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Abstract

We prove that for an L-layer fully-connected lin-
ear neural network, if the width of every hidden
layer is Ω̃

(
L · r · dout · κ3

)
, where r and κ are

the rank and the condition number of the input
data, and dout is the output dimension, then gradi-
ent descent with Gaussian random initialization
converges to a global minimum at a linear rate.
The number of iterations to find an ε-suboptimal
solution is O(κ log( 1

ε )). Our polynomial upper
bound on the total running time for wide deep
linear networks and the exp (Ω (L)) lower bound
for narrow deep linear neural networks [Shamir,
2018] together demonstrate that wide layers are
necessary for optimizing deep models.

1. Introduction
Recent success in machine learning involves training deep
neural networks using randomly initialized first order meth-
ods, which requires optimizing highly non-convex functions.
Compared with nonlinear deep neural networks, deep linear
networks are arguably more amenable to theoretical analy-
sis. It is widely believed that deep linear networks already
captures important aspects of optimization in deep learn-
ing (Saxe et al., 2014). Therefore, theoreticians have tried
to study this problem in recent years. However, a strong
global convergence guarantee is still missing.

A series of recent papers analyzed landscape of the deep lin-
ear network optimization problem (Kawaguchi, 2016; Hardt
& Ma, 2016; Lu & Kawaguchi, 2017; Yun et al., 2017; Zhou
& Liang, 2018; Laurent & Brecht, 2018). However, these
results do not imply convergence of gradient-based methods
to the global minimum. Recently, Bartlett et al. (2018);
Arora et al. (2018a) directly analyzed the trajectory gener-
ated by gradient descent, and showed that gradient descent
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converges to global minimum under further assumptions
on both data and global minimum. These results require
specially designed initialization schemes, and do not apply
to commonly used random initializations. In Section 2.1 we
describe above results in more details.

A recent work by Shamir (2018) showed an exponential
lower bound of randomly initialized gradient descent for
narrow linear neural networks. More precisely, he showed
that for an L-layer linear neural network in which the input,
output and all hidden dimensions are equal to 1, gradient
descent with Xavier initialization (Glorot & Bengio, 2010)
requires at least exp (Ω (L)) iteration to converge. This re-
sult demonstrates the intrinsic difficulty of optimizing deep
networks: even in the basic setting, the convergence time for
randomly initialized gradient descent can be exponential in
depth. Nevertheless, this lower bound only holds for narrow
neural networks. It is possible that making the hidden layers
wider (which is usually the case in practice) can eliminate
such exponential dependence on depth. This gives rise to
the following questions:

Can randomly initialized gradient descent optimize wide
deep linear networks in polynomial time? If so, what is a

sufficient width in hidden layers?

Our Contribution: We answer the first question posi-
tively and give a concrete quantitative result for the second
question. We prove that as long as the width of hidden layers
is at least Ω̃(L)1, gradient descent with Xavier initialization
with high probability converges to the global minimum of
the `2 loss at a linear rate under no assumption. To our
knowledge, this is the first polynomial time global conver-
gence guarantee for randomly initialized gradient descent
for deep linear networks. Furthermore, our convergence
rate is tight in the sense that it matches the convergence rate
of applying gradient descent to the convex (1-layer) linear
regression problem.

Compared with previous work (Bartlett et al., 2018; Arora
et al., 2018a) that gave convergence rate guarantees for
linear neural networks, our result has several advantages:

• Our result applies to the widely used Xavier random

1We omit dependence on other parameters here. See Theo-
rem 4.1 for the precise requirements.
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initialization, while Bartlett et al. (2018) used identity
initialization, and Arora et al. (2018a) assumed that
initialization is “balanced” and somewhat close to the
global minimum.

• Our result does not have any assumption on the input
data, while Bartlett et al. (2018); Arora et al. (2018a)
both required whitened data.

• Our result does not have any assumption on the global
minimum, while Bartlett et al. (2018) assumed it to be
either close to identity or positive definite, and Arora
et al. (2018a) required it to have full rank.

Our polynomial upper bound for the wide linear neural net-
work and the exponential lower bound for the narrow linear
neural network together demonstrate that width provably
matters in guaranteeing the efficiency of randomly initial-
ized gradient descent for optimizing deep linear nets.2

Our Technique: Our proof technique is related to the re-
cent work (Arora et al., 2018a;b; Du et al., 2018b) which uti-
lized a time-varying Gram matrix (or preconditioner) along
the trajectory of gradient descent. We adopt the same idea of
using such Gram matrix. In the setting of wide linear neural
networks, we carefully upper and lower bound eigenvalues
of this Gram matrix throughout the optimization process,
which together with some perturbation analysis implies lin-
ear convergence. In order to establish this at initialization,
we need to analyze spectral properties of product of Gaus-
sian random matrices and show that these properties hold
throughout the trajectory of gradient descent.

2. Related Work
2.1. Optimization for Deep Linear Neural Networks

Landscape Analysis: Ge et al. (2015); Jin et al. (2017)
showed that if an objective function satisfies that (1) all
local minima are global, and (2) all saddle points are strict
(i.e., there exists a negative curvature), then randomly
perturbed gradient descent can escape all saddle points
and find a global minimum. Motivated by this, a series
of papers (Kawaguchi, 2016; Hardt & Ma, 2016; Lu &
Kawaguchi, 2017; Yun et al., 2017; Zhou & Liang, 2018;
Laurent & Brecht, 2018) studied these landscape properties
for optimizing deep linear networks. While it was estab-
lished that all local minima are global, unfortunately the
strict saddle property is not satisfied even for 3-layer lin-
ear neural networks. Therefore, using landscape properties
alone is not sufficient for proving global convergence.

2There are other techniques such as adaptive gradients (Duchi
et al., 2011; Kingma & Ba, 2014) and skip-connections (He et al.,
2016) that could help optimization. Analyses of those approaches
are beyond the scope of this paper.

Trajectory Analysis: Instead of using the indirect
landscape-based approach, an alternative is to directly an-
alyze the trajectory generated by a concrete optimization
algorithm like gradient descent. The current paper also
belongs to this category.

Saxe et al. (2014) gave a thorough empirical study on deep
linear networks, showing that they exhibit some learning pat-
terns similar to nonlinear networks. Ji & Telgarsky (2019)
studied the dynamics of gradient descent to optimize a
deep linear neural network for classification problems, and
showed that the risk converges to 0 and the solution found
is a max-margin solution. Arora et al. (2018b) observed that
adding more layers can accelerate optimization for certain
loss functions. Du et al. (2018a) showed that using gradient
descent, layers are automatically balanced.

