
Provably efficient RL with Rich Observations via Latent State Decoding

Simon S. Du 1 Akshay Krishnamurthy 2 Nan Jiang 3 Alekh Agarwal 4 Miroslav Dudı́k 2 John Langford 2

Abstract
We study the exploration problem in episodic
MDPs with rich observations generated from a
small number of latent states. Under certain iden-
tifiability assumptions, we demonstrate how to
estimate a mapping from the observations to la-
tent states inductively through a sequence of re-
gression and clustering steps—where previously
decoded latent states provide labels for later re-
gression problems—and use it to construct good
exploration policies. We provide finite-sample
guarantees on the quality of the learned state
decoding function and exploration policies, and
complement our theory with an empirical evalua-
tion on a class of hard exploration problems. Our
method exponentially improves over Q-learning
with naı̈ve exploration, even when Q-learning has
cheating access to latent states.

1. Introduction
We study reinforcement learning (RL) in episodic environ-
ments with rich observations, such as images and texts.
While many modern empirical RL algorithms are designed
to handle such settings (see, e.g., Mnih et al., 2015), only few
works study how to explore well in these environments (Os-
trovski et al., 2017; Osband et al., 2016) and the sample ef-
ficiency of these techniques is not theoretically understood.

From a theoretical perspective, strategic exploration algo-
rithms for provably sample-efficient RL have long existed in
the classical tabular setting (Kearns & Singh, 2002; Brafman
& Tennenholtz, 2002). However, these methods are difficult
to adapt to rich observation spaces, because they all require
a number of interactions polynomial in the number of ob-
served states, and, without additional structural assumptions,
such a dependency is unavoidable (see, e.g., Jaksch et al.,

1Carnegie Mellon University 2Microsoft Research, New
York 3University of Illinois at Urbana-Champaign 4Microsoft
Research, Redmond. Correspondence to: Simon S. Du
<ssdu@cs.cmu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

2010; Lattimore & Hutter, 2012). Consequently, treating
the observations directly as unique states makes this class
of methods unsuitable for most settings of practical interest.

In order to avoid the dependency on the observation space,
one must exploit some inherent structure in the problem.
The recent line of work on contextual decision processes (Kr-
ishnamurthy et al., 2016; Jiang et al., 2017; Dann et al.,
2018) identified certain low-rank structures that enable ex-
ploration algorithms with sample complexity polynomial in
the rank parameter. Such low-rank structure is crucial to cir-
cumventing information-theoretic hardness, and is typically
found in problems where complex observations are emitted
from a small number of latent states. Unlike tabular ap-
proaches, which require the number of states to be small and
observed, these works are able to handle settings where the
observation spaces are uncountably large or continuous and
the underlying states never observed during learning. They
achieve this by exploiting the low-rank structure implic-
itly, operating only in the observation space. The resulting
algorithms are sample-efficient, but either provably compu-
tationally intractable, or practically quite cumbersome even
under strong assumptions (Dann et al., 2018).

In this work, we take an alternative route: we recover the
latent-state structure explicitly by learning a decoding func-
tion (from a large set of candidates) that maps a rich obser-
vation to the corresponding latent state; note that if such a
function is learned perfectly, the rich-observation problem is
reduced to a tabular problem where exploration is tractable.
We show that our algorithms are:

Provably sample-efficient: Under certain identifiability as-
sumptions, we recover a mapping from the observations
to underlying latent states as well as a good exploration
policy using a number of samples which is polynomial in
the number of latent states, horizon and the complexity of
the decoding function class with no explicit dependence on
the observation space size. Thus we significantly generalize
beyond the works of Dann et al. (2018) who require deter-
ministic dynamics and Azizzadenesheli et al. (2016a) whose
guarantees scale with the observation space size.

Computationally practical: Unlike many prior works in this
vein, our algorithm is easy to implement and substantially
outperforms naı̈ve exploration in experiments, even when
the baselines have cheating access to the latent states.

Provably efficient RL with Rich Observations via Latent State Decoding

In the process, we introduce a formalism called block Mar-
kov decision process (also implicit in some prior works), and
a new solution concept for exploration called ✏–policy cover.

The main challenge in learning the decoding function is that
the hidden states are never directly observed. Our key nov-
elty is the use of a backward conditional probability vector
(Equation 1) as a representation for latent state, and learning
the decoding function via conditional probability estimation,
which can be solved using least squares regression. While
learning a low-dimensional representations of rich obser-
vations has been explored in recent empirical works (e.g.,
Silver et al., 2017; Oh et al., 2017; Pathak et al., 2017), our
work provides a precise mathematical characterization of
the structures needed for such approaches to succeed and
comes with rigorous sample-complexity guarantees.

2. Setting and Task Definition
We begin by introducing some basic notation. We write [h]
to denote the set {1, . . . , h}. For any finite set S, we write
U(S) to denote the uniform distribution over S. We write
4d for the simplex in Rd. Finally, we write k·k and k·k1,
respectively, for the Euclidean and the `1 norms of a vector.

2.1. Block Markov Decision Process

In this paper we introduce and analyze a block Markov deci-
sion process or BMDP. It refers to an environment described
by a finite, but unobservable latent state space S, a finite
action space A, with |A| = K, and a possibly infinite, but
observable context space X . The dynamics of a BMDP is
described by the initial state s1 2 S and two conditional
probability functions: the state-transition function p and
context-emission function q, defining conditional probabili-
ties p(s0 | s, a) and q(x | s) for all s, s0 2 S , a 2 A, x 2 X .1

The model may further include a distribution of reward
conditioned on context and action. However, rewards do
not play a role in the central task of the paper, which is the
exploration of all latent states. Therefore, we omit rewards
from our formalism, but we discuss in a few places how our
techniques apply in the presence of rewards (for a thorough
discussion see Appendix B).

