −(1− γ)‖J̃(θu(k))− J̃(θ∗)‖2D,

where the inequality is due to the Cauchy-Schwarz inequal-
ity. Substituting the preceding relation into Eq. (29) and
using ‖θu(k)− θ̄(k)‖ ≤ ‖QΘ(k)‖ we obtain

E
[
(θ̄(k)− θ∗)T h̄(k)

]
≤ −(1− γ)‖J̃(θu(k))− J̃(θ∗)‖2D

+ 2σmaxR0E [‖QΘ(k)‖] . (30)

Using Eq. (30) into Eq. (26) gives

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ E

[
‖θ̄(k)− θ∗‖2

]
+

4L2

N
α2(k)

+ 2

(
L

N
+ 2σmaxR0

)
E [α(k) ‖QΘ(k)‖]

− 2(1− γ)α(k)‖J̃(θu(k))− J̃(θ∗)‖2D.

Rearranging and summing up both sides of the preceding
relation over k from 0 to K for some constant K > 0 gives

2(1− γ)

K∑
k=0

α(k)‖J̃(θu(k))− J̃(θ∗)‖2D

≤ E
[
‖θ̄(0)− θ∗‖2

]
+

4L2

N

K∑
k=0

α2(k)

+
2L+ 4NσmaxR0

N

K∑
k=0

E [α(k)‖QΘ(k)‖]

≤ E
[
‖θ̄(0)− θ∗‖2

]
+

2α(0)E [‖Θ(0)‖] (L+ 2NσmaxR0)

Nη(1− δ)

+
8L(L+NσmaxR0)

Nη(1− δ)

K∑
k=0

α2(k), (31)

where the last inequality is due to Eq. (25). We now consider
two choices of α(k) with β0 and β1 as defined in Eq. (14).

1. Let α(k) = α > 0. Dividing Eq. (31) by 2α(1− γ)(K +
1) and using the Jensen’s inequality yields Eq. (15).

2. Let α(k) = 1 /
√
k + 1. Using the integral test yields

K∑
t=0

α(k) ≥ 2
√
K + 1,

K∑
t=0

α2(k) ≤ (1 + ln(K + 1)).

Thus, dividing Eq. (31) by 2(1− γ)
∑K
k=0 α(k) and using

the Jensen’s inequality give Eq. (16).

4.3. Proof of Theorem 2

Fix a u ∈ V . Note that 2(x− y)TA(y − z) = ‖x− z‖2A −
‖x− y‖2A − ‖z − y‖2A ∀x, y, z. Thus, Eq. (27) gives

2E
[
(θ̄(k)− θ∗)T h̄(k)

]
= 2E

[
(θu(k)− θ∗)TA(θ∗ − θ̄(k))

]
+ 2E

[
(θ̄(k)− θu(k))TA(θ∗ − θ̄(k))

]
= −E

[
‖θ̄(k)− θ∗‖2A

]
− E

[
‖θu(k)− θ∗‖2A

]
+ E

[
‖θ̄(k)− θu(k)‖2A

]
+ 2E

[
(θ̄(k)− θu(k))TA(θ∗ − θ̄(k))

]
,
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which gives

2E
[
(θ̄(k)− θ∗)T h̄(k)

]
= −E

[
‖θ̄(k)− θ∗‖2A

]
− E

[
‖θu(k)− θ∗‖2A

]
+ E

[
(θ̄(k)− θu(k))TA(θ∗ − θu(k))

]
+ E

[
(θ̄(k)− θu(k))TA(θ∗ − θ̄(k))

]
≤ −σminE

[
‖θ̄(k)− θ∗‖2

]
− σminE

[
‖θu(k)− θ∗‖2

]
+ 2R0σmaxE

[
‖θ̄(k)− θu(k)‖

]
. (32)

Using Eqs. (32) into Eq. (26) gives

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ E

[
‖θ̄(k)− θ∗‖2

]
+ 2α(k)E

[
(θ̄(k)− θ∗)T h̄(k)

]
+

4L2

N
α2(k) +

2L

N
E [α(k) ‖QΘ(k)‖]

≤ (1− σminα(k))E
[
‖θ̄(k)− θ∗‖2

]
+

4L2

N
α2(k)

+
2(L+NσmaxR0)

N
E [α(k) ‖QΘ(k)‖]

− σminα(k)E
[
‖θu(k)− θ∗‖2

]
. (33)

We now consider two choices of stepsizes α(k) with β2, β3
given in Eq. (17) as follows.