All the above results do not show concrete convergence rates
of gradient descent. The most related papers are (Bartlett
et al., 2018) and (Arora et al., 2018a). Here we give a
detailed description of their results.

Bartlett et al. (2018) showed that if one uses identity ini-
tialization, the input data is whitened, and the target matrix
is either close to identity or positive definite, then gradient
descent converges to the target matrix at a linear rate. Their
result highly depends on the identity initialization scheme
and has strong requirements on the input data and the tar-
get. Arora et al. (2018a) showed that if the initialization is
balanced and the initial loss is smaller than the loss of any
low-rank solution by a margin, then gradient descent con-
verges to global minimum at a linear rate. However, their
initialization scheme requires a special SVD step which
is not used in practice, and the initial loss condition hap-
pens with exponentially small probability when the input
and output dimensions are large. Our result improves upon
these two papers by (i) allowing fully random initialization,
and (ii) removing all assumptions on the input data and the
target.

2.2. Optimization for Other Neural Networks

Many papers tried to identify the two desired geometric
landscape properties of objective functions for non-linear
neural networks (Freeman & Bruna, 2016; Nguyen & Hein,
2017; Venturi et al., 2018; Soudry & Carmon, 2016; Du &
Lee, 2018; Soltanolkotabi et al., 2018; Haeffele & Vidal,
2017). Unfortunately, these properties do not hold even for
simple non-linear shallow neural networks (Yun et al., 2019;
Safran & Shamir, 2018).

A series of recent papers used trajectory-based methods to
analyze gradient descent for shallow neural networks under
strong data assumptions (Tian, 2017; Soltanolkotabi, 2017;
Brutzkus & Globerson, 2017; Li & Yuan, 2017; Zhong
et al., 2017; Zhang et al., 2018; Du et al., 2018c;d). These
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results are restricted to shallow neural networks, and the
assumptions are not satisfied in practice.

Recent breakthroughs were made in the optimization for ex-
tremely over-parametrized non-linear neural networks (Du
et al., 2019; 2018b; Li & Liang, 2018; Allen-Zhu et al.,
2018; Zou et al., 2018). For deep ReLU neural networks,
Allen-Zhu et al. (2018); Zou et al. (2018) showed that if the
width of hidden layers is Ω

(
n30L30 log2( 1

ε )
)
, then gradient

descent converges to ε loss. (n is the number of training
samples.) Du et al. (2018b) considered non-linear smooth
activation functions like soft-plus, and showed that if the
width of hidden layers is n4 · 2Ω(L), then gradient descent
converges to 0 loss.3 All these results need additional as-
sumptions on data, which also show up in the required width.
Compared with them, we have a much better bound on the
required width (L v.s. L30 or exp(L)), although this is not
a fair comparison because linear networks are simpler than
non-linear ones. But given that we obtain a near linear de-
pendence on depth, our result may shed light on the limit of
required width in optimizing non-linear neural networks.

3. Preliminaries
3.1. Notation

We use ‖·‖ to denote the Euclidean norm of a vector or the
spectral norm of a matrix, and use ‖·‖F to denote the Frobe-
nius norm of a matrix. For a symmetric matrix, let λmax(A)
and λmin(A) be its maximum and minimum eigenvalues,
and let λi(A) be its i-th largest eigenvalue. Similarly, for
a general matrix B, let σmax(B) and σmin(B) be its max-
imum and minimum singular values, and let σi(B) be its
i-th largest singular value.

Let I be the identity matrix and [n] = {1, 2, . . . , n}. Denote
by N (0, 1) the standard Gaussian distribution, and by χ2

k

the χ2 distribution with k degrees of freedom. Let Sd−1 =
{x ∈ Rd : ‖x‖ = 1} be the unit sphere in Rd.

Let vec (A) be the vectorization of a matrix A in column-
first order. The Kronecker product between two matrices
A ∈ RmA×nA and B ∈ RmB×nB is defined as

A⊗B =

 a1,1B · · · a1,nAB
...

. . .
...

amA,1B · · · amA,nAB

 ∈ RmAmB×nAnB ,

where ai,j is the element in the (i, j)-th entry of A.

We use C to represent a sufficiently large universal con-
stant throughout the paper. The specific value of C can be
different from line to line.

3They also showed if one uses skip-connections (He et al.,
2016), then the width only depends polynomially on L. We only
focus on fully-connected neural networks in this paper.

3.2. Problem Setup

We are given n training samples {(xp, yp)}np=1 ⊂ Rdin ×
Rdout . Let X = (x1, . . . , xn) ∈ Rdin×n be the input data
matrix and Y = (y1, . . . , yn) ∈ Rdout×n be the label ma-
trix.

Consider the problem of training a depth-L linear neural
network with hidden layer width m by minimizing the `2
loss over data:

`(W1, . . . ,WL) =
1

2

n∑
p=1

∥∥∥∥ 1√
mL−1dout

WL · · ·W1xp − yp
∥∥∥∥2

=
1

2

∥∥∥∥ 1√
mL−1dout

WL · · ·W1X − Y
∥∥∥∥2
F

,

(1)
where W1 ∈ Rm×din ,W2, . . . ,WL−1 ∈ Rm×m and
WL ∈ Rm×dout are weight matrices to be learned. Here

1√
mL−1dout

is a scaling factor corresponding to Xavier ini-

tialization4 (Glorot & Bengio, 2010), for which we provide
a justification in Section 3.3.

We consider the vanilla gradient descent (GD) algorithm for
objective (1) with random initialization:

• We initialize all the entries of W1, . . . ,WL indepen-
dently from N (0, 1). Let W1(0), . . . ,WL(0) be the
weight matrices at initialization.

• Then we update the weights using GD: for t =
0, 1, 2, . . . and i ∈ [L],

Wi(t+ 1) = Wi(t)− η
∂`

∂Wi
(W1(t), . . . ,WL(t)),

(2)
where η > 0 is the learning rate.

For notational convenience, we denote Wj:i =
WjWj−1 · · ·Wi for every 1 ≤ i ≤ j ≤ L. We also define
Wi−1:i = I (of appropriate dimension) for completeness.

We use the time index t for all variables that depend on
W1, . . . ,WL, e.g., Wj:i(t) = Wj(t) · · ·Wi(t), `(t) =
`(W1(t), . . . ,WL(t)), etc.

3.3. On the Scaling Factor

The scaling factor 1√
mL−1dout

ensures that the network at

initialization preserves the size of every input in expectation.
Claim 3.1. For any x ∈ Rdin , we have

E

∥∥∥∥∥ 1√
mL−1dout

WL:1(0)x

∥∥∥∥∥
2
 = ‖x‖2 .

The proof of Claim 3.1 is given in Appendix A.