We consider episodic learning tasks with a finite horizon H .
In each episode, the environment starts in the state s1. In
the step h 2 [H] of an episode, the environment generates a
context xh ⇠ q(·|sh), the agent observes the context xh (but
not the state sh), takes an action ah, and the environment
transitions to a new state sh+1 ⇠ p(· |sh, ah). The sequence
(s1, x1, a1, . . . , sH , xH , aH , sH+1, xH+1) generated in an
episode is called a trajectory. We emphasize that a learning

1For continuous context spaces, q(· | s) describes a density
function relative to a suitable measure (e.g., Lebesgue measure).

agent does not observe components sh from the trajectory.

So far, our description resembles that of a partially observ-
able Markov decision process (POMDP). To finish the defi-
nition of BMDP, and distinguish it from a POMDP, we make
the following assumption:

Assumption 2.1 (Block structure). Each context x uniquely
determines its generating state s. That is, the context space
X can be partitioned into disjoint blocks Xs, each contain-
ing the support of the conditional distribution q(· | s).

The sets Xs are unique up to the sets of measure zero under
q(· | s). In the paper, we say “for all x 2 Xs” to mean “for
all x 2 Xs up to a set of measure zero under q(· | s).”

The block structure implies the existence of a perfect de-
coding function f⇤ : X ! S, which maps contexts into
their generating states. This means that a BMDP is in-
deed an MDP with the transition operator P (x0 | x, a) =
q
�
x0 | f⇤(x0)

�
p
�
f⇤(x0)

�� f⇤(x), a
�
. Hence the contexts x

observed by the agent form valid Markovian states, but the
size of X is too large, so only learning the MDP parameters
in the smaller, latent space S is tractable.

The BMDP model is assumed in several prior works (e.g.,
Krishnamurthy et al., 2016; Azizzadenesheli et al., 2016a;
Dann et al., 2018), without the explicit name. It naturally
captures visual grid-world environments studied in empiri-
cal RL (e.g., Johnson et al., 2016), and also models noisy
observations of the latent state due to imperfect sensors.
While the block-structure assumption appears severe, it is
necessary for efficient learning if the reward is allowed to
depend arbitrarily on the latent state (cf. Propositions 1 and
2 of Krishnamurthy et al. 2016). In our experiments, we
study the robustness of our algorithms to this assumption.

To streamline our analysis, we make a standard assumption
for episodic settings. We assume that S can be partitioned
into disjoints sets Sh, h 2 [H + 1], such that p(· | s, a) is
supported on Sh+1 whenever s 2 Sh. We refer to h as the
level and assume that it is observable as part of the context,
so the context space is also partitioned into sets Xh. We use
notation S[h] = [`2[h]S` for the set of states up to level h,
and similarly define X[h] = [`2[h]X`.

We assume that |Sh| M . We seek learning algorithms
that scale polynomially in parameters M , K and H , but do
not explicitly depend on |X |, which might be infinite.

2.2. Solution Concept: Cover of Exploratory Policies

In this paper, we focus on the problem of exploration.
Specifically, for each state s 2 S , we seek an agent strategy
for reaching that state s. We formalize an agent strategy as
an h-step policy, which is a map ⇡ : X[h] ! A specifying
which action to take in each context up to step h. When
executing an h-step policy ⇡ with h < H , an agent acts

Provably efficient RL with Rich Observations via Latent State Decoding

according to ⇡ for h steps and then arbitrarily until the end
of the episode (e.g., according to a specific default policy).

For an h-step policy ⇡, we write P⇡ to denote the probability
distribution over h-step trajectories induced by ⇡. We write
P⇡(E) for the probability of an event E . For example, P⇡(s)
is the probability of reaching the state s when executing ⇡.

We also consider randomized strategies, which we formalize
as policy mixtures. An h-step policy mixture ⌘ is a distri-
bution over h-step policies. When executing ⌘, an agent
randomly draws a policy ⇡ ⇠ ⌘ at the beginning of the
episode, and then follows ⇡ throughout the episode. The
induced distribution over h-step trajectories is denoted P⌘ .

Our algorithms create specific policies and policy mixtures
via concatenation. Specifically, given an h-step policy ⇡,
we write ⇡ � a for the (h+ 1)-step policy that executes ⇡
for h steps and chooses action a in step h+ 1. Similarly, if
⌘ is a policy mixture and ⌫ a distribution over A, we write
⌘� ⌫ for the policy mixture equivalent to first sampling and
following a policy according to ⌘ and then independently
sampling and following an action according to ⌫.

We finally introduce two key concepts related to exploration:
maximum reaching probability and policy cover.

Definition 2.1 (Maximum reaching probability.). For any
s 2 S , its maximum reaching probability µ(s) is

µ(s) := max⇡ P⇡(s),

where the maximum is taken over all maps X[H] ! A. The
policy attaining the maximum for a given s is denoted ⇡⇤

s
.2

Without loss of generality, we assume that all the states
are reachable, i.e., µ(s) > 0 for all s. We write µmin =
mins2S µ(s) for the µ(s) value of the hardest-to-reach state.
Since S is finite and all states are reachable, µmin > 0.

Given maximum reaching probabilities, we formalize the
task of finding policies that reach states s as the task of
finding an ✏–policy cover in the following sense:

Definition 2.2 (Policy cover of the state space). We say that
a set of policies ⇧h is an ✏–policy cover of Sh if for all
s 2 Sh there exists an (h� 1)-step policy ⇡ 2 ⇧h such that
P⇡(s) � µ(s)� ✏. A set of policies ⇧ is an ✏–policy cover
of S if it is an ✏–policy cover of Sh for all h 2 [H + 1].

