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Abstract
While model-based deep reinforcement learning
(RL) holds great promise for sample efficiency
and generalization, learning an accurate dynamics
model is often challenging and requires substan-
tial interaction with the environment. A wide
variety of domains have dynamics that share com-
mon foundations like the laws of classical me-
chanics, which are rarely exploited by existing
algorithms. In fact, humans continuously acquire
and use such dynamics priors to easily adapt to
operating in new environments. In this work, we
propose an approach to learn task-agnostic dynam-
ics priors from videos and incorporate them into
an RL agent. Our method involves pre-training a
frame predictor on task-agnostic physics videos
to initialize dynamics models (and fine-tune them)
for unseen target environments. Our frame predic-
tion architecture, SpatialNet, is designed specifi-
cally to capture localized physical phenomena and
interactions. Our approach allows for both faster
policy learning and convergence to better policies,
outperforming competitive approaches on several
different environments. We also demonstrate that
incorporating this prior allows for more effective
transfer between environments.

1 Introduction
Recent advances in deep reinforcement learning (RL) have
largely relied on model-free approaches, demonstrating
strong performance on a variety of domains (Silver et al.,
2016; Mnih et al., 2013; Kempka et al., 2016; Zhang et al.,
2018c). However, model-free techniques do not have good
sample efficiency (Sutton, 1990) and are difficult to adapt
to new tasks or domains (Nichol et al., 2018). A key reason
for this is a single value function is used to represent both
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Figure 1. Two different environments with object dynamics that
obey the common laws of physics (top: PhysWorld, bottom: Atari
Pong). Agents that have a knowledge of general physics will be
able to adapt quickly to either environment.

the agent’s policy and its knowledge of environment dy-
namics, which can result in heavy overfitting to a particular
task (Zhang et al., 2018b). On the other hand, model-based
RL allows for decoupling the dynamics model from the
policy, enabling better generalization and transfer across
tasks (Zhang et al., 2018a). The challenge with model-based
RL, however, lies in estimating an accurate dynamics model
of the environment while simultaneously using it to learn
a policy, often leading to sub-optimal policies and slower
learning. One way to alleviate this problem is to initialize
dynamics models with universal task-agnostic priors that
allow for more efficient and stable model-based learning.

For example, consider learning dynamics models for the
two different scenarios shown in Figure 1 (top and bottom).
Both environments contain a variety of objects moving with
different velocities and rotations. Current approaches re-
quire a large number of samples to learn a robust transition
model of either world. For instance, in the first environment,
inferring that the orange circle is a freely moving object will
require observing the circle moving in a variety of differ-
ent directions. Or to understand the laws governing elastic
collisions between two bodies (e.g. the circle and the grey
rectangle) requires observing several instances of collisions
at various angles and velocities. On the other hand, humans
have reliable priors that allow for understanding dynamics
of new environments quickly (Dubey et al., 2018) – one
such prior is an understanding of physical laws of motion.



Task-Agnostic Dynamics Priors for Deep Reinforcement Learning

In this work, we demonstrate that learning a task-agnostic
dynamics prior (e.g. concepts like velocity, acceleration or
elasticity) allows for accurate and more efficient estimation
of the dynamics of new environments, resulting in better
control policies.

In order to obtain a prior for physical dynamics, we perform
unsupervised learning over raw videos containing moving
objects. Specifically, we train a dynamics model to predict
the next frame given the previous k frames, over a wide
variety of scenarios with moving objects. The parameters of
the model implicitly capture general laws of physics, which
are useful in predicting entity movements. We initialize the
dynamics model of the environment with these pre-trained
parameters and fine-tune them using transitions from the
specific task, while simultaneously learning a policy for the
task. The dynamics model is used to predict future frames
up to a finite horizon, which are then used as additional input
into a policy network, similar to the approach of (Weber
et al., 2017). Importantly, our frame prediction model is not
action-conditional like most prior work that employs such
models in reinforcement learning (Oh et al., 2015; Weber
et al., 2017).

Learning a good future frame model is challenging mainly
for two reasons: a) the large dimensionality of the output
space with arbitrary moving objects and interactions, and
b) the partial observability in environments (Mathieu et al.,
2015). Prior approaches (Oh et al., 2015) suffered from
error compounding since they encode the entire image into
a single vector before decoding the output, thereby miss-
ing out fine-grained spatial information. Others like the
ConvLSTM (Xingjian et al., 2015) are better at capturing
spatio-temporal interactions but suffer from poor generaliza-
tion due the use of additive update equations. To overcome
these issues, we propose a new architecture (SpatialNet) that
consists of a convolutional encoder, a spatial memory block,
and a convolutional decoder that better captures localized dy-
namics. The spatial memory module operates by performing
convolution operations over a temporal 3-dimensional state
representation that keeps spatial information intact. This
allows the network, which includes residual connections,
to capture localized physics of objects such as directional
movements and collisions in a fine-grained manner as well
as efficiently keep track of static background information.
This results in lower prediction error, better generalization
and invariance to the size of inputs.