4We adopt this scaling factor so that we can initialize all
weights fromN (0, 1).
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4. Main Result
In this section we present our main result. First note that
when m ≥ dout (which we will assume), the deep linear
network we study has the same representation power as a
linear map x 7→Wx (W ∈ Rdout×din ). Hence, the optimal
value OPT for our objective function (1) is equal to the
optimal value of the following linear regression problem:

OPT = min
W∈Rdout×din

f(W ) = min
W∈Rdout×din

1

2
‖WX − Y ‖2F .

(3)
Let Φ ∈ Rdout×din be a minimizer of f with minimum spec-
tral norm.5 Let r = rank(X), and define κ = λmax(X>X)

λr(X>X)

which is the condition number of X>X .

Our main theorem is the following:
Theorem 4.1. Suppose

m ≥ C · L ·max
{
rκ3dout(1 + ‖Φ‖2), rκ3 log

r

δ
, logL

}
(4)

for some δ ∈ (0, 1) and a sufficiently large universal con-
stant C > 0 and we set η ≤ dout

3L‖X>X‖ . Then with prob-
ability at least 1 − δ over the random initialization, we
have

`(0)− OPT ≤ O
(

max

{
1,

log(r/δ)

dout
, ‖Φ‖2

})
‖X‖2F ,

`(t)− OPT ≤
(

1− ηL · λr(X>X)

4dout

)t
(`(0)− OPT) .

Theorem 4.1 establishes that if the width of each layer is
sufficiently large, randomly initialized gradient descent can
reach a global minimum at a linear convergence rate. No-
tably, our result is fully polynomial in the sense that we only
require polynomially large width and the convergence time
is also polynomial. To our knowledge, this is the first poly-
nomial time convergence guarantee for randomly initialized
gradient descent on deep linear networks.

Ignoring logarithmic factors and assuming ‖Φ‖ = O(1),
our requirement on width (4) is m = Ω̃

(
Lrκ3dout

)
. It

remains open whether this dependence is tight for randomly
initialized gradient descent to find a global minimum in
polynomial time.

In terms of convergence rate, if we set the learning rate to
be η = Θ

(
dout

L‖X>X‖

)
, then the predicted ratio of decrease

in each iteration is 1 − Θ
(
λr(X>X)
‖X>X‖

)
= 1 − Θ

(
1
κ

)
, so

the number of iterations needed to reach OPT + ε loss is
O
(
κ log 1

ε

)
. This matches the convergence rate of gradient

descent on the linear regression (convex!) problem (3).

5Our theorem holds for any minimizer of f . Since our bound
improves when ‖Φ‖ is smaller, we simply define Φ to be a
minimum-spectral-norm minimizer.

Furthermore, notice that our requirement on the learning
rate is η = O( dout

L‖X>X‖ ). When L = 1, this also exactly re-
covers the convergence result for applying gradient descent
to the linear regression problem (3). The reason why L is in
the denominator will be clear in the proof. At a high level,
we show that optimizing a deep linear network is similar to a
linear regression problem with the covariance matrix being
L · X>X , which thus requires scaling down the learning
rate by a factor of L.

5. Proof Overview
In this section we give an overview for the proof of Theo-
rem 4.1.

First, we note that a simple reduction implies that we can
make the following assumption without loss of generality:

Assumption 5.1. (Without loss of generality) X ∈ Rdin×r,
rank(X) = r, Y = ΦX , and OPT = 0.

See Appendix B for justification. Therefore we will work
under Assumption 5.1 from now on.

Now we proceed to sketch the proof of Theorem 4.1. The
key idea is to examine the dynamics of the network predic-
tion on data X during optimization, namely:

U =
1√

mL−1dout

WL:1X ∈ Rdout×n.

With this notation, the network prediction at iteration t is
U(t) = 1√

mL−1dout
WL:1(t)X , and the loss value at itera-

tion t is `(t) = 1
2 ‖U(t)− Y ‖2F . Hence how U(t) evolves

is directly related to how loss `(t) decreases.

The gradient of our objective function (1) is

∂`

∂Wi
=

1√
mL−1dout

W>L:i+1(U −Y ) (Wi−1:1X)
>
. (5)

Then using the update rule (2) we write

WL:1(t+ 1)

=
∏
i

(
Wi(t)− η

∂`

∂Wi
(t)

)

=WL:1(t)−
L∑
i=1

ηWL:i+1(t)
∂`

∂Wi
(t)Wi−1:1(t) + E(t)

=WL:1(t)

− η√
mL−1dout

L∑
i=1

(
WL:i+1(t)W>L:i+1(t)

· (U(t)− Y ) (Wi−1:1(t)X)
>
Wi−1:1(t)

)
+ E(t),
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where E(t) contains all high-order terms (those with η2 or
higher). Multiplying this equation by 1√

mL−1dout

X on the

right we get

U(t+ 1) = U(t)− η

mL−1dout

L∑
i=1

(
WL:i+1(t)W>L:i+1(t)

· (U(t)− Y ) (Wi−1:1(t)X)
>

(Wi−1:1(t)X)
)

+
1√

mL−1dout

E(t)X.

Vectorizing the above equation and using the property of
Kronecker product: vec (ACB) = (B> ⊗ A)vec (C), we
obtain

vec (U(t+ 1)− U(t))

= − ηP (t) · vec (U(t)− Y ) +
1√

mL−1dout

vec (E(t)X) ,

(6)
where

P (t) =
1

mL−1dout

L∑
i=1

[ (
(Wi−1:1(t)X)

>
(Wi−1:1(t)X)

)
⊗
(
WL:i+1(t)W>L:i+1(t)

) ]
.

(7)
Notice that P (t) is always positive semi-definite (PSD) be-
cause it is the sum of L terms, each of which is the Kro-
necker product between two PSD matrices.

Now we assume that the high-order term E(t) in (6) is very
small (which we will rigorously prove) and ignore it for
now. Then (6) implies

vec (U(t+ 1)− Y ) ≈ (I − ηP (t)) vec (U(t)− Y ) . (8)

Suppose we are able to set η ≤ 1
λmax(Pt)

. Then (8) would
imply

‖U(t+ 1)− Y ‖F ≤ (1− ηλmin(P (t))) ‖U(t)− Y ‖F .

Therefore, if we have a lower bound on λmin(P (t)) for all t,
we will have linear convergence as desired. We will indeed
prove the following bounds on λmax(Pt) and λmin(Pt) for
all t, which will essentially complete the proof:

λmax(Pt) ≤ O
(
Lλmax(X>X)/dout

)
,

λmin(Pt) ≥ Ω
(
Lλmin(X>X)/dout

)
.