Intuitively, we seek a policy cover of a small size, typically
O(|S|), and with a small ✏. Given such a cover, we can
reach every state with the largest possible probability (up
to ✏) by executing each policy from the cover in turn. This
enables us to collect a dataset of observations and rewards
at all (sufficiently) reachable states s and further obtain a
policy that maximizes any reward (details in Appendix B).

2It suffices to consider maps X[h] ! A for s 2 Sh+1.

3. Embedding Approach
A key challenge in solving the BMDP exploration problem
is the lack of access to the latent state s. Our algorithms
work by explicitly learning a decoding function f which
maps contexts to the corresponding latent states. This
appears to be a hard unsupervised learning problem, even
under the block-structure assumption, unless we make
strong assumptions about the structure of Xs or about the
emission distributions q(· | s). Here, instead of making
assumptions about q or Xs, we make certain “separability”
assumptions about the latent transition probabilities p. Thus,
we retain a broad flexibility to model rich context spaces,
and also obtain the ability to efficiently learn a decoding
function f . In this section, we define key components of our
approach and formally state the separability assumption.

3.1. Embeddings and Function Approximation

In order to construct the decoding function f , we learn low-
dimensional representations of contexts as well as latent
states in a shared space, namely �MK . We learn embedding
functions g : X ! �MK for contexts and � : S ! �MK

for states, with the goal that g(x) and �(s) should be close if
and only if x 2 Xs. Such embedding functions always exist
due to the block-structure: for any set of distinct vectors
{�(s)}s2S , it suffices to define g(x) = �(s) for x 2 Xs.

As we see later in this section, embedding functions � and
g can be constructed via an essentially supervised approach,
assuming separability. The state embedding � is a lower
complexity object (a tuple of at most |S| points in �MK),
whereas the context embedding g has a high complexity for
even moderately rich context spaces. Therefore, as is stan-
dard in supervised learning, we limit attention to functions
g from some class G ✓ {X ! �MK}, such as generalized
linear models, tree ensembles, or neural nets. This is a form
of function approximation where the choice of G includes
any inductive biases about the structure of the contexts. By
limiting the richness of G, we can generalize across contexts
as well as control the sample complexity of learning. At
the same time, G needs to include embedding functions that
reflect the block structure. Allowing a separate gh 2 G for
each level, we require realizability in the following sense:

Assumption 3.1 (Realizability). For any h 2 [H + 1] and
� : Sh ! 4MK , there exists gh 2 G such that gh(x) =
�(s) for all x 2 Xs and s 2 Sh.

In words, the class G must be able to match any state-
embedding function � across all blocks Xs. To satisfy
this assumption, it is natural to consider classes G obtained
via a composition �0 � f where f is a decoding function
from some class F ✓ {X ! S} and �0 is any mapping
S !4MK . Conceptually, f first decodes the context x to
a state f(x) which is then embedded by �0 into4MK . The

Provably efficient RL with Rich Observations via Latent State Decoding

realizability assumption is satisfied as long as F contains a
perfect decoding function f⇤, for which f⇤(x) = s when-
ever x 2 Xs. The core representational power of G is thus
driven by F , the class of candidate decoding functions f .

Given such a class G, our goal is find a suitable context-
embedding function in G using a number of trajectories that
is proportional to log |G| when G is finite, or a more general
notion of complexity such as a log covering number when
G is infinite. Throughout this paper, we assume that G is
finite as it serves to illustrate the key ideas, but our approach
generalizes to the infinite case using standard techniques.

As we alluded to earlier, we learn context embeddings gh by
solving supervised learning problems. In fact, we only re-
quire the ability to solve least squares problems. Specifically,
we assume access to an algorithm for solving vector-valued
least-squares regression over the class G. We refer to such
an algorithm as the ERM oracle:
Definition 3.1 (ERM Oracle). Let G be a function class that
maps X to 4MK . An empirical risk minimization oracle
(ERM oracle) for G is any algorithm that takes as input a
data set D = {(xi,yi)}ni=1 with xi 2 X , yi 2 4MK , and
computes argming2G

P
(x,y)2D

kg(x)� yk2.

3.2. Backward Probability Vectors and Separability

For any distribution P over trajectories, we define backward
probabilities as the conditional probabilities of the form
P(sh�1, ah�1 | sh)—note that conditioning is the opposite
of transitions in p. For the backward probabilities to be
defined, we do not need to fully specify a full distribution
over trajectories, only a distribution ⌫ over (sh�1, ah�1).
For any such distribution ⌫, any s 2 Sh�1, a 2 A and
s0 2 Sh, the backward probability is defined as

b⌫(s, a | s0) = p(s0 | s, a) ⌫(s, a)P
s̃,ã

p(s0 | s̃, ã) ⌫(s̃, ã) . (1)

For a given s0 2 Sh, we collect the probabilities b⌫(s, a | s0)
across all s 2 Sh�1, a 2 A into the backward probability
vector b⌫(s0) 2 4MK , padding with zeros if |Sh�1| < M .
Backward probability vectors are at the core of our approach,
because they correspond to the state embeddings �(s) ap-
proximated by our algorithms. Our algorithms require that
b⌫(s0) for different states s0 2 Sh be sufficiently separated
from one another for a suitable choice of ⌫:
Assumption 3.2 (�-Separability). There exists � > 0 such
that for any h 2 {2, . . . , H+1} and any distinct s0, s00 2 Sh,
the backward probability vectors with respect to the uniform
distribution are separated by a margin of at least �, i.e.,
kb⌫(s0)� b⌫(s00)k1 � �, where ⌫ = U(Sh�1 ⇥A).