1. Let α(k) = α ∈ (0, 1 / σmin) and recall that ρ =
max{1− σminα, δ} ∈ (0, 1). In addition, Eq. (24) yields

‖QΘ(k)‖ ≤ ‖Θ(0)‖
η

+
2Lα

η(1− δ)
·

Thus, recursively updating Eq. (33), dropping the negative
term, and using the preceding relation yield

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ ρk+1E

[
‖θ̄(0)− θ∗‖2

]
+

4L2

N
α2

k∑
t=0

ρk−t

+
2(L+NσmaxR0)

Nη
E [‖Θ(0)‖]α

k∑
t=0

ρk−t

+
L+NσmaxR0

Nη

4Lα2

1− δ

k∑
t=0

ρk−t

≤ ρk+1E
[
‖θ̄(0)− θ∗‖2

]
+

2(L+NσmaxR0)

Nη

2E [‖Θ(0)‖]α
1− ρ

+
4L(2L+NσmaxR0)

Nη(1− δ)
α2

1− ρ
· (34)

On the other hand, Eq. (24) yields

E
[
‖QΘ(k)‖2

]
≤ 2E

[
‖Θ(0)‖2

]
δ2k +

8L2α2

(1− δ)2
· (35)

Thus, we obtain Eq. (18) by using Eqs. (34) and (35), and

E[‖θu(k)−θ∗‖2] ≤ 2E[‖θ̄(k)−θ∗‖2]+2E[‖θu(k)−θ̄(k)‖2].

2. Let α(k) = α0 / (k + 1) where α0 > 1 / σmin, implying
1− σminα(k) ≤ k/(k + 1). Thus, Eq. (33) gives

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ k

k + 1
E
[
‖θ̄(k)− θ∗‖2

]
+

4L2α2
0

N

1

(k + 1)2

+
2α0(L+NσmaxR0)

N

E [‖QΘ(k)‖]
k + 1

− α(0)σmin

E
[
‖θu(k)− θ∗‖2

]
k + 1

≤ 4L2α2
0

N

k∑
t=0

1

(t+ 1)

1

k + 1

+
2α0(L+NσmaxR0)

N

∑k
t=0 E [‖QΘ(t)‖]

k + 1

− α0σmin

∑k
t=0 E

[
‖θu(k)− θ∗‖2

]
k + 1

. (36)

The integral test gives
∑k
t=0 1 / (k + 1) ≤ 1 + ln(k + 1).

In addition, Eq. (24) yields
k∑
t=0

E [‖QΘ(t)‖]

≤ E [‖QΘ(0)‖]
η

k∑
t=0

δt +
2L

η

k∑
t=0

t∑
`=0

δt−1−`α(`)

≤ E [‖QΘ(0)‖]
η(1− δ)

+
2L

η

k∑
`=0

α(`)

k∑
t=`+1

δt

≤ E [‖QΘ(0)‖]
η(1− δ)

+
2Lα0(1 + ln(k + 1))

η(1− δ)
·

Thus, using the preceding relation into Eq. (36), rearranging
the terms, and using the Jensen’s inequality gives Eq. (19).

5. Conclusion and Discussion
In this paper, we consider a distributed consensus-based vari-
ant of the popular TD(0) algorithm for estimating the value
function of a given stationary policy. Our main contribution
is to provide a finite-time analysis for the performance of
distributed TD(0), which has not been addressed in the ex-
isting literature of MARL. In particular, our results mirror
what we would expect from using distributed SGD for solv-
ing static convex optimization problems. A few interesting
questions left from this work are the finite-time analysis for
the general distributed TD(λ) and when the policy is not
stationary, e.g., distributed actor-critic methods. We believe
that this paper establishes fundamental results that enable
one to tackle these problems, which we leave for our future
research.
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A. Supplementary Documents
Here, we provide the details of analysis of Lemmas 1 and 2.
We first analyze the impact of projection error in Eq. (21),
where we will utilize the following result studied in (Nedić
et al., 2010).

Lemma 3. Let X be a nonempty closed convex set in RK .
Then, we have for any x ∈ RK and for all y ∈ X

(a) (PX [x]− x)T (x− y) ≤ −‖PX [x]− x‖2.