We evaluate our approach on three different RL scenar-
ios. First, we consider PhysWorld, a suite of randomized
2D physics-focused games, where learning object move-
ment is crucial to a successful policy. Next we consider
PhysShooter3D, a 3D environment with rigid body dynam-
ics and partial observations. Finally, we also evaluate on a
stochastic variant of the popular ALE framework consisting

of Atari games (Machado et al., 2017a). In all scenarios, we
first demonstrate the value of learning a task-agnostic prior
for model dynamics - for instance, our agent achieves up to
130% higher performance on a shooting game, PhysShooter
and 56.5% higher on the Atari game of Asteroids, compared
to the most competitive baseline. Further, we also show
that the dynamics model fine-tuned on these tasks trans-
fers better to new tasks. For instance, our model achieves
a relative score improvement of 26.9% on transfer from
PhysForage to PhysShooter (both games from PhysWorld),
significantly higher than a score improvement of 5.4% using
a policy-transfer baseline.

2 Related Work

There are two main lines of work that are closely related
to this paper. The first is that of learning and using generic
video prediction models for reinforcement learning (Oh
et al., 2015; Finn et al., 2016; Weber et al., 2017). The
key idea is to train a model to predict future frames on the
target task and hallucinate additional trajectories that can
help an agent learn faster. The second direction is to incor-
porate physics priors into parameterized dynamics models
for future state prediction (Nguyen-Tuong and Peters, 2010;
Kansky et al., 2017). The former path requires only pixel in-
puts but does not generalize well across tasks. The latter has
the potential to generalize but requires manual specification
of priors. Our work aims to combine the best of both worlds
– learn a frame prediction model that is task-agnostic and
captures an effective notion of physics to serve as a useful
prior.

Video prediction models. Our frame prediction model is
closest in spirit to the ConvolutionalLSTM model which
has been applied to several domains (Xingjian et al., 2015;
Zhu et al., 2017; Ke et al., 2017). Similar architectures
that incorporate differentiable memory modules (Patraucean
et al., 2015) or relational intermediates (Watters et al., 2017)
have been proposed, with applications to deep RL (Parisotto
and Salakhutdinov, 2017). While the ConvLSTM model is
reasonably effective at predicting future frames, the addi-
tive LSTM update equations are not well suited to capture
localized physical interactions.∗ Our architecture is simpler
and more natural at capturing physical dynamics and entity
movements – this allows for better generalization as we
demonstrate in our experiments.

Several recent methods have also combined policy learn-
ing with future frame prediction in different ways. Action-
conditioned frame prediction has been used to simulate
trajectories for policy learning (Oh et al., 2015; Finn et al.,
2016; Weber et al., 2017). Predicted frames have also been
∗While the model theoretically can learn to ignore unneces-

sary operations, optimizing the parameters effectively is difficult
because of a lack of proper inductive bias in the architecture.
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used to incentivize exploration in agents, via hashing (Yin
et al., 2017) or using the prediction error to provide intrinsic
rewards (Pathak et al., 2017). The main departure of our
work from these papers is that we learn a frame prediction
model that is not conditioned on actions, and from videos
not related to a task, which allows us to employ the model
on a variety of tasks.

Parameterized physics models. Several recent papers
have explored the idea of incorporating physics priors into
learning dynamics models of environments (Nguyen-Tuong
and Peters, 2010; Cutler et al., 2014; Cutler and How, 2015;
Scholz et al., 2014; Kansky et al., 2017; Battaglia et al.,
2016; Mrowca et al., 2018; Xie et al., 2016). More recent
work trained an object-oriented dynamics predictor by seg-
menting input frames into sets of objects (Zhu et al., 2018).
While all these approaches demonstrate the importance of
having relevant priors to sample efficient model learning,
they all require some form of manual parameterization. In
contrast, we learn physics priors in the form of the parame-
ters of a predictive neural network, only using raw videos.