We show in Section 4.1 that this assumption is automatically
satisfied with � = 2 when latent-state transitions are deter-
ministic (as assumed, e.g., by Dann et al., 2018). However,

the class of �-separable models is substantially larger. In
Appendix F we show that the uniform distribution in the
assumption can be replaced with any distribution supported
on Sh�1 ⇥A, although the margins � would be different.

The key property that makes vectors b⌫(s0) algorithmically
useful is that they arise as solutions to a specific least squares
problem with respect to data generated by a policy whose
marginal distribution over (sh�1, ah�1) matches ⌫. Let
e(s,a) denote the vector of the standard basis in RMK corre-
sponding to the coordinate indexed by (s, a) 2 Sh�1 ⇥A.
Then the following statement holds:
Theorem 3.1. Let ⌫ be a distribution supported on Sh�1⇥
A and let ⌫̃ be a distribution over (s, a, x0) defined by sam-
pling (s, a) ⇠ ⌫, s0 ⇠ p(· | s, a), and x0 ⇠ q(· | s0). Let

gh 2 argmin
g2G

E⌫̃
h��g(x0)� e(s,a)

��2
i
. (2)

Then, under Assumption 3.1, every minimizer gh satisfies
gh(x0) = b⌫(s0) for all x0 2 Xs0 and s0 2 Sh.

The distribution ⌫̃ is exactly the marginal distribution
induced by a policy whose marginal distribution over
(sh�1, ah�1) matches ⌫. Any minimizer gh yields context
embeddings corresponding to state embeddings �(s0) =
b⌫(s0). Our algorithms build on Theorem 3.1: they replace
the expectation by an empirical sample and obtain an ap-
proximate minimizer ĝh by invoking an ERM oracle.

4. Algorithm for Separable BMDPs
With the main components defined, we can now derive our
algorithm for learning a policy cover in a separable BMDP.

The algorithm proceeds inductively, level by level. On each
level h, we learn the following objects:

• The set of discovered latent states bSh ✓ [M] and a decod-
ing function f̂h : X ! bSh, which allows us to identify
latent states at level h from observed contexts.

• The estimated transition probabilities p̂(ŝh | ŝh�1, a)
across all ŝh�1 2 bSh�1, a 2 A, ŝh 2 bSh.

• A set of (h� 1)-step policies ⇧h = {⇡ŝ}ŝ2 bSh
.

We establish a correspondence between the discovered states
and true states via a bijection ↵h, under which the functions
f̂h accurately decode contexts into states, the probability
estimates p̂ are close to true probabilities, and ⇧h is an ✏–
policy cover of Sh. Specifically, we prove the following
statement for suitable accuracy parameters ✏f, ✏p and ✏:

Claim 4.1. There exists a bijection ↵h : bSh ! Sh such
that the following conditions are satisfied for all ŝ 2 bSh�1,
a 2 A, ŝ0 2 bSh, and s = ↵h�1(ŝh�1), s0 = ↵h(ŝ0), where
↵h�1 is the bijection for the previous level:

Accuracy of f̂h: Px0⇠q(·|s0)
⇥
f̂h(x

0) = ŝ0
⇤
� 1� ✏f, (3)

Provably efficient RL with Rich Observations via Latent State Decoding

Algorithm 1 PCID (Policy Cover via Inductive Decoding)
1: Input:

Ng: sample size for learning context embeddings
N�: sample size for learning state embeddings
Np: sample size for estimating transition probabilities
⌧ > 0: a clustering threshold for learning latent states

2: Output: policy cover ⇧ = ⇧1 [· · · [⇧H+1

3: Let bS1 = {s1}. Let f̂1(x) = s1 for all x 2 X .
4: Let ⇧1 = {⇡0} where ⇡0 is the trivial 0-step policy.
5: Initialize p̂ to an empty mapping.
6: for h = 2, . . . , H + 1 do
7: Let ⌘h = U(⇧h�1)� U(A)

8: Execute ⌘h for Ng times. Dg={ŝi
h�1, a

i

h�1, x
i

h
}Ng
i=1

for ŝh�1= f̂h�1(xh�1).
9: Learn ĝh by calling ERM oracle on input Dg:

ĝh = argming2G
P

(ŝ,a,x0)2Dg

��g(x0)� e(ŝ,a)
��2.

10: Execute ⌘h for N� times. Z = {bzi = ĝh(xi

h
)}N�

i=1.
11: Learn bSh and the state embedding map b�h : bSh ! Z

by clustering Z with threshold ⌧ (see Algorithm 2).

12: Define f̂h(x0) = argmin
ŝ2 bSh

��b�(ŝ)� ĝh(x0)
��
1
.

13: Execute ⌘h for Np times. Dp={ŝi
h�1, a

i

h�1, ŝ
i

h
}Np
i=1

for ŝh�1= f̂h�1(xh�1), ŝh= f̂h(xh).
14: Define p̂(ŝh | ŝh�1, ah�1)

equal to empirical conditional probabilities in Dp.