(9)

We use the following approach to bound λmax(P (t)) and

λmin(P (t)):

λmax(P (t))

≤ 1

mL−1dout

L∑
i=1

[
λmax

(
(Wi−1:1(t)X)> (Wi−1:1(t)X)

)
· λmax

(
WL:i+1(t)W>L:i+1(t)

) ]
=

1

mL−1dout

L∑
i=1

σ2
max (Wi−1:1(t)X) · σ2

max (WL:i+1(t)) ,

λmin(P (t))

≥ 1

mL−1dout

L∑
i=1

[
λmin

(
(Wi−1:1(t)X)> (Wi−1:1(t)X)

)
· λmin

(
WL:i+1(t)W>L:i+1(t)

) ]
=

1

mL−1dout

L∑
i=1

σ2
min (Wi−1:1(t)X) · σ2

min (WL:i+1(t)) ,

(10)
Here we have used the property that for symmetric matrices
A and B, every eigenvalue of A ⊗ B is the product of
an eigenvalue of A and an eigenvalue of B. Therefore, it
suffices to obtain upper and lower bounds on the singular
values of Wi−1:1(t)X and WL:i+1(t). In Section 6, we
establish these bounds for initialization (t = 0). Then we
finish the proof of Theorem 4.1 in Section 7.

6. Properties at Initialization
In this section we establish some properties of the weight
matrices generated by random initialization.

The following lemma shows that when multiplying a fixed
vector by a series of Gaussian matrices with large width, the
resulting vector’s norm is concentrated.

Lemma 6.1. Supposem > Cq, and consider q independent
random matrices A1, . . . , Aq (A1 ∈ Rm×d, A2, . . . , Aq ∈
Rm×m) with i.i.d. N (0, 1) entries. Then for any v ∈ Sd−1,
with probability at least 1− e−Ω(m/q) we have

0.9mq/2 ≤ ‖Aq · · ·A1v‖ ≤ 1.1mq/2.

Proof. See Appendix C.

The next three propositions show the key properties of prod-
ucts of weight matrices at initialization.

Proposition 6.2. For any 1 < i ≤ L, with probability at
least 1− e−Ω(m/L) we have

σmax(WL:i(0)) ≤ 1.2m
L−i+1

2 ,

σmin (WL:i(0)) ≥ 0.8m
L−i+1

2 .

Proof. Let A = W>L:i(0). Since A ∈ Rm×dout and m >
dout, we know ‖A‖ = supv∈Sdout−1 ‖Av‖ and σmin(A) =
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infv∈Sdout−1 ‖Av‖. Also, from Lemma 6.1 we know that
for any fixed v ∈ Sdout−1, with probability at least 1 −
e−Ω(m/L) we have ‖Av‖ ∈

[
0.9m

L−i+1
2 , 1.1m

L−i+1
2

]
.

The rest of the proof is by a standard ε-net argument. Let
ε = 0.01. Take an ε-net N for Sdout−1 with |N | ≤
(3/ε)dout . By a union bound, with probability at least
1− |N | e−Ω(m/L), for all u ∈ N simultaneously we have
‖Au‖ / ‖u‖ ∈

[
0.9m

L−i+1
2 , 1.1m

L−i+1
2

]
. Suppose this

happens for every u ∈ N . Next, for any v ∈ Sdout−1,
there exists u ∈ N such that ‖u− v‖ ≤ ε. Then we have

‖Av‖ ≤ ‖Au‖+ ‖A(u− v)‖ ≤ 1.1m
L−i+1

2 ‖u‖+ ε ‖A‖

≤ 1.1(1 + ε)m
L−i+1

2 + ε ‖A‖ .

Taking supreme over v ∈ Sdout−1, we obtain

‖A‖ ≤ 1.1(1 + ε)m
L−i+1

2

1− ε
≤ 1.2m

L−i+1
2 .

For the lower bound, we have

‖Av‖ ≥ ‖Au‖ − ‖A(u− v)‖ ≥ 0.9m
L−i+1

2 ‖u‖ − ε ‖A‖

≥ 0.9(1− ε)m
L−i+1

2 − ε · 1.2m
L−i+1

2

≥ 0.8m
L−i+1

2 .

Taking infimum over v ∈ Sdout−1 we get σmin(A) ≥
0.8m

L−i+1
2 .

The success probability is at least 1− |N | e−Ω(m/L) = 1−
e−Ω(mL )+dout log( 3

ε ) = 1−e−Ω(mL ) sincem > CLdout.

Proposition 6.3. For any 1 ≤ i < L, with probability at
least 1− e−Ω(m/L) we have

σmax(Wi:1(0) ·X) ≤ 1.2m
i
2σmax(X),

σmin (Wi:1(0) ·X) ≥ 0.8m
i
2σmin(X).

Proof. The proof is similar to the proof of Proposition 6.2
and is deferred to Appendix D.

Proposition 6.4. For any 1 < i ≤ j < L, with probability
at least 1− e−Ω(m/L) we have

‖Wj:i(0)‖ ≤ O
(√

Lm
j−i+1

2

)
.

Proof. Let A = Wj:i(0). From Lemma 6.1 we know
that for any fixed v ∈ Sm−1, with probability at least
1− e−Ω(m/L) we have ‖Av‖ ∈

[
0.9m

j−i+1
2 , 1.1m

j−i+1
2

]
.

Take a small constant c > 0 and partition the index set
[m] into [m] = S1 ∪ S2 ∪ · · · ∪ SL/c where |Sl| = cm/L

for each l. For each l, taking a 1
2 -net Nl for all the unit

vectors supported in Sl, i.e., a 1
2 -net for the set VSl ={

v ∈ Sm−1 : supp(v) ⊆ Sl
}

, we know that

‖Au‖ ≤ O
(
m

j−i+1
2

)
, ∀u ∈ VSl , (11)

with probability at least 1 − |Nl| e−Ω(m/L) = 1 −
e−Ω(m/L)+(cm/L) log 6 = 1 − e−Ω(m/L). Then taking a
union bound over all l, we know that (11) holds for all l
simultaneously with probability at least 1 − L

c e
−Ω(m/L).

Conditioned on this, for any v ∈ Rm, we can partition its
coordinates and write it as the sum v = α1v1 +α2v2 + · · ·+
αL/cvL/c where αl ∈ R and vl ∈ VSl for each l. Then we
have

‖Av‖ ≤
∑

l
‖A · αlvl‖ ≤

∑
l
|αl|O

(
m

j−i+1
2

)
≤ O

(
m

j−i+1
2

)√L

c

∑
l
α2
l = O

(√
Lm

j−i+1
2

)
‖v‖ .