Decoupling dynamics from policy. Our work also relates
to previous approaches on decoupling the agent’s knowl-
edge of the environment dynamics from its task-oriented
policy. Successor representations (Dayan, 1993) decompose
the agent’s value function into a feature-based state represen-
tation and a reward projection operator, resulting in better
exploration of the state space (Kulkarni et al., 2016; Bar-
reto et al., 2017; Machado et al., 2017b). While these state
abstractions help with exploration, such representations do
not explicitly capture dynamics models of the environment.
More recent work has proposed approaches to learn sepa-
rate models for dynamics and rewards and use it to perform
online planning (Zhang et al., 2018a) or learn independently
controllable factors in the environment (Thomas et al., 2017).
However, these assume access to task-specific transitions,
while we learn a prior from task-independent videos and
demonstrate its usefulness in learning different environment
dynamics.

3 Framework
Our goal is to demonstrate that acquiring task-agnostic dy-
namics priors from raw videos helps agents learn faster in
new environments. To this end, our approach consists of
two phases:

1. Pre-training a dynamics predictor: We first train a
suitable neural network architecture to predict pixels
in the next frame given the previous k frames of a
video. In this work, we use videos of objects moving
according to classical mechanics, without any extra
annotations.

2. Reinforcement learning: We use the pre-trained

frame predictor from the previous phase to initialize
the dynamics model for an RL agent. This dynam-
ics model is used to predict a few frames into the fu-
ture, which is used as additional context for the control
policy. The dynamics model is also simultaneously
fine-tuned using trajectories from the environment.

We first describe how we use the frame prediction model
for reinforcement learning, and then discuss different op-
tions for a frame predictor, including our new architecture,
SpatialNet.

3.1 Reinforcement Learning with Dynamics
Predictors

There are several ways one can incorporate a dynamics
model into a reinforcement learning setup. One approach is
to use the model to generate synthetic trajectories and use
them in addition to observed transitions while training a pol-
icy (Oh et al., 2015; Feinberg et al., 2018). Another option
is to perform rollouts from the current step using the model
and then use the predicted states as additional context input
to the policy (Weber et al., 2017). Our method is similar to
the latter – we use our learned dynamics model to predict
k future frames and concatenate these frames along with
the current frame to form the input to our policy network.
There are two differences however – (1) we predict future
state observations without conditioning on the actions of the
agent and without rewards since our dynamics model is task
agnostic, and (2) we do not use a global encoding for future
frames, but instead stack the frames and use convolution
operations to extract local dynamic information.

Formally, consider a standard Markov Decision Process
(MDP) setup represented by the tuple 〈S,A, T,R〉, where
S is the set of all possible state configurations, A is the
set of actions available to the agent, T is the transition
distribution, and R is the reward function. Assuming our
dynamics model to be Ω, and given the current state st, we
first apply our prediction model iteratively to obtain future
state predictions:

ŝt+1 = Ω(st), ŝt+2 = Ω(ŝt+1), ... ŝt+k = Ω(ŝt+k−1)

We then train a policy network to output actions using all
these predicted states as input in addition to the current state:

at = π(st, ŝt+1, ... ŝt+k) (1)

For the policy network, we follow the architecture described
in (Mnih et al., 2015) and use the Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) algorithm for learning
from rewards obtained in the task. We call this agent an
Intuitive Physics Agent (IPA) since it first learns an intuitive
prior of physical interactions.
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We update policy parameters by using the PPO loss:

L(θ) = E[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At]

where rt = πθ(at|st,ŝt+1, ... ŝt+k)
πθold (at|st,ŝt+1, ... ŝt+k)

and the advantage, At,
is computed using the value function V (st, ŝt+1, ... ŝt+k).
Simultaneously, we also update the parameters of the dynam-
ics model using the transitions from the environment with a
pixel prediction loss (described in Section 3.2.) However,
policy gradients are not back-propagated to the dynamics
predictor.

3.2 Dynamics Prediction

Prior work has investigated a variety of frame prediction
models. LSTM-based recurrent networks (Oh et al., 2015)
are not ideal for this task since they encode the entire scene
into a single latent vector, thereby losing the localized spatio-
temporal correlations that are important for making accu-
rate physical predictions. On the other hand, the ConvL-
STM (Xingjian et al., 2015) architecture has localized spatio-
temporal correlations, but is not able to accurately maintain
global dynamics of entities due to LSTM state updates and
limited separation of stationary and non-stationary objects.
(as also seen in our experiments in Section 4.1).