15: for ŝ0 2 bSh do
16: Run Algorithm 3 with inputs p̂ and ŝ0

to obtain (h� 1)-step policy ŝ0 : bS[h�1] ! A.
17: Set ⇡ŝ0(x`)= ŝ0(f̂`(x`)), ` 2 [h� 1], x` 2 X`.
18: end for
19: Let ⇧h = (⇡ŝ)ŝ2 bSh

.
20: end for

Accuracy of p̂:
X

ŝ002 bSh, s
00=↵h(ŝ00)

���p̂(ŝ00 | ŝ, a)� p(s00 | s, a)
��� ✏p, (4)

Coverage by ⇧h: P⇡ŝ0 (s0) � µ(s0)� ✏. (5)

Algorithm 1 constructs bSh, f̂h, p̂ and ⇧h level by level.
Given these objects up to level h�1, the construction for the
next level h proceeds in the following three steps, annotated
with the lines in Algorithm 1 where they appear:

(1) Regression step: learn ĝh (lines 7–9). We collect a
dataset of trajectories by repeatedly executing a specific pol-
icy mixture ⌘h. We use f̂h�1 to identify ŝh�1=f̂h�1(xh�1)
on each trajectory, obtaining samples (ŝh�1, ah�1, xh)
from ⌫̃ induced by ⌘h. The context embedding ĝh is then
obtained by solving the empirical version of (2).

Our specific choice of ⌘h ensures that each state sh�1 is

Algorithm 2 Clustering to Find Latent-state Embeddings.
1: Input: Data points Z = {zi}ni=1 and threshold ⌧ > 0.
2: Output: Cluster indices bS and centers b� : bS ! Z .
3: Let bS = ;, k = 0 (number of clusters).
4: while Z 6= ; do
5: Pick any z 2 Z (a new cluster center).
6: Let Z 0 = {z0 2 Z : kz� z0k1 ⌧}.
7: Add cluster: k k + 1, bS bS [{k}, b�(k) = z.
8: Remove the newly covered points: Z Z \ Z 0.
9: end while

reached with probability at least (µmin � ✏)/M , which is
bounded away from zero if ✏ is sufficiently small. The uni-
form choice of actions then guarantees that each state on the
next level is also reached with sufficiently large probability.

(2) Clustering step: learn b� and f̂h (lines 10–12). Thanks
to Theorem 3.1, we expect that ĝh(x0) ⇡ gh(x0) = b⌫(s0)
for the distribution ⌫(ŝh�1, ah�1) induced by ⌘h.3 Thus,
all contexts x0 generated by the same latent state s0 have
embedding vectors ĝh(x0) close to each other and to b⌫(s0).
Thanks to separability, we can therefore use clustering to
identify all contexts generated by the same latent state, and
this procedure is sample-efficient since the embeddings are
low-dimensional vectors. Each cluster corresponds to some
latent state s0 and any vector ĝh(x0) from that cluster can
be used to define the state embedding b�(s0). The decoding
function f̂h is defined to map any context x0 to the state s0

whose embedding b�(s0) is the closest to ĝh(x0).

(3) Dynamic programming: construct ⇧h (lines 13–19).
Finally, with the ability to identify states at level h via f̂h,
we can use collected trajectories to learn an approximate
transition model p̂(ŝ0 | ŝ, a) up to level h. This allows
us to use dynamic programming to find policies that
(approximately) optimize the probability of reaching any
specific state s0 2 Sh. The dynamic programming finds
policies ŝ0 that act by directly observing decoded latent
states. The policies ⇡ŝ0 are obtained by composing ŝ0 with
the decoding functions {f̂`}`2[h�1].

The next theorem guarantees that with a polynomial number
of samples, Algorithm 1 finds a small ✏–policy cover.4

Theorem 4.1 (Sample Complexity of Algorithm 1). Fix any
✏ = O

⇣
µ
3
min�

M4K3H

⌘
and a failure probability � > 0. Set Ng =

⌦̃
⇣

M
4
K

4
H log |G|

✏µ
3
min�

2

⌘
, N� = ⇥̃

⇣
MK

µmin

⌘
, Np = ⌦̃

⇣
M

2
KH

2

µmin✏
2

⌘
,

⌧ = �

30MK
. Then with probability at least 1��, Algorithm 1

returns an ✏–policy cover of S , with size at most MH .
3Theorem 3.1 uses distributions ⌫ and ⌫̃ over true states sh�1,

but its analog also holds for distributions over ŝh�1, as long as
decoding is approximately correct at the previous level.

4The Õ(·), ⌦̃(·), and ⇥̃(·) notation suppresses factors that are
polynomial in logM , logK, logH and log(1/�).

Provably efficient RL with Rich Observations via Latent State Decoding

Algorithm 3 Dynamic Programming for Reaching a State

1: Input: target state ŝ⇤ 2 bSh,
transition probabilities p̂(ŝ0 | ŝ, a)

for all ŝ 2 bS`, a 2 A, ŝ0 2 bS`+1, ` 2 [h� 1].
2: Output: policy : bS[h�1] ! A maximizing P̂ (ŝ⇤).
3: Let v(ŝ⇤) = 1 and let v(ŝ) = 0 for all other ŝ 2 bSh.
4: for ` = h� 1, h� 2, . . . , 1 do
5: for ŝ 2 bS` do
6: (ŝ) = maxa2A

hP
ŝ02 bS`+1

v(ŝ0) p̂(ŝ0 | ŝ, a)
i
.

7: v(ŝ) =
P

ŝ02S`+1
v(ŝ0) p̂(ŝ0 | ŝ, a = (ŝ)).

8: end for
9: end for

In addition to dependence on the usual parameters like
M,K,H and 1/✏, our sample complexity also scales in-
versely with the separability margin � and the worst-case
reaching probability µmin. While the exact dependence on
these parameters is potentially improvable, Appendix F sug-
gest that some inverse dependence is unavoidable for our
approach. Compared with Azizzadenesheli et al. (2016a),
there is no explicit dependence on |X |, although they make
spectral assumptions instead of the explicit block structure.