(b) ‖PX [x]− y‖2 ≤ ‖x− y‖2 − ‖PX [x]− x‖2.

Recall that

A = Eπ
[
φ(s)(φ(s)− γφ(s′))T

]
, bv = Eπ[rvφ(s)]

hv(k) = bv −Aθv(k)

Mv(k) = dv(k)φ(s(k))− [bv −Aθv(k)]

We now characterize the impact of projection error ev in Eq.
(21) as given in the following lemma.

Lemma 4. Suppose that Assumptions 2 and 4–6 hold. Let
θv(k), for all v ∈ V , be generated by Algorithm 1. In addi-
tion, let {α(k)} be a nonnegative nonincreasing sequence
of stepsizes. Then, there exists a constant Lv > 0, for all
v ∈ V , such that

‖ev(k)‖ ≤ Lvα(k). (37)

In addition, let L =
∑
v∈V Lv . Then we have

−
(
θ̄(k)− θ∗ + α(k)h̄(k)

)T
ē(k)

≤ L

N
α(k) ‖QΘ(k)‖+

2L2

N
α2(k)− 1

N
‖E(k)‖2. (38)

Proof. We first show Eq. (37). Indeed, by Assumptions 4–6
there exists a positive constant Lv , for all v ∈ V , such that

‖hv(k)‖+ ‖Mv(k + 1)‖ ≤ Lv. (39)

Moreover, since θv(k) ∈ X , for all v ∈ V , yv(k) in Eq.
(10) is in X since W(k) is doubly stochastic. Thus, using
Lemma 3(b) with y = yv(k) ∈ X yields Eq. (37)

‖ev(k)‖2 = ‖θ̃v(k)− [θ̃v(k)]X ‖2

≤
∥∥∥θ̃v(k)− yv(k)

∥∥∥2
(21)
= ‖α(k)(hv(k) +Mv(k + 1))‖2

(39)
≤ L2

vα
2(k),

which by letting L =
∑
v∈V Lv and using the Cauchy-

Schwarz inequality also implies

‖E(k)‖2 =
∑
v∈V
‖ev(k)‖2 ≤ α2(k)L2. (40)

We now show Eq. (38). Indeed, by Lemma 3(a) we have

−
(
θ̄(k)− θ∗ + α(k)h̄(k)

)T
ē(k)

= − 1

N

∑
v∈V

(θ̄(k)− θ∗ + α(k)h̄(k))T ev(k)

= − 1

N

∑
v∈V

(θ̄(k) + α(k)h̄(k)− θ̃v(k))T ev(k)

− 1

N

∑
v∈V

(θ̃v(k)− θ∗)T ev(k)

≤ 1

N

∑
v∈V

∥∥∥θ̄(k)− θ̃v(k)
∥∥∥ ‖ev(k)‖

+
1

N

∑
v∈V

∥∥α(k)h̄(k)
∥∥ ‖ev(k)‖

− 1

N

∑
v∈V

(θ̃v(k)− θ∗)T
(
θ̃v(k)−

[
θ̃v(k)

]
X

)
≤ 1

N

∑
v∈V

∥∥∥θ̄(k)− θ̃v(k)
∥∥∥ ‖ev(k)‖

+
1

N

∑
v∈V

∥∥α(k)h̄(k)
∥∥ ‖ev(k)‖

− 1

N
‖E(k)‖2, (41)

where the last inequality is due to Lemma 3(a). First, using
Eqs. (21), (37), and (39) gives∑

v∈V

∥∥∥θ̄(k)− θ̃v(k)
∥∥∥ ‖ev(k)‖

≤ α(k)
∑
v∈V

Lv

∥∥∥θ̄(k)− θ̃v(k)
∥∥∥

≤ α(k)
∑
v∈V

Lv

∥∥∥∥∥∥θ̄(k)−
∑

u∈Nv(k)

Wvu(k)θu(k)

∥∥∥∥∥∥
+ α(k)

∑
v∈V

Lv ‖α(k)(hv(k) +Mv(k))‖

≤ Lα(k)‖QΘ(k)‖+ L2α2(k),

where the last inequality is due to the Cauchy-Schwarz
inequality and W is doubly stochastic. Second, using Eqs.
(37) and (39) yields∑

v∈V

∥∥α(k)h̄(k)
∥∥ ‖ev(k)‖ ≤ L2α2(k).