Predicting the physical behavior of an entity requires a
model that can perform two crucial operations – 1) isolation
of the dynamics of each entity, and 2) accurate modeling
of localized spaces and interactions around the entity. In
order to satisfy both desiderata, we propose a new architec-
ture, SpatialNet, which uses a spatial memory that explicitly
encodes dynamics that are updated with object movement
through convolutions. This allows us to implicitly capture
and maintain localized physics, such as entity velocities and
collisions between entities, in our frame prediction model
and results in significantly lower long term prediction error.

SpatialNet Architecture SpatialNet is conceptually simple
and consists of three modules (Figure 2). The first module
is a standard convolutional encoder E that converts an input
image xt into a 3D representational map zt. The second
module is a spatial memory block, σ, that converts zt and
the hidden state ht from the previous timestep into an output
representation ot and new hidden state ht+1. Finally, we
have a convolutional decoder D that predicts the next frame
xt+1 from ot. Both the encoder and decoder modules (E
and D) use two convolutional layers each with residual
connections.

We implement the spatial memory block σ as a 2D convolu-
tion operation. The module takes in a previous hidden state
ht and input zt at timestep t, both of shape k×n×n where
k is the number of channels and n× n is the dimensionality
of the grid. We then perform the following operations:

it = f(Ce ⊕ [ht; zt]); ut = f(Cu ⊕ [it;ht])

ht+1 = f(Cdyn ⊕ ut); ot = f(Cd ⊕ [zt;ht+1])
(2)

Future 
Frame

Spatial Memory

Input

State (ht )

Input (zt)

Gated Input (it)

State (ht)

Proposal State (ut)

State New (ht+1)

Input (zt)

Spatial Memory

SpatialNet

Output (ot)

Ce Cu
Cdyn

zt ht

zt+1 ht+1

Cd

Figure 2. Overview of the SpatialNet architecture. SpatialNet takes
an RBG image as input and passes it into encoder (E) consisting of
two residual blocks to form an input encoding zt. zt is processed
by a spatial memory module (σ) to obtain an output representation
ot, which is used by the decoder (D) to predict the next frame. The
spatial memory stores meta information about each entity and its
locality. See Section 3 for more details.

where ⊕ denotes a convolution, [; ] denotes concatenation,
Ce, Cu, Cdyn, Cd are convolutional kernels and f is a non-
linearity (we use ELU (Clevert et al., 2015)). The module
first encodes a combination of zt and ht into a proposal
state ut, using two convolutions Ce, Cu. Cdyn acts like
a dynamics simulator and generates a new hidden state
ht+1, which captures the localized predictions for the next
state around each entity. Finally, Cd uses ht+1 and zt to
produce ot, encoding information about the entire frame to
be rendered by subsequent decoding.

Intuitively, the SpatialNet architecture biases the module to-
wards storing relevant physics information about each entity
in a block of pixels at the entity’s corresponding location.
This information is sequentially updated through the convo-
lutions, while static information such as background texture
is passed directly through the input encoding zt (see Figure 5
of appendix). We note that our spatial memory is not action-
conditional, which allows us to learn from task-independent
videos, as well as generalize better to new environments.

Given training videos D =
{

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
Ti

}N
i=1

, we
learn the parameters of the model using a standard MSE-
based loss function, L(θ) =

∑
i

∑
j

‖x̂ij − xij‖2 .

SpatialNet is inspired by the ConvLSTM model but is dif-
ferent from ConvLSTM in that while ConvLSTM performs
an additive state updation operation (ct = ft · ct−1 + it ·
tanh(Wcxxt + Whcht−1 + bc)), SpatialNet uses convo-
lutions to update the hidden state (Eqn. 2). This allows
SpatialNet to better simulate moving objects and physical
interactions. Another difference is that SpatialNet has resid-
ual connections, which provides a more straightforward
inductive bias towards maintaining both static and dynamic
information across states.
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Ego-dynamics One important feature of our dynamics pre-
dictor is that it is not conditioned on the action(s) of the
agent, i.e. it does not account for ego-dynamics. We make
this choice in order to make the dynamics prediction model
task-agnostic. As we demonstrate in our experiments (Sec-
tion 4.3, this makes our approach generalize well to a variety
of different tasks, and learn faster in transfer experiments.

4 Experiments
We perform two empirical studies to evaluate our hypoth-
esis. First, we evaluate various frame prediction models,
including our proposed SpatialNet, in terms of their capac-
ity to predict future states and model physical interactions
(Sections 4.1 and 4.2). Then, we investigate the use of
these dynamics predictors for policy learning in different
environments (Section 4.3).