4.1. Deterministic BMDPs

As a special case of general BMDPs, many prior works study
the case of deterministic transitions, that is, p(s0 | s, a) = 1
for a unique state s0 for each s, a. Also, many simulation-
based empirical RL benchmarks exhibit this property. We
refer to these BMDPs as deterministic, but note that only the
transitions p are deterministic, not the emissions q. In this
special case, the algorithm and guarantees of the previous
section can be improved, and we present this specialization
here, both for a direct comparison with prior work and
potential usability in deterministic environments.

To start, note that µmin = 1 and � = 2 in any deterministic
BDMP. The former holds as any reachable state is reached
with probability one. For the latter, if (s, a) transitions to
s0, then (s, a) cannot appear in the backward distribution of
any other state s00. Consequently, the backward probabilities
for distinct states s0 2 Sh must have disjoint support over
(s, a) 2 Sh�1⇥A, and thus their `1 distance is exactly two.

Deterministic transitions allow us to obtain the policy cover
with ✏ = 0; that is, we learn policies that are guaranteed
to reach any given state s with probability one. Moreover,
it suffices to consider policies with simple structure: those
that execute a fixed sequence of actions. Also, since we
have access to policies reaching states in the prior level with
probability one, there is no need for a decoding function
f̂h�1 when learning states and context embeddings on level
h. The final, more technical implication of determinism
(which we explain below) is that it allows us to boost the

Algorithm 4 PCID for Deterministic BMDPs
1: Input:

Ng: sample size for learning context embeddings
Nb: sample size for boosting embedding accuracy
⌧ > 0: a clustering threshold for learning latent states

2: Output: policy cover ⇧ = ⇧1 [· · · [⇧H+1

3: Let bS1={s1}. Let ⇧1={⇡0} for the 0-step policy ⇡0.
4: for h = 2, . . . , H + 1 do
5: Let ⌘h = U(⇧h�1)� U(A)

6: Execute ⌘h for Ng times. Dg={ŝi
h�1, a

i

h�1, x
i

h
}Ng
i=1

where ŝh�1 is the index of ⇡ŝh�1 sampled by ⌘h.
7: Learn ĝh by calling the ERM oracle on input Dg:

ĝh = argming2G
P

(ŝ,a,x0)2Dg

��g(x0)� e(ŝ,a)
��2.

8: Initialize Z = ; (dataset for learning latent states).
9: for (⇡, a) 2 ⇧h�1 ⇥A do

10: Execute ⇡ � a for Nb times. Db = {xi

h
}Nb
i=1.

11: Set z⇡�a=
P

x2Db
ĝh(x)/|Db|, add z⇡�a to Z .

12: end for
13: Learn bSh and the state embedding map b�h : bSh ! Z

by clustering Z with threshold ⌧ (see Algorithm 2).
14: Set ⇧h=(⇡ŝ)ŝ2 bSt

where ⇡ŝ=⇡�a if b�h(ŝ)=z⇡�a.
15: end for

accuracy of the context embedding in the clustering step,
leading to improved sample complexity.

The details are presented in Algorithm 4. At each level
h 2 [H + 1], we construct the following objects:

• A set of discovered states bSh.
• A set of (h� 1)-step policies ⇧h = {⇡ŝ}ŝ2 bSh

.

We proceed inductively and for each level h prove that the
following claim holds with a high probability:
Claim 4.2. There exists a bijection ↵h : bSh ! Sh such
that ⇡ŝ reaches ↵h(ŝ) with probability one.

This implies that bSh can be viewed as a latent state space,
and ⇧h is an ✏–policy cover of Sh with ✏ = 0.

To construct these objects for next level h, Algorithm 4 pro-
ceeds in three steps similar to Algorithm 1 for the stochastic
case. The regression step, that is, learning of ĝh (lines 5–7),
is identical. The clustering step (lines 8–13) is slightly more
complicated. We boost the accuracy of the learned con-
text embedding ĝh by repeatedly sampling contexts that are
guaranteed to be emitted from the same latent state (because
they result from the same sequence of actions), and taking
an average. This step allows us to get away with a lower
accuracy of ĝh compared with Algorithm 1. Finally, the
third step, learning of ⇧h (line 14), is substantially simpler.
Since any action sequence reaching a given cluster can be
picked as a policy to reach the corresponding latent state,
dynamic programming is not needed.

Provably efficient RL with Rich Observations via Latent State Decoding

The following theorem characterizes the sample complexity
of Algorithm 4. It shows we only need Õ

�
M2K2H log |G|

�

samples to find a policy cover with ✏ = 0.

Theorem 4.2 (Sample Complexity of Algorithm 4). Set
⌧ = 0.01, Ng = ⌦̃(M2K2 log |G|) and Nb = ⌦̃(MK).
Then with probability at least 1� �, Algorithm 4 returns an
✏–policy cover of S , with ✏ = 0 and size at most MH .

In Appendix B, we discuss how to use policy cover to op-
timize a reward. For instance, if the reward depends on
the latent state, the policy cover enables us to reach each
state-action pair and collect O(1/✏2) samples to estimate
this pair’s expected reward up to ✏ accuracy. Thus, using
O(MKH/✏2) samples in addition to those needed by Algo-
rithm 4, we can find the trajectory with the largest expected
reward within an H✏ error. To summarize:

Corollary 4.1. With probability at least 1� �, Algorithm 4
can be used to find an ✏-suboptimal policy using at most
Õ
�
M2K2H log |G|+MKH3/✏2

�
trajectories from a de-

terministic BMDP.