Thus, using the preceeding relations into Eq. (41) immedi-
ately gives Eq. (38).

A.1. Proof of Lemma 1

Lemma 5. Suppose that Assumptions 1–6 hold. Let θv(k),
for all v ∈ V , be generated by Algorithm 1. In addition,
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let {α(k)} be a nonnegative nonincreasing sequence of
stepsizes. Then for some positive constant L we have

1. The consensus error QΘ(k) satisfies

‖QΘ(k)‖ ≤ 1

η
δk‖Θ(0)‖+

2L

η

k−1∑
t=0

δ(k−1−t)α(t). (42)

2. In addition, we obtain

k∑
t=0

α(t)‖QΘ(t)‖ ≤ α(0)‖Θ(0)‖
η(1− δ)

+
2L

η(1− δ)

k∑
t=0

α2(t).

(43)

Proof. We first show Eq. (42). Since W(k) are doubly
stochastic we have

W(k)Θ(k)− 1θ̄(k)T = W(k)
(

Θ(k)− 1θ̄(k)T
)
.

By Eqs. (22) and (23) we consider

QΘ(k + 1) = Θ(k + 1)− 1θ̄(k + 1)T

= W(k)Θ(k) + α(k)
[
H(k) + M(k)

]
−E(k)

−
[
1θ̄(k)T + α(k)1

[
h̄(k) + M̄(k)

]T
+ 1ē(k)T

]
= W(k)

(
Θ(k)− 1θ̄(k)T

)
+ α(k)

(
H(k)− 1h̄(k)T

)
+ α(k)

(
M(k)− 1M̄(k)T

)
− (E(k)− 1ē(k)T )

= W(k)QΘ(k) + α(k)Q
(
H(k) + M(k)

)
−QE(k)

=

k∏
t=0

W(t)QΘ(0)−
k∑
t=0

k∏
`=t+1

W(`)QE(t)

+

k∑
t=0

α(t)

k∏
`=t+1

W(`)Q
(
H(t) + M(t)

)
,

where in the third equality we use the definition of Q =
I− 1/N 11T . Taking the Frobenius norm on both sides of

the equation above and using the triangle inequality give

‖QΘ(k + 1)‖

≤

∥∥∥∥∥
k∏
t=0

W(t)Θ(0)

∥∥∥∥∥+

k∑
t=0

∥∥∥∥∥
k∏

`=t+1

W(`)QE(t)

∥∥∥∥∥
+

k∑
t=0

α(t)

∥∥∥∥∥
k∏

`=t+1

W(`)Q
(
H(t) + M(t)

)∥∥∥∥∥
(11)
≤ ηb(k+1)/Bc‖Θ(0)‖+

k∑
t=0

ηb(k−t)/Bc‖E(t)‖

+

k∑
t=0

ηb(k−t)/Bcα(t)‖H(t) + M(t)‖

≤ 1

η
δ(k+1)‖Θ(0)‖+

1

η

k∑
t=0

δ(k−t)‖E(t)‖

+
1

η

k∑
t=0

δ(k−t)α(t)‖H(t) + M(t)‖, (44)

where in the second inequality we also use the spectral of Q
is less than 1. The last inequality follows from noting that
ηb(k+1)/Bc ≤ η(k+1)/B−1 ≤ δ(k+1)/η. Thus, using Eqs.
(39) and (40) into Eq. (44) yields Eq. (42).

Second, multiply both sides of Eq. (42) by α(k) we obtain

α(k)‖QΘ(k)‖

≤ ‖Θ(0)‖α(k)

η
δk +

2Lα(k)

η

k−1∑
t=0

δ(k−1−t)α(t)

≤ α(0)‖Θ(0)‖
η

δk +
2L

η

k−1∑
t=0

δ(k−1−t)α2(t),

where the last inequality is due to the nonincreasing of α(k).
Summing up both sides of the preceding equation over k
from 0 to K for some K ≥ 0 we obtain Eq. (43), i.e.,

K∑
k=0

α(k)‖QΘ(k)‖

≤ α(0)‖Θ(0)‖
η

K∑
k=0

δk +
2L

η

K∑
k=0

k−1∑
t=0

δ(k−1−t)α2(t)

≤ α(0)‖Θ(0)‖
η(1− δ)

+
2L

η

K−1∑
t=0

α2(t)

K∑
k=t+1

δk

≤ α(0)‖Θ(0)‖
η(1− δ)

+
2L

η(1− δ)

K∑
t=0

α2(t).

