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A. Variational Lower Bound
We derive a variational lower bound to the marginal log-
likelihood of our model using Jensen’s inequality

log p(yyy|θθθ) = log

∫
dxxxdfffduuu p(yyy|xxx)p(xxx|fff)p(fff |uuu,θθθ)p(uuu|θθθ)

≥
∫
dxxxdfffduuuq(xxx,fff,uuu) log

p(yyy|xxx)p(xxx|fff)p(fff |uuu,θθθ)p(uuu|θθθ)
q(xxx,fff,uuu)

def
= F∗

where p(fff |uuu,θθθ)p(uuu|θθθ) =
∏
k p(fk|uuuk, θθθ)p(uuuk|θθθ). Choos-

ing a factorised variational distribution of the form

q(xxx,fff,uuu) = qx(xxx)
∏
k

p(fk|uuuk, θθθ)qu(uuuk)

we can rewrite the bound as

F∗ =

∫
dxxxdfffduuuq(xxx,fff,uuu) log

p(yyy|xxx)p(xxx|fff)
∏
k p(uuuk|θθθ)

qx(xxx)
∏
k qu(uuuk)

= 〈log p(yyy|xxx)〉qx − 〈KL[qx(xxx)‖p(xxx|fff)]〉qf
−
∑
k

KL[qu(uuuk)‖p(uuuk)]

where

qf (fff) =
∏
k

∫
duuukp(fk|uuuk, θθθ)qu(uuuk)

and qx(xxx) is described by (3) and (4). We can derive the
Kullback-Leibler divergence between the distributions over
SDE paths qx(xxx) and p(xxx|fff) by discretising time in steps
of ∆t. The discretised paths have Markovian structure with

p(xxxt+1|xxxt, fff) = N (xxxt+1|xxxt + fff(xxxt)∆t,ΣΣΣ∆t)

qx(xxxt+1|xxxt) = N (xxxt+1|xxxt + fffq(xxxt)∆t,ΣΣΣ∆t)

We can hence write

KL[qx(xxx)‖p(xxx)]

=

T−1∑
t=1

∫
dxxxtq(xxxt)

∫
dxxxt+1q(xxxt+1|xxxt) log

q(xxxt+1|xxxt)
p(xxxt+1|xxxt)

=
1

2

T−1∑
t=1

∆t
〈
(fff − fffq)TΣΣΣ−1(fff − fffq)

〉
qX

Taking the limit as ∆t→ 0, we obtain

KL[qx(xxx)‖p(xxx)] =
1

2

∫
T
dt
〈
(fff − fffq)TΣΣΣ−1(fff − fffq)

〉
qx

B. Inference Details
B.1. Lagrangian

The full Lagrangian, after applying integration by parts to
the constraints in (8), has the form

L = F∗ − C1 − C2

C1 =

∫
T
dt

(
Tr

[
ΨΨΨ(AAASSSx +SSSxAAA

T − I)− dΨΨΨ

dt
SSSx

])
+ Tr [ΨΨΨ(T )SSSx(T )]− Tr [ΨΨΨ(0)SSSx(0)]

C2 =

∫
T
dt

(
λλλT(Ammmx − bbb)−

dλλλ

dt

T

mmmx

)
+ λλλ(T )Tmmmx(T )− λλλ(0)Tmmmx(0)

For the variational free energy termF∗, we have from before

F =
∑
i

〈log p(yyyi|xxxi)〉qx − KL[qx(xxx)‖p(xxx)]

and

F∗ = 〈F〉qf −
K∑
k=1

KL[qu(uuuk)‖p(uuuk|θθθ)]

The Kullback-Leibler divergences can be evaluated as

KL[q(uuuk)‖p(uuuk|θθθ)] =
1

2

(
Tr
[
ΩΩΩu
−1SSSku

]
−M + log

|ΩΩΩu|
|SSSku|

+ (µµµku −mmmk
u)TΩΩΩu

−1(µµµku −mmmk
u)
)

with

ΩΩΩu = KKKzz − K̃KKzsK̃KK
−1

ss K̃KKsz

µµµku = K̃KKzsK̃KK
−1

ss vvv
θ
k

and

〈KL[qx(xxx)‖p(xxx)]〉qf =
1

2

∫ T

0

dt 〈(fff − fffq)T(fff − fffq)〉qxqf
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For later convenience, we denote this term as