This means ‖A‖ ≤ O
(√

Lm
j−i+1

2

)
. The success probabil-

ity is at least 1− L
c e
−Ω(m/L) = 1− e−Ω(m/L)+log(L/c) =

1− e−Ω(m/L) since m > CL logL.

To close this section, we bound the loss value `(0) at initial-
ization, which proves the first part of Theorem 4.1.

Proposition 6.5. With probability at least 1− e−Ω(m/L) −
δ/2, we have `(0) ≤ O

(
max

{
1, log(r/δ)

dout
, ‖Φ‖2

})
‖X‖2F .

Proof. See Appendix E.

7. Proof of the Main Theorem
In this section we prove Theorem 4.1 based on ingredients
from Sections 5 and 6.

From Propositions 6.2, 6.3, 6.4 and 6.5, we know that with
probability at least 1 − L2e−Ω(m/L) − δ/2 ≥ 1 − δ, the
following conditions of initialization are satisfied simultane-
ously:

σmax(WL:i(0)) ≤ 1.2m
L−i+1

2 , ∀1 < i ≤ L,
σmin (WL:i(0)) ≥ 0.8m

L−i+1
2 , ∀1 < i ≤ L,

σmax(Wi:1(0) ·X) ≤ 1.2m
i
2σmax(X), ∀1 ≤ i < L,

σmin (Wi:1(0) ·X) ≥ 0.8m
i
2σmin(X), ∀1 ≤ i < L,

‖Wj:i(0)‖ ≤ O
(√

Lm
j−i+1

2

)
, ∀1 < i ≤ j < L,

`(0) ≤ B.
(12)

Here we define B = O
(

max
{

1, log(r/δ)
dout

, ‖Φ‖2
})
‖X‖2F

which is the upper bound on `(0) from Proposition 6.5.
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From our requirement on m (4), we know

m ≥ C · Lrκ3 max
{
dout(1 + ‖Φ‖2), log

r

δ

}
≥ CLrκ3doutB

‖X‖2F
≥ CLrκ3doutB

r ‖X‖2
=
CL ‖X‖4 doutB

σ6
min(X)

.

(13)

Now we establish our convergence result conditioned on
all properties in (12). Specifically, we use induction on t to
simultaneously prove the following three properties A(t),
B(t) and C(t) for all t = 0, 1, . . .:

• A(t):

`(t) ≤
(

1− 1

4
ηLσ2

min(X)/dout

)t
`(0)

≤
(

1− 1

4
ηLσ2

min(X)/dout

)t
B.

• B(t):

σmax(WL:i(t)) ≤ 5
4m

L−i+1
2 , ∀1 < i ≤ L,

σmin (WL:i(t)) ≥ 3
4m

L−i+1
2 , ∀1 < i ≤ L,

σmax(Wi:1(t) ·X) ≤ 5
4m

i
2σmax(X), ∀1 ≤ i < L,

σmin (Wi:1(t) ·X) ≥ 3
4m

i
2σmin(X), ∀1 ≤ i < L,

‖Wj:i(t)‖ ≤ O
(√

Lm
j−i+1

2

)
, ∀1 < i ≤ j < L.

• C(t):

‖Wi(t)−Wi(0)‖F ≤
24
√
Bdout ‖X‖

Lσ2
min(X)

, ∀i ∈ [L].

Notice that if we prove A(t) for all t ≥ 0, we will finish the
proof of Theorem 4.1.

The initial conditions A(0) and B(0) follow directly
from (12), and C(0) is trivially true. In order to establish
A(t), B(t) and C(t) for all t, in Sections 7.1-7.3 we will
prove respectively the following claims for all t ≥ 0:

Claim 7.1. A(0), . . . ,A(t),B(0), . . . ,B(t) =⇒ C(t+ 1).

Claim 7.2. C(t) =⇒ B(t).

Claim 7.3. A(t),B(t) =⇒ A(t+ 1).

The proof of Theorem 4.1 is finished after the above three
claims are proved.

7.1. Proof of Claim 7.1

Denote γ = 1
4Lσ

2
min(X)/dout. From A(0), . . . ,A(t) we

know `(s) ≤ (1− ηγ)sB for all 0 ≤ s ≤ t.

From the gradient expression (5), for all 0 ≤ s ≤ t and all

i ∈ [L] we can bound:∥∥∥∥ ∂`

∂Wi
(s)

∥∥∥∥
F

≤ 1√
mL−1dout

‖WL:i+1(s)‖ ‖U(s)− Y ‖F ‖Wi−1:1(s)X‖

≤ 1√
mL−1dout

· 5

4
m

L−i
2 ·

√
2`(s) · 5

4
m

i−1
2 ‖X‖

≤
3
√

(1− ηγ)sB√
dout

‖X‖ ,

(14)
where we have used B(s).

Then we can bound ‖Wi(t+ 1)−Wi(0)‖F for all i ∈ [n]:

‖Wi(t+ 1)−Wi(0)‖F ≤
t∑

s=0

‖Wi(s+ 1)−Wi(s)‖F

=

t∑
s=0

∥∥∥∥η ∂`

∂Wi
(s)

∥∥∥∥
F

≤ η
t∑

s=0

3
√

(1− ηγ)sB√
dout

‖X‖

≤ 3η
√
B√

dout

‖X‖
t−1∑
s=0

(1− ηγ/2)s ≤ 3η
√
B√

dout

‖X‖ · 2

ηγ

=
24
√
Bdout ‖X‖

Lσ2
min(X)

.

This proves C(t+ 1).

7.2. Proof of Claim 7.2

Let R = 24
√
Bdout‖X‖

Lσ2
min(X)

and denote ∆i = Wi(t) −Wi(0)

(i ∈ [L]). Then using ‖∆i‖F ≤ R (∀i ∈ [L]) we will show
the followings:

‖WL:i(t)−WL:i(0)‖ ≤ 0.05m
L−i+1

2 , ∀1 < i ≤ L,
(15)

‖(Wi:1(t)−Wi:1(0))X‖ ≤ 0.05m
i
2σmin(X), ∀1 ≤ i < L,

(16)

‖Wj:i(t)−Wj:i(0)‖ ≤ 0.05
√
Lm

j−i+1
2 ,∀1 < i ≤ j < L.

(17)

Combing them with (12), we will finish the proof of B(t).

First we prove (17). For 1 ≤ i < j ≤ L, we can write

Wj:i(t) = (Wj(0) + ∆j) · · · (Wi(0) + ∆i) .