This corollary (proved in Appendix D as Corollary D.1)
significantly improves over the prior bound O(M3H8K/✏5)
obtained by Dann et al. (2018), although their function-class
complexity term is not directly comparable to ours, as their
work approximates optimal value functions and policies,
while we approximate ideal decoding functions.

5. Experiments
We perform an empirical evaluation of our decoding-based
algorithms in six challenging RL environments, with two
choices of the function class G. We compare our algorithm,
which operates directly on rich observations, against two
tabular algorithms, which operate on the latent state: a
sanity-check baseline and a near-optimal skyline. Some of
the environments meet the BMDP assumptions and some
do not; the former validate our theoretical results, while the
latter demonstrate our algorithm’s robustness. Our code is
available at https://github.com/Microsoft/StateDecoding.

The environments. All environments share the same latent
structure, and are a form of a “combination lock,” with H
levels, 3 states per level, and 4 actions. Non-zero reward
is only achievable from states s1,h and s2,h. From s1,h
and s2,h one action leads with probability 1� ↵ to s1,h+1

and with probability ↵ to s2,h+1, another has the flipped
behavior, and the remaining two lead to s3,h+1. All actions
from s3,h lead to s3,h+1. The “good” actions are randomly
assigned for every state. From s1,H and s2,H , two actions
receive Ber(1/2) reward; all others provide zero reward.
The start state is s1,1. We consider deterministic variant
(↵ = 0) and stochastic variant (↵ = 0.1). (See Appendix C.)

The environments are designed to be difficult for explo-

ration. For example, the deterministic variant has 2H paths
with non-zero reward, but 4H paths in total, so random
exploration requires exponentially many trajectories.

We also consider two observation processes, which we use
only for our algorithm, while the baseline and the skyline op-
erate directly on the latent state space. In Lock-Bernoulli, the
observation space is {0, 1}H+3 where the first 3 coordinates
are reserved for one-hot encoding of the state and the last H
coordinates are drawn i.i.d. from Ber(1/2). The observation
space is not partitioned across time, which our algorithms
track internally. Thus, Lock-Bernoulli meets the BMDP as-
sumptions and can be perfectly decoded via linear functions.
In Lock-Gaussian, the observation space is RH+3. As be-
fore the first 3 coordinates are reserved for one-hot encoding
of the state, but this encoding is corrupted with Gaussian
noise. Formally, if the agent is at state si,h the observation
is ei + v 2 R3+H, where ei is one of the first three stan-
dard basis vectors and v has N (0,�2) entries. We consider
� 2 {0.1, 0.2, 0.3}. Note that Lock-Gaussian does not sat-
isfy Assumption 2.1 since the emission distributions cannot
be perfectly separated. We use this environment to evaluate
the robustness of our algorithm to violated assumptions.

Baseline, skyline, hyperparameters. We compare our al-
gorithm against two tabular approaches that cheat by di-
rectly accessing the latent state. The first, ORACLEQ, is the
Optimistic Q-Learning algorithm of Jin et al. (2018), with a
near-optimal regret in tabular environments.5 Because of its
near-optimality and direct access to the latent state, we do
not expect any algorithm to beat ORACLEQ, and view it as
a skyline. The second, QLEARNING, is tabular Q-learning
with ✏-greedy exploration. It serves as a sanity-check base-
line: any algorithm with strategic exploration should vastly
outperform QLEARNING, even though it is cheating.

Each algorithm has two hyperparameters that we tune. In
our algorithm (PCID), we use k-means clustering instead
of Algorithm 2, so one of the hyperparameters is the number
of clusters k. The second one is the number of trajectories
n to collect in each outer iteration. For ORACLEQ, these
are the learning rate ↵ and a confidence parameter c. For
QLEARNING, these are the learning rate ↵ and ✏frac 2 [0, 1],
a fraction of the 100K episodes over which to anneal the
exploration probability linearly from 1 down to 0.01.

For both Lock-Bernoulli and Lock-Gaussian, we experiment
with linear decoding functions, which we fit via ordinary
least squares. For Lock-Gaussian only, we also use two-
layer neural networks. Specifically, these functions are of
the form f(x) = W>

2 sigmoid(W>
1 x + c) with the stan-

dard sigmoid activation, where the inner dimension is set
to the clustering hyper-parameter k. These networks are

5We use the Hoeffding version, which is conceptually much
simpler, but statistically slightly worse.

Provably efficient RL with Rich Observations via Latent State Decoding

Note: Larger markers mean that the next point is off the plot.

Figure 1. Time-to-solve against problem difficulty for the combination lock environment with two observation processes and two function
approximation classes. Left: Lock-Bernoulli with linear functions. Center: Lock-Gaussian with linear functions. Right: Lock-Gaussian
with neural networks. Top row: deterministic latent transitions. Bottom row: stochastic transitions with switching probability 0.1.
ORACLEQ and QLEARNING are cheating and operate directly on latent states.

trained using AdaGrad with a fixed learning rate of 0.1, for
a maximum of 5K iterations. See Appendix C for more
details on hyperparameters and training.

Experimental setup. We run the algorithms on all environ-
ments with varying H , which also influences the dimension
of the observation space. Each algorithm runs for 100K
episodes and we say that it has solved the lock by episode t
if at round t its running-average reward is � 0.25 = 0.5V ?.
The time-to-solve is the smallest t for which the algorithm
has solved the lock. For each hyperparameter, we run 25
replicates with different randomizations of the environment
and seeds, and we plot the median time-to-solve of the
best hyperparameter setting (along with error bands corre-
sponding to 90th and 10th percentiles) against the horizon
H . Our algorithm is reasonably fast, e.g., a single replicate
of the above protocol for the two-layer neural net model and
H = 50 takes less than 10 minutes on a standard laptop.