Physics video dataset In order to train a prediction model
specifically for physical interaction, we generate a new
video dataset, PhysVideos, using a 2-D physics engine (Py-
munk). Each video in the dataset has frames of size
84 × 84 × 3 with 4-8 different shapes (such as squares
or circles) moving inside a room with up to 3 randomly
generated interior walls (see Figure 1 (top)). Objects are
initialized with random positions and velocities, a friction
coefficient of 0.9 and elasticity of 0.95, resulting in diverse
object movements across each trajectory. Being able to
predict the future in this type of environment requires 2-
dimensional physics reasoning, such as inferring velocity
from past movement, anticipating changes in momentum
due to collisions, and predicting rotations of each object.
We generate 5000 different trajectories in total – 4500 for
training a dynamics predictor and 500 for testing – with each
trajectory having a length of 125 steps. See supplementary
material for sample trajectories.

4.1 Frame Prediction

In this section, we evaluate various frame prediction models
on their accuracy across different horizons. We report results
on the 500 trajectories from the test set of PhysVideos.

Baselines We compare our model, SpatialNet, with the fol-
lowing baselines:

1. RCNet: the model of (Oh et al., 2015) modified to work
without action-conditioning, i.e. hdect = henct .

2. ConvLSTM (Xingjian et al., 2015): this model replaces
all the inner operations of an LSTM with convolutions.
We use a kernel size of 5 and the same encoders and
decoders as in SpatialNet.

3. ConvLSTM + Residual: a modified version of ConvL-
STM with added residual connections from input to
output of the LSTM cell.

Model 1 step 5 step 10 step Objects Lost

RCNet (Oh et al., 2015) 0.0061 0.0140 0.0268 1.0
ConvLSTM (Xingjian et al., 2015) 0.0026 0.0303 0.0503 0.4
ConvLSTM + Residual 0.0026 0.0141 0.0210 0.45
SpatialNet 0.0024 0.0114 0.0176 0.13

Table 1. MSE for multi-step prediction on PhysVideos (lower is
better). All models were trained with 1 step prediction loss. Spa-
tialNet suffers least from compound errors during prediction, and
is able to maintain objects and dynamics more consistently (Fig-
ure 3). Number of objects lost (after 20 steps) was determined
manually by evaluating 15 random videos in the test set.

T+1 T+4 T+7 T+11 T+21

GT

SpatialNet

RCNet

ConvLSTM

Label 
Frames

Predicted Frames

ConvLSTM
Residual

Figure 3. Visualization of multi-step predictions of SpatialNet, RC-
Net, and ConvLSTM variants, along with ground truth (GT). After
20 steps of self prediction, SpatialNet maintains the internal wall
and all seven objects in the scene while RCNet (Oh et al., 2015)
loses the internal wall and 3 of the moving objects. ConvLSTM
loses shape information and has less accurate dynamics prediction.
SpatialNet is most consistent in obeying physical laws.

We train all prediction models using mean squared error
(MSE) loss. We use the Adam optimizer (Kingma and Ba,
2015) in our experiments with a learning rate of 10−4.

Results From Table 1, we see that SpatialNet achieves a
lower test MSE compared to all the baselines, especially
for multi-step predictions. This suggests that SpatialNet
encourages better dynamic generalization compared to RC-
Net and ConvLSTM. We can also observe from Figure 3,
that SpatialNet is able to accurately maintain the number of
objects in the video even after 20 steps, while the baselines
suffer from merging of objects (RCNet) or loss of shape
information (ConvLSTM). Further, SpatialNet is also able
to maintain background details such as walls that are quickly
lost in RCNet, as the spatial memory structure allows the
input to easily remember fixed background information. We
also find that the spatial memory’s overall structure allows
it to be very resistant to input noise as well as better general-
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Model Drag Elasticity

SpatialNet (random init) 35.8 43.8
SpatialNet (PT on Atari Pong) 35.0 33.6

ConvLSTM (PT on PhysVideos) 57.2 53.2
SpatialNet (PT on PhysVideos) 69.8 56.9

SpatialNet (full train) 78.5 67.8

Table 2. Accuracies on predicting drag and elasticity from video
frames (PT = pre-training)

ize to unseen environments – please see the supplementary
material for detailed analyses.

4.2 Predicting physical parameters

To further probe the representations learned by the frame pre-
diction models, we test their ability to predict physical prop-
erties of environments (e.g. elasticity or drag) from videos.
We train a 2 layer classification model on top of the hidden
state representations produced by SpatialNet/ConvLSTM
to predict one of 3 values for elasticity/drag - low, medium
or high. Only the classification layers are trained, while the
rest of the parameters are kept fixed (except for full train).