Expanding the above product, each term except the leading
term Wj:i(0) has the form:

Wj:(ks+1)(0) ·∆ks ·W(ks−1):(ks−1+1)(0) ·∆ks−1
· · ·

·∆k1 ·W(k1−1):i(0),
(18)
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where i ≤ k1 < · · · < ks ≤ j are positions at which per-
turbation terms ∆kl are taken out, and at any other position
k, Wk(0) is used. Note that every factor in (18) of the form
Wb:a(0) satisfies ‖Wb:a(0)‖ ≤ O

(√
Lm

b−a+1
2

)
because

of (12); there are at most s+ 1 such factors, so the product

of their spectral norms is at most
(
O(
√
L)
)s+1

m
j−i+1−s

2 .
Thus, we can bound the sum of all terms like (18) as

‖Wj:i(t)−Wj:i(0)‖

≤
j−i+1∑
s=1

(
j − i+ 1

s

)
Rs
(
O
(√

L
))s+1

m
j−i+1−s

2

≤
j−i+1∑
s=1

LsRs
(
O
(√

L
))s+1

m
j−i+1−s

2

=O
(√

L
) j−i+1∑

s=1

(
O
(
L3/2R

)
√
m

)s
m

j−i+1
2

≤ 0.05
√
Lm

j−i+1
2 ,

(19)
as long as m > CL3R2 which is implied by (13). This
proves (17).

The proof of (15) is very similar. We still look at products
of the form (18) with j = L. Still, there are at most s + 1
factors of the form Wb:a(0) each satisfying ‖Wb:a(0)‖ ≤
O
(√

Lm
b−a+1

2

)
. However, there are at most s (instead of

s + 1) such factors such that 1 < a ≤ b < L. Therefore,
the product of spectral norms of all such factors is at most(
O(
√
L)
)s
m

L−i+1−s
2 . In other words, we can save a factor

of O(
√
L) compared with (19). This gives us

‖WL:i(t)−WL:i(0)‖ ≤ 0.05m
L−i+1

2 ,

proving (15).

Next we prove (16). For 1 ≤ i < L, we need to bound the
sum of terms of the following form:

Wi:(ks+1)(0) ·∆ks ·W(ks−1):(ks−1+1)(0) ·∆ks−1
· · ·

·∆k1 ·W(k1−1):1(0)X.

Again, similar as before and noting
∥∥W(k1−1):1(0)X

∥∥ ≤
5
4m

k1−1
2 ‖X‖, we have

‖Wi:1(t)−Wi:1(0)‖

≤
i∑

s=1

(
j − i+ 1

s

)
Rs
(
O
(√

L
))s
· 5

4
m

i−s
2 ‖X‖

≤ 5

4

i∑
s=1

LsRs
(
O
(√

L
))s

m
i−s
2 ‖X‖

=
5

4
m

i
2

i∑
s=1

O
(
L3/2R

)
√
m

s

‖X‖

≤ 0.05m
i
2 σmin(X),

as long as m > CL3R2 · ‖X‖
2

σ2
min(X)

= CL3R2κ which is
implied by (13). This finishes the proof of (16).

7.3. Proof of Claim 7.3

Recall that in Section 5 we derived (6) which is the main
equation to establish convergence. In order to establish
convergence from (6) we need to prove upper and lower
bounds (9) on the eigenvalues of P (t), as well as show that
the high-order termE(t) is small. We will prove these using
B(t).

Directly from (10) and B(t), we have

λmax(P (t)) ≤ 1

mL−1dout

L∑
i=1

(
5

4
m

i−1
2 σmax(X)

)2(
5

4
m

L−i
2

)2

≤ 3Lσ2
max(X)/dout,

λmin(P (t)) ≥ 1

mL−1dout

L∑
i=1

(
3

4
m

i−1
2 σmin(X)

)2(
3

4
m

L−i
2

)2

≥ 3

10
Lσ2

min(X)/dout.

In Appendix F, we will prove the following bound on the
high-order terms in (6):

1√
mL−1dout

‖E(t)X‖F ≤
1

6
ηλmin(Pt) ‖U(t)− Y ‖F .

Finally, from (6) and η ≤ dout
3L‖X‖2 ≤

1
λmax(Pt)

we have

‖U(t+ 1)− Y ‖F = ‖vec (U(t+ 1)− Y )‖

=

∥∥∥∥(I − ηP (t)) · vec (U(t)− Y ) +
1√

mL−1dout
vec (E(t)X)

∥∥∥∥
≤ (1− ηλmin(P (t))) ‖vec (U(t)− Y )‖+

1√
mL−1dout

‖E(t)X‖F

≤ (1− ηλmin(P (t))) ‖U(t)− Y ‖F +
1

6
ηλmin(Pt) ‖U(t)− Y ‖F

=

(
1− 5

6
ηλmin(P (t))

)
‖U(t)− Y ‖F

=

(
1− 1

4
ηLσ2

min(X)/dout

)
‖U(t)− Y ‖F .

This implies `(t+ 1) ≤
(
1− 1

4ηLσ
2
min(X)/dout

)2
`(t) ≤(

1− 1
4ηLσ

2
min(X)/dout

)
`(t). Combined with A(t), this

proves A(t+ 1).

8. Conclusion
We prove that gradient descent with random initialization
converges to a global minimum of the `2 loss on a wide
deep linear neural network. The required width in hidden
layers is near linear in the depth of the network. This result
improves upon previous convergence results for deep linear
networks, and demonstrates that adding width can eliminate
the known exponential curse of depth in linear networks.
Our result may shed light on the required width in non-linear
neural networks.
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Appendix
A. Proof of Claim 3.1
Proof of Claim 3.1. First, it is easy to see that for a random matrix A ∈ Rd2×d1 with i.i.d. N (0, 1) entries and any vector
v ∈ Rd1 \ {0}, the distribution of ‖Av‖

2

‖v‖2 is χ2
d2

. We rewrite ‖WL:1(0)x‖2/‖x‖2 as

‖WL:1(0)x‖2/‖x‖2 = ZLZL−1 · · ·Z1,

where Zi = ‖Wi:1(0)x‖2

‖Wi−1:1(0)x‖2 = ‖Wi(0)Wi−1:1(0)x‖2

‖Wi−1:1(0)x‖2 . Then we have Z1 ∼ χ2
m, Zi|(Z1, . . . , Zi−1) ∼ χ2

m (1 < i < L) and

ZL|(Z1, . . . , ZL−1) ∼ χ2
dout

. Therefore, Z1, . . . , ZL are independent χ2 random variables. It follows that

E
[
‖WL:1(0)x‖2/‖x‖2

]
= E [ZLZL−1 · · ·Z1]

=
∏L

i=1
E [Zi] = mL−1dout.