〈KL[qx(xxx)‖p(xxx)]〉qf = E(mmmx,SSSx)

Using the identity

〈〈fff〉qf (xxx−mmmx)
T〉qx =

〈
∂〈fff〉qf
∂xxx

〉
qx

SSSx

the integrand can be evaluated as

〈(fff − fffq)T(fff − fffq)〉qxqf

= 〈fffTfff〉qxqf + 2Tr

[
AAAT

〈
∂fff

∂xxx

〉
qxqf

SSS(t)

]
+ Tr

[
AAATAAA

(
SSSx +mmmxmmm

T
x

)]
+ 2 mmmT

xAAA
T〈fff〉qxqf

+ bbbTbbb− 2bbbT〈fff〉 − 2bbbTAAAmmmx

For the expected log-likelihood terms, in general, there will
be terms that are continuous in xxx, and terms that depend
only on evaluations of xxx at specific locations ti, which we
will denote by `cont and `jump, respectively. We can write

〈log p(yyy|xxx)〉qx = `cont(mmmx,SSSx) + `jump(mmmx,SSSx)

Thus, the variational free energy can be expressed as

F∗ = `cont(mmmx,SSSx) + `jump(mmmx,SSSx)− E(mmmx,SSSx)

−
K∑
k=1

KL[qu(uuuk)‖p(uuuk|θθθ)]

B.1.1. EXAMPLE: GAUSSIAN LIKELIHOOD

In the case of a Gaussian likelihood, there is no continuous
term in the likelihood:

`cont = 0

`jump =
∑
i

∫ Tend

T0
dtδ(t− ti)

(
mmmx(t)TCCCTΓ−1(yyyt − ddd)

− 1

2
Tr

[
CCCTΓ−1CCC

∑
i

(
SSSx(t) +mmmx(t)mmmx(t)T

)] )
B.1.2. EXAMPLE: MULTIVARIATE POISSON PROCESS

LIKELIHOOD

In the case of a multivariate Poisson Process, with g(·) =

exp(·) and observed event times t(n)
1 , . . . t

(n)
φ(n)for the nth

output dimension:

`cont = −
∑
n

∫ Tend

T0
exp

(
cccTnmmmx +

1

2
cccTnSSSxcccn

)
dt

`jump =

N∑
n=1

φ(n)∑
i=1

∫ Tend

T0

(
cccTnmmmx(t) + dn

)
δ(t− t(n)

i )dt

B.2. Symmetric variations in SSSx

To arrive at the fixed point equations given in the main paper,
we need to take variational derivatives of the Lagrangian
with respect tommmx and SSSx. In contrast to Archambeau et al.
(2007), we take the symmetric variations in SSSx into account.
Also note that the Lagrange multiplier ΨΨΨ is symmetric. We
can write

∂C1
∂SSSx

=

(
ΨΨΨAAA+AAATΨΨΨ− dΨΨΨ

dt

)
� P̃

where � denotes the elementwise Hadamard product and
P̃ij = 2 for i 6= j and 1 otherwise. Differentiating the entire
Lagrangian with respect to the symmetric matrix SSSx and
setting to zero we get

0 =
∂F∗

∂SSSx
� P−ΨΨΨAAA−AAATΨΨΨ +

dΨΨΨ

dt

matching the equation given in the main text with Pij = 1
2

if i 6= j and 1 otherwise. Note that the derivatives of the free
energy with respect toSSSx will also need to take into account
the symmetry of the covariance matrix. The derivations for
(20)-(22) follow those of Archambeau et al. (2007).

B.3. Expected values of dynamics

The inference algorithm requires evaluating several expec-
tations with respect to qx and qf . Let UUU =

[
uuu1 . . . uuuK

]
and 〈UUU〉qu = MMMu, such that we can define (M+L+LK)×
K matrices stacking all inducing variables, zero function
values, and Jacobians as

UUUu,fs,J =


UUUu
000

JJJ
(1)
s

...
JJJ

(L)
s

 , 〈UUUu,fs,J〉qu = MMMu,fs,J =


MMMu

000

JJJ
(1)
s

...
JJJ

(L)
s


The required expectations can then be evaluated as

〈fff(xxx)〉Tqxqf =
〈
aaaθz(xxx)

〉
qx
MMMu,fs,J

〈
∂