From Table 2, we see that randomly initialized parameters
or SpatialNet trained on Atari Pong don’t do well, indicat-
ing that they don’t capture physics. SpatialNet trained on
PhysVideos gets an accuracy of around 69% on drag predic-
tion (close to the fully trained model accuracy of 78%). This
shows that the pre-training indeed helps the model acquire
priors over physical dynamics. Further, the low numbers of
the model trained on Atari Pong indicate that task-specific
frame prediction may not generalize well.

4.3 Reinforcement Learning

In this section, we describe the use of SpatialNet to ac-
celerate reinforcement learning. We first train SpatialNet
on the physics video dataset described in the previous
section. Then, we use the pre-trained SpatialNet model
as a future frame predictor for a reinforcement learning
agent. We perform empirical evaluations on three differ-
ent platforms - a suite of 2D games (PhysWorld), a 3D
partially observable environment, and a stochastic version
of Atari games (Machado et al., 2017a). We demonstrate
that IPA with SpatialNet pre-training outperforms existing
approaches in all platforms. The IPA architecture also al-
lows for effective decoupling of environment dynamics from
agent policy, which results in better transfer performance
across tasks.

Experimental setup In our experiments, we use Spatial-
Net to predict the next k† future frames. We then stack the
current frame with the k predicted frames and use this as
input to a model free policy. We use the Adam optimizer

†We find k=3 to work well in our experiments.

with learning rate 10−4 to train model predictions and the
same set of hyper-parameters for training all policy agents
as those used in (Schulman et al., 2017). For our policy
network, we use the architecture described in (Mnih et al.,
2015). We report numbers averaged over 3 different random
seeds.

Baselines We compare our agent (IPA) with a number of
different baselines:

1. PPO: A standard implementation of Proximal Pol-
icy Gradient (PPO) (Schulman et al., 2017), which
is model-free and uses the current frame with the last
k frames to output an action. The number of frames
provided to PPO is the same as that provided to IPA.

2. PPO + VF: PPO with value function expansion (Fein-
berg et al., 2018), which uses a dynamics predictor to
obtain a more consistent estimate of the current state’s
value.

3. I2A: Imagination Augmented Agent (Weber et al.,
2017) uses a combination of past frames and a recur-
rent encoding of future rollouts‡ as input to the policy.

4. ISP: A variant of IPA that uses the hidden layer of
SpatialNet directly as input to a policy network.

5. JISP : ISP with auxiliary frame prediction loss.

6. Other frame predictors: Finally, we also consider base-
lines where we augment our agent, IPA, with future
frames predicted by RCNet (Oh et al., 2015) and Con-
vLSTM (Xingjian et al., 2015).

PhysWorld We first consider PhysWorld, a new collec-
tion of three physics-centric 2D games that we created.
These games require an agent to accurately predict object
movements and rotations in order to perform well. All three
tasks have an environment consisting of around 10 randomly
moving boxes and circles as well as up to three internal im-
passable walls. PhysGoal is a navigation task to reach goals
while avoiding objects, PhysForage is an object gathering
task, and PhysShooter requires a stationary agent to shoot
selected moving objects while preventing collisions. The
objects in each of these environments are different colors
and sizes than those used to train the dynamics predictor in
Section 4. We provide a detailed description of each task
in the supplementary material. We emphasize that the main
parameters (like object velocities, rotations,etc.) in the Phys-
World games are fully randomized for each episode. To
obtain good performance, agents need a good understanding
of general physics and cannot just memorize frames.

‡Rollouts are k future frames predicted by SpatialNet.
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PhysGoal PhysForage PhysShooter

PPO 17.9 (0.8) 44.2 (5.4) 23.2 (1.2)
PPO + VF 19.2 (2.4) 40.4 (5.4) 26.1 (2.9)

I2A + SpatialNet (action-cond) 4.2 (0.4) 23.7 (3.1) 16.5 (1.8)
I2A + SpatialNet 16.4 (6.2) 20.8 (2.0) 19.3 (0.7)

IPA + RCNet 20.7 (3.1) 46.3 (23.4) 31.7 (1.0)
IPA + ConvLSTM 21.6 (2.1) 39.5 (7.0) 29.1 (1.6)

ISP 15.2 (1.2) 45.3 (5.5) 18.6 (1.1)
JISP 18.2 (5.5) 124.3 (27.1) 28.6 (1.5)