B. Justification of Assumption 5.1
We have the following claim:

Claim B.1. There exists a matrix X̄ ∈ Rdin×r of rank r such that X̄X̄> = XX> and that the objective (3) can be rewritten
as

f(W ) =
1

2

∥∥WX̄ − ΦX̄
∥∥2

F
+ OPT.

Proof of Claim B.1. Since Φ ∈ argminW∈Rdout×din f(W ), we have

∇f(Φ) = (ΦX − Y )X> = 0.

Then for any W ∈ Rdout×din we have

f(W )

=
1

2
‖(WX − ΦX) + (ΦX − Y )‖

=
1

2
‖(W − Φ)X‖2F + 〈(W − Φ)X,ΦX − Y 〉+

1

2
‖ΦX − Y ‖2F

=
1

2
‖(W − Φ)X‖2F + 〈W − Φ,∇f(Φ)〉+ OPT

=
1

2
‖(W − Φ)X‖2F + OPT

=
1

2
tr
(
(W − Φ)XX>(W − Φ)

)
+ OPT.

Since rank(XX>) = rank(X) = r, there exists X̄ ∈ Rdin×r such that X̄X̄> = XX>. For such X̄ , we have

f(W ) =
1

2
tr
(
(W − Φ)X̄X̄>(W − Φ)

)
+ OPT

=
1

2

∥∥(W − Φ)X̄
∥∥2

F
+ OPT.

Claim B.1 indicates that if we replace the data (X,Y ) with (X̄,ΦX̄), the objective function only changes by an offset OPT.
In particular, this does not affect the gradient descent dynamics (2) at all. Furthermore, since X and X̄ have the same rank
and spectrum, this also does not change the statement of Theorem 4.1 (except that OPT becomes 0). Therefore, we can
make this change without loss of generality, leading to Assumption 5.1.
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C. Proof of Lemma 6.1
Proof of Lemma 6.1. Same as the proof of Claim 3.1, we know that ‖Aq · · ·A1v‖2 has the same distribution as

ZqZq−1 · · ·Z1,

where Z1, . . . , Zq are i.i.d. from χ2
m. Therefore it suffices to bound ZqZq−1 · · ·Z1.

Recall the moments of Z ∼ χ2
m:

E
[
Zλ
]

=
2λΓ

(
m
2 + λ

)
Γ
(
m
2

) , ∀λ > −m
2
,

where Γ(·) is the gamma function. Letting λ = αm (α ≥ − 1
4 ) and using Stirling’s approximation for the gamma function,

we have

E
[
Zλ
]

=
2λ
√

2π
m
2 +λ

(
m
2 +λ

e

)m
2 +λ (

1 +O
(

1
m

))
√

2π
m
2

(
m
2

e

)m
2 (

1 +O
(

1
m

))
= (1 + 2α)−1/2mαm exp

{((
α+

1

2

)
log(1 + 2α)− α

)
m

}
·
(

1 +O

(
1

m

))
≤ (1 + 2α)−1/2mαm exp

(
2α2m

)
·
(

1 +O

(
1

m

))
= exp

(
−1

2
log

(
1 +

2λ

m

)
+ λ logm+

2λ2

m

)
·
(

1 +O

(
1

m

))
, ∀λ ≥ −1

4
m.

(20)

Here we have used
(
α+ 1

2

)
log(1 + 2α)− α ≤ 2α2 (∀α > −1/2).

Now we use (20) to obtain tail bounds for Zq · · ·Z1.

For the upper tail, consider a small constant c > 0. For any λ > 0 we have

Pr [Zq · · ·Z1 > ecmq] = Pr
[
(Zq · · ·Z1)λ > eλcmλq

]
≤ e−λcm−λqE

[
(Zq · · ·Z1)λ

]
= e−λ(c+q logm)

q∏
i=1

E
[
Zλi
]

≤ e−λ(c+q logm)

(
exp

(
−1

2
log

(
1 +

2λ

m

)
+ λ logm+

2λ2

m

)
·
(

1 +O

(
1

m

)))q
≤ exp

(
−λ(c+ q logm) + λq logm+

2λ2q

m

)
·
(

1 +O

(
1

m

))q
≤ exp

(
−λc+

2λ2q

m

)
·
(

1 +O

(
1

m

))q
.

Since m > Cq, we have
(
1 +O

(
1
m

))q
= O(1). Letting c = log(1.1) and λ = cm

4q , the above inequality becomes

Pr [Zq · · ·Z1 > 1.1mq] ≤ O
(
e−

log2(1.1)·m
8q

)
= e−Ω(m/q). (21)

Similarly, for the lower tail, consider a constant c > 0. For any −m4 < λ < 0 we have

Pr
[
Zq · · ·Z1 < e−cmq

]
= Pr

[
(Zq · · ·Z1)λ > e−λcmλq

]
≤ eλcm−λqE

[
(Zq · · ·Z1)λ

]
= eλ(c−q logm)

q∏
i=1

E
[
Zλi
]
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≤ eλ(c−q logm)

(
exp

(
−1

2
log

(
1 +

2λ

m

)
+ λ logm+

2λ2

m

)
·
(

1 +O

(
1

m

)))q
≤ exp

(
λ(c− q logm)− 1

2
q log

(
1 +

2λ

m

)
+ λq logm+

2λ2q

m

)
·
(

1 +O

(
1

m

))q
≤ exp

(
λc+

2λ2q

m
− 1

2
q log

(
1 +

2λ

m

))
·O(1)

≤ exp

(
λc+

2λ2q

m
− 1

2
q · 4λ

m

)
·O(1)

= exp

(
λ(c− q/2m) +

2λ2q

m

)
·O(1),

where we have used log(1 +α) ≥ 2α for − 1
2 ≤ α ≤ 0. Letting c = − log(0.9) and λ = − cm

10q > −
m
4 , and noting m > 1

c q,
we get

Pr [Zq · · ·Z1 < 0.9mq] ≤ O
(
e
λc
2 + 2λ2q

m

)
= e−Ω(m/q). (22)

Combining (21) and (22), we complete the proof.

D. Proof of Proposition 6.3
Proof of Proposition 6.3. Let A = Wi:1(0)X . Since A ∈ Rm×r and m > r, we know

‖A‖ = sup
v∈Sr−1

‖Av‖ ,

σmin(A) = inf
v∈Sr−1

‖Av‖ .

From Lemma 6.1 we know that for any fixed v ∈ Sr−1, with probability at least 1− e−Ω(m/L) we have

‖Av‖ ∈
[
0.9m

i
2 ‖Xv‖ , 1.1m i

2 ‖Xv‖
]
.