Remark 1. Note that if limk→∞ α(k) = 0, Eq. (42) also im-
plies that the agents achieve a consensus on their estimates.
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Indeed, using Eq. (42) while ignoring the factor δ1/B

‖QΘ(k + 1)‖ ≤ δk+1‖Θ(0)‖+ 2L

k∑
t=0

δk−tα(t)

= δk+1‖Θ(0)‖

+ 2L

bk/2c∑
t=0

δk−tα(t) +

k∑
t=dk/2e

δk−tα(t)


≤ δk+1‖Θ(0)‖

+ 2L

α(0)

bk/2c∑
t=0

δk−t + α(dk/2e)
k∑

t=dk/2e

δk−t


≤ δk+1‖Θ(0)‖+ 2L

[
α(0)

1− δ
δdk/2e +

α(dk/2e)
1− δ

]
,

which implies that limk→∞ ‖QΘ(k)‖ = 0. In the preced-
ing equation, we use the nonnegativity and nonincreasing
property of α(k) in the first inequality.

A.2. Proof of Lemma 2

We now proceed to show Lemma 2 as restated as follows.

Lemma 6. Suppose that Assumptions 1–6 hold. Let θv(k),
for all v ∈ V , be generated by Algorithm 1. In addition,
let {α(k)} be a nonnegative nonincreasing sequence of
stepsizes. Then there exists a positive constant L such that

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ E

[
‖θ̄(k)− θ∗‖2

]
+

2L

N
α(k)E [‖QΘ(k)‖]

+
4L2α2(k)

N
+ 2α(k)E

[
(θ̄(k)− θ∗)T h̄(k)

]
. (45)

Proof. Recall that Aθ∗ = 1/N
(∑

v∈V bv
)

for a given
fixed point θ∗ of the projected Bellman equation. In ad-
dition, let L =

∑
v∈V Lv, where Lv is given in Eq. (39).

First, Eq. (23) yields

‖θ̄(k + 1)− θ∗‖2

= ‖θ̄(k)− θ∗ + α(k)h̄(k) + α(k)m̄(k)− ē(k)‖2

= ‖θ̄(k)− θ∗‖2 +
∥∥∥α(k)

(
h̄(k) + m̄(k)

)∥∥∥2 + ‖ē(k)‖2

+ 2α(k)(θ̄(k)− θ∗)T
(
h̄(k) + m̄(k)

)
− 2(θ̄(k)− θ∗)T ē(k)− 2α(k)

(
h̄(k) + m̄(k)

)T
ē(k).

(46)

Since the data are sampled i.i.d from π and under Assump-
tions 4– 6 we have {Mv(k)} in Eq. (20) is the sequence of
i.i.d Martingale difference noise, i.e.,

E[Mv(k) | Fk] = 0,

where Fk is the filtration contains all the variables θv(k)
generated by Algorithm 1 up to time k, i.e., Fk is the σ-
algebra generated by

{Θ(0) . . . ,Θ(k)}.

Thus, taking the conditional expectation on both sides of Eq.
(46) w.r.t Fk we obtain

E
[
‖θ̄(k + 1)− θ∗‖2 | Fk

]
= ‖θ̄(k)− θ∗‖2 +

∥∥∥α(k)
(
h̄(k) + m̄(k)

)∥∥∥2 + ‖ē(k)‖2

+ 2α(k)(θ̄(k)− θ∗)T h̄(k)

− 2
(
θ̄(k)− θ∗ + α(k)h̄(k)

)T
ē(k),

which by taking the expectation on both sides, and using
Eqs. (37)–(39) and the Cauchy-Schwarz inequality implies
Eq. (45)

E
[
‖θ̄(k + 1)− θ∗‖2

]
≤ ‖θ̄(k)− θ∗‖2 +

4L2

N
α2(k) +

2L

N
α(k) ‖QΘ(k)‖

+ 2α(k)(θ̄(k)− θ∗)T h̄(k).