IPA + SpatialNet (Blink) 24.6 (2.8) 48.5 (5.3) 31.0 (1.9)
IPA + SpatialNet (PhysVideos) 30.8 (5.2) 50.6 (11.5) 42.3 (2.9)

Table 3. Average scores (with standard deviation) obtained in Phys-
World environments by various agents after 10 million frames of
training. Scores are rewards over 100 episodes, averaged over
runs with 3 different random seeds. IPA + SpatialNet consistently
outperforms the other approaches. RCNet, SpatialNet, ConvLSTM
are pretrained on PhysVideos. PPO+VF = PPO with Value Func-
tion Expansion. SpatialNet (Blink) refers to a model trained on
videos with blinking objects. We add 500K additional frames to
the PPO baselines to account for the frames used in pre-training
for the other models.

Results: We detail the performance of our approach com-
pared to the baselines in Table 3 and show learning curves
in Figure 4. Quantitatively, we find that our approach, IPA
+ SpatialNet (PhysVideos), obtains significant gains over
most baselines in all three tasks in PhysWorld using IPA
with SpatialNet. We find that IPA with RCNet or ConvL-
STM provides less benefits, due to slower learning than Spa-
tialNet. We also find PPO with value expansions (PPO+VF)
also provides slight gains, but significantly less than the
gains conferred by IPA. I2A leads to no gains in perfor-
mance, since it generates a global encoding of an image,
destroying local dynamics information of objects. Both ISP
and JISP perform worse than IPA except on PhysForage.
On PhysForage, we find that JISP performs better, likely
due to increased policy capacity compared to IPA (i.e. more
parameters). We observe that SpatialNet trained on videos
with blinking objects does not provide as much of a benefit,
pointing to the fact that our full model is learning some
aspects of dynamics beyond just object appearances.

IPA encourages the policy to take into account the future
physics of objects, a bias crucial for good performance on
each of the PhysWorld environments. Qualitatively, we
observe that in all three environments, IPA agents navigate
to goals and collect objects with more confidence, even
if there are nearby obstacles nearby. In PhysShooter, IPA
agents are much more able to hit objects further away on
the map, which require multiple time-steps before collisions.
Figure 4 demonstrates how having a good prior results in
faster learning of the environment dynamics of PhysShooter.

Figure 4 shows the relative training rates of policies under
PPO and IPA. In Phys-Shooter we see immediate benefits
in using a physics model, as physics knowledge of the future

Figure 4. Training curves on PhysWorld and MSE curve (bottom-
right) for predicting future frames in PhysShooter.

is crucial as the agent only gets one action approximately
every 4-5 frames. In Phys-Goal and Phys-Forage, we see
long term benefits in knowing future physics as this knowl-
edge allows the agents to more efficiently collect points.

PhysShooter3D Additionally, we also evaluate on
PhysShooter3D, a 3D physics game which we construct
using Bullet (Coumans, 2010). We add gravity to the
world and generate moving projectiles that follow bouncing
parabolic trajectories. We then render 2D images from a par-
ticular viewpoint, causing moving objects to be partially or
fully occluded at times. With these additional factors, learn-
ing dynamics is even more challenging. The game requires
a stationary agent to fire bullets at selected 3D projectiles
without itself being hit by any projectiles. We found that
PPO obtained a score of 0.86±0.28 while IPA + SpatialNet
obtained 1.73 ± 0.09 and IPA using Ground truth frames
obtained 4.16± 0.84. This demonstrates that IPA general-
izes well to partially observed settings, with still room for
improvement by performing better frame prediction.

Stochastic Atari Games In addition to PhysWorld and
PhysWorld3D, we also investigate the performance of IPA
on a stochastic version of the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), by adding sticky actions,
where an agent repeats its last action with probability p =
0.5. This stochasticity was shown to be the most challenging
type of randomization to add to ALE (Hausknecht and Stone,
2015; Machado et al., 2017a). We evaluate performance on
all Atari games, a subset of which are shown in Table 4. All
Atari experiments are run with 5 different seeds.
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PPO I2A IPA

Assault 2932 (153) 3249.7 (378) 2968.4 (124)
Asteroids 1321 (233.5) 1340 (351) 2098 (102)
Breakout 19.7 (0.9) 18.7 (0.0) 23.4 (1.0)
DemonAttack 5510 (412) 5492 (233) 6793 (558)
Enduro 376.7 (10.5) 380 (8.0) 398.6 (23.0)
FishingDerby 6.7 (10.1) 12.1 (4.0) 9.3 (3.0)
Frostbite 1342 (2154) 1649 (2100) 1701 (2485)
IceHockey -5.9 (0.3) -6.3 (0.0) -6.1 (0.0)
Pong 6.6 (14.1) -1.4 (15.0) 2.2 (13.0)
Tennis -6.3 (2.1) -8 (4.0) -3.8 (1.0)

Table 4. Scores (and standard deviation) obtained on Stochastic
Atari Environments with sticky actions (actions repeated with 50%
probability at each step). Scores are average performance over 100
episodes after 10M training frames, over 5 different random seeds
with included standard deviations.