Now we take an ε-net N for Sr−1 with |N | ≤ (3/ε)r, where ε ∈ (0, 1) is a parameter to be determined later.
By a union bound, with probability at least 1 − |N | e−Ω(m/L), for all u ∈ N simultaneously we have ‖Au‖ ∈[
0.9m

i
2 ‖Xu‖ , 1.1m i

2 ‖Xu‖
]
. Suppose this happens for every u ∈ N . Next, for any v ∈ Sr−1, there exists u ∈ N such

that ‖u− v‖ ≤ ε. Then we have

‖Av‖ ≤ ‖Au‖+ ‖A(u− v)‖

≤ 1.1m
i
2 ‖Xu‖+ ε ‖A‖

≤ 1.1m
i
2 ‖X‖ · (1 + ε) + ε ‖A‖ .

Taking supreme over v ∈ Sr−1, we obtain

‖A‖ ≤ 1.1(1 + ε)m
i
2 ‖X‖

1− ε
≤ 1.2m

i
2 ‖X‖ ,

as long as ε ≤ 0.01.

For the lower bound, we have

‖Av‖ ≥ ‖Au‖ − ‖A(u− v)‖

≥ 0.9m
i
2 ‖Xu‖ − ε ‖A‖

≥ 0.9m
i
2σmin(X) · (1− ε)− ε · 1.2m i

2 ‖X‖

≥ 0.8m
i
2σmin(X),
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as long as ε ≤ 0.01
‖X‖/σmin(X) = 0.01√

κ
. (Recall κ = λmax(X>X)

λr(X>X)
= σ2

max(X)/σ2
min(X).) Taking infimum over v ∈ Sr−1 we

get σmin(A) ≥ 0.8m
i
2σ2

min(X).

Now we fix our choice ε = 0.01√
κ

which makes the above proof work. The success probability is at least 1− |N | e−Ω(m/L) =

1− e−Ω(m/L)+r log(300
√
κ) = 1− e−Ω(m/L) since m > CLr log κ.

E. Proof of Proposition 6.5
Proof of Proposition 6.5. From Lemma 6.1 we know that for each input datapoint xp ∈ Rd (p ∈ [r]), with probability at
least 1− e−Ω(m/L) we have

‖WL−1:1(0)xp‖ ≤ 1.1m
L−1

2 ‖xp‖ .

Taking a union bound, the above holds for all p ∈ [r] with probability at least 1 − re−Ω(m/L) = 1 − e−Ω(m/L) since
m > CL log r.

Conditioned on WL−1:1(0), Zp =
‖WL:1(0)xp‖2

‖WL−1:1(0)xp‖2
has distribution χ2

dout
. By the standard tail bound for χ2, with probability

at least 1− δ′ we have

Zp ≤ dout + 2
√
dout log(1/δ′) + 2 log(1/δ′).

Letting δ′ = δ
2r and applying a union bound over p ∈ [r], we have with probability at least 1− δ/2,

Zp ≤ dout + 2
√
dout log(2r/δ) + 2 log(2r/δ), ∀p ∈ [r].

Therefore we can bound the norm of the network prediction at initialization U(0) = 1√
mL−1dout

WL:1(0)X as

‖U(0)‖2F

=
1

mL−1dout

r∑
p=1

‖WL:1(0)xp‖2

=
1

mL−1dout

r∑
p=1

‖WL−1:1(0)xp‖2 Zp

≤ 1.12

dout

r∑
p=1

Zp ‖xp‖2

≤ 1.12

dout

(
dout + 2

√
dout log(2r/δ) + 2 log(2r/δ)

)
‖X‖2F

≤O
(

max

{
1,

log(r/δ)

dout

})
‖X‖2F .

Then the loss value `(0) can be bounded as

`(0) =
1

2
‖U(0)− Y ‖2F ≤ ‖U(0)‖2F + ‖Y ‖2F

≤ ‖U(0)‖2F + ‖Φ‖2 ‖X‖2F

≤ O
(

max

{
1,

log(r/δ)

dout
, ‖Φ‖2

})
‖X‖2F .

F. Proof of Claim 7.3 (Continued from Section 7.3)
Proof of Claim 7.3 (Continued). Recall that what is missing from the proof in Section 7.3 is to show the following:

1√
mL−1dout

‖E(t)X‖F ≤
1

6
ηλmin(Pt) ‖U(t)− Y ‖F .
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Recall that E(t) is the sum of all high-order terms in the product

WL:1(t+ 1) =
∏
i

(
Wi(t)− η

∂`

∂Wi
(t)

)
.

Same as (14), we have
∥∥∥ ∂`
∂Wi

(t)
∥∥∥
F
≤ 3
√
`(t)‖X‖√
dout

(∀i ∈ [L]). Then we have

1√
mL−1dout

‖E(t)X‖F

≤ 1√
mL−1dout

L∑
s=2

(
L

s

)(
η ·

3
√
`(t) ‖X‖√
dout

)s
·
(
O
(√

L
))s−1

m
L−s

2 ‖X‖

≤ 1√
dout

L∑
s=2

Ls

(
3η
√
`(t) ‖X‖√
dout

)s
·
(
O
(√

L
))s−1

m
1−s
2 ‖X‖

=
1√
dout

L∑
s=2

(
O

(
ηL3/2

√
`(t) ‖X‖√
dout

))s
L−1m

1−s
2 ‖X‖

=
‖X‖

L
√
dout

L∑
s=2

(
O

(
ηL3/2

√
`(t) ‖X‖√

mdout

))s−1

·
ηL3/2

√
`(t) ‖X‖√
dout

=
η
√
L · `(t) ‖X‖2

dout

L−1∑
s=1

(
O

(
ηL3/2

√
`(t) ‖X‖√

mdout

))s
.

From η ≤ dout

3L‖X‖2 we have ηL3/2
√
`(t)‖X‖√

mdout
≤
√
Ldout·`(t)

3‖X‖
√
m

. Since m > C · LdoutB‖X‖2 ≥ C ·
Ldout`(t)

‖X‖2 (from (13)) we have

1√
mL−1dout

‖E(t)X‖F

≤
η
√
L · `(t) ‖X‖2

dout
·
√
Ldout · `(t)
‖X‖

√
m

=
ηL`(t) ‖X‖√

mdout

.

Now we would like the above bound to be at most 1
6ηλmin(Pt) ‖U(t)− Y ‖F = 1

6ηλmin(Pt)
√

2`(t). Since λmin(Pt) ≥
3
10Lσ

2
min(X)/dout, it suffices to have

ηL`(t) ‖X‖√
mdout

≤ 1

6
η ·

3Lσ2
min(X)

√
2`(t)

10dout
,

which is true since m > C · doutB‖X‖2
σ4
min(X)

≥ C · dout`(t)‖X‖2
σ4
min(X)

(from (13)).