Results. The results are in Figure 1 in a log-linear plot.
First, QLEARNING works well for small horizon prob-
lems but cannot solve problems with H � 15 within 100K
episodes, which is not surprising.6 The performance curve
for QLEARNING is linear, revealing an exponential sam-
ple complexity, and demonstrating that these environments
cannot be solved with naı̈ve exploration. As a second ob-
servation, ORACLEQ performs extremely well, and as we
verify in Appendix C demonstrates a linear scaling with H .7

In Lock-Bernoulli, PCID is roughly a factor of 5 worse than
the skyline ORACLEQ for all values of H , but the curves
have similar behavior. In Appendix C, we verify a near-

6We actually ran QLEARNING for 1M episodes and found it
solves H = 15 with 170K episodes.

7This is incomparable with the result in Jin et al. (2018) since
we are not measuring regret here.

linear scaling with H , even better than predicted by our
theory. Of course PCID is an exponential improvement
over QLEARNING with ✏-greedy exploration here.

In Lock-Gaussian with linear functions, the results are sim-
ilar for the low-noise setting. The performance of PCID
degrades as the noise level increases. For example, with
noise level � = 0.3, it fails to solve the stochastic prob-
lem with H = 40 in 100K episodes. This is expected, as
Assumption 2.1 is severely violated at this noise level. How-
ever, the scaling of the sampling complexity still represents
a dramatic improvement over QLEARNING.

Finally, PCID with neural networks is less robust to noise
and stochasticity in Lock-Gaussian. Here, with � = 0.3
the algorithm is unable to solve the H = 30 problem, both
with and without stochasticity, but still does quite well with
� 2 {0.1, 0.2}. The scaling with H is still quite favorable.

Sensitivity analysis. We also perform a simple sensitiv-
ity analysis to assess how the hyperparameters k and n
influence the behavior of PCID. We find that if we under-
estimate either k or n the algorithm fails, either because it
cannot identify all latent states, or it does not collect enough
data to solve the regression problems. On the other hand, the
algorithm is quite robust to over-estimating both parameters.
(See Appendix C.3 for further details.)

Summary. We have shown on several rich-observation
environments with both linear and non-linear functions that
PCID scales to large-horizon rich-observation problems.
It dramatically outperforms tabular QLEARNING with ✏-
greedy exploration, and is roughly a factor of 5 worse than
a near-optimal ORACLEQ with an access to the latent state.
PCID’s performance is robust to hyperparameter choices
and degrades gracefully as the assumptions are violated.

Provably efficient RL with Rich Observations via Latent State Decoding

References
Antos, A., Szepesvári, C., and Munos, R. Learning

near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample path.
Machine Learning, 2008.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-
inforcement learning of POMDPs using spectral methods.
In Conference on Learning Theory, 2016a.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-
inforcement learning in rich-observation MDPs using
spectral methods. arxiv:1611.03907, 2016b.

Bagnell, J. A., Kakade, S. M., Schneider, J. G., and Ng, A. Y.
Policy search by dynamic programming. In Advances in
Neural Information Processing Systems, 2004.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 2002.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On oracle-efficient PAC
reinforcement learning with rich observations. In Ad-
vances in Neural Information Processing Systems, 2018.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 2005.

Givan, R., Dean, T., and Greig, M. Equivalence notions
and model minimization in Markov decision processes.
Artificial Intelligence, 2003.

Hallak, A., Di-Castro, D., and Mannor, S. Model selection
in Markovian processes. In International Conference on
Knowledge Discovery and Data Mining, 2013.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 2010.

Jiang, N., Kulesza, A., and Singh, S. Abstraction selection
in model-based reinforcement learning. In International
Conference on Machine Learning, 2015.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low Bellman rank are PAC-learnable. In International
Conference on Machine Learning, 2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural
Information Processing Systems, 2018.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D.
The Malmo Platform for artificial intelligence experimen-
tation. In International Joint Conference on Artificial
Intelligence, 2016.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 2002.

Krishnamurthy, A., Agarwal, A., and Langford, J. PAC re-
inforcement learning with rich observations. In Advances
in Neural Information Processing Systems, 2016.

Lattimore, T. and Hutter, M. PAC bounds for discounted
MDPs. In International Conference on Algorithmic
Learning Theory, 2012.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 2015.

Oh, J., Singh, S., and Lee, H. Value prediction network.
In Advances in Neural Information Processing Systems,
2017.

Ortner, R., Maillard, O.-A., and Ryabko, D. Selecting
near-optimal approximate state representations in rein-
forcement learning. In International Conference on Algo-
rithmic Learning Theory, 2014.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped DQN. In Advances in Neu-
ral Information Processing Systems, 2016.

Ostrovski, G., Bellemare, M. G., Oord, A. v. d., and Munos,
R. Count-based exploration with neural density models.
In International Conference on Machine Learning, 2017.

Papadimitriou, C. H. and Tsitsiklis, J. N. The complexity of
markov decision processes. Mathematics of operations
research, 12(3):441–450, 1987.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
2017.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,
N., Barreto, A., and Degris, T. The predictron: End-to-
end learning and planning. In International Conference
on Machine Learning, 2017.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., and
Weinberger, M. J. Inequalities for the L1 deviation of the
empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Provably efficient RL with Rich Observations via Latent State Decoding

Whitt, W. Approximations of dynamic programs, I. Mathe-
matics of Operations Research, 1978.