We emphasize that this is an out-of-domain evaluation –
we use the prior trained on PhysVideos to initialize the
dynamics predictor for Atari, which contains a significantly
different pixel space. Further, not all Atari games are reliant
on understanding physics and we do not expect our approach
to provide significant gains on those environments.

Results: From Table 4, we observe that IPA outperforms
PPO in 8 out of the 10 different tasks§ – these are all games
that contain physical interactions between objects and bene-
fit from our prior. In several games like Enduro, Breakout,
Frostbite, FishingDerby and Assault, IPA provides bene-
fits later on in training after the agent has figured out a
good initial policy. In others like Asteroids and DemonAt-
tack, IPA shows immediate boosts in training performance,
resulting in faster policy learning. On Pong, where IPA per-
formed worse than PPO, we found that the agents learned
to place paddles at one particular location where without
paddle movement, the ball would bounce and score points.
Similarly, on Ice Hockey, where PPO outperformed IPA,
we found that agents can learn a repetitive strategy to pro-
long the game indefinitely, removing the need for tracking
dynamics information. Under such situations, there is no
added advantages to predicting dynamics, explaining the
reduced scores of IPA. We provide additional qualitative
results, including frame predictions, in the supplementary
material.

4.4 Transfer and Generalization

We now present some empirical results under the transfer
scenario and provide some analysis of our model. Table 5
also shows the impact of initializing IPA with different pre-
trained dynamics models on the PhysShooter environment.
We find that initializing SpatialNet with random parame-
ters does not perform very well, but using a SpatialNet
pretrained on PhysVideos provides better performance (see

§Results on all Atari games are in supplementary material.

Source env Agent Model Policy Reward
transfer transfer

None PPO - - 23.2
None IPA - - 35.42
PhysVideos IPA + SpatialNet Y - 42.27

PhysGoal

PPO - Y 25.42
IPA + SpatialNet (Fix) Y N 26.30
IPA + SpatialNet (FT) Y N 42.83
IPA + SpatialNet (FT) Y Y 42.44

PhysForage

PPO - Y 24.47
IPA + SpatialNet (Fix) Y N 30.30
IPA + SpatialNet (FT) Y N 53.66
IPA + SpatialNet (FT) Y Y 40.40

Table 5. Effects of model initialization and transfer on training
policies in PhysShooter. Topmost section shows baseline PPO,
random initialization of dynamics for IPA, and pre-trained IPA
using PhysVideos. The bottom two sections demonstrate results
while transferring different models from two other games – direct
policy (PPO), transfer dynamics model and fix it (Fix), transfer
dynamics and finetune (FT), and transfer both dynamics+policy
and finetune. IPA allows decoupling of policy transfer from model
transfer, allowing better transfer in cases of environment similarity
but task dissimilarity. Scores obtained on the PhysWorld envi-
ronments after training for 10M frames and evaluated by taking
average rewards of the last 100 training episodes.

Figure 4 for MSE errors). Moreover, we observe that trans-
ferring a SpatialNet model fine-tuned on a different task like
PhysForage/PhysGoal results in even greater performance
improvements. Interestingly, we note that transferring just
the dynamics model in IPA results in a larger performance
gains than transferring both model and policy. For instance,
transferring the model from PhysForage results in a score
of 53.7 while transferring both model+policy gets a lower
score of 40.4. The former is a 27% increase compared to
using just PhysVideos (42.27) , while the latter results in
a lower score. This provides further evidence that decou-
pling model learning from policy learning allows for better
generalization.

5 Conclusion
We have proposed a new approach to model-based reinforce-
ment learning by learning task-agnostic dynamics priors.
First, we pre-train a frame prediction model (SpatialNet)
on raw videos of a variety of objects in motion. We then
use this network to initialize a dynamics model for an RL
agent, which makes use of predicted frames as additional
context for its policy. Through several experiments on three
different domains, we demonstrate that our approach out-
performs model-free techniques and approaches that learn
environment dynamics from scratch. We also demonstrate
the generalizability of our dynamics predictor through trans-
fer learning experiments.
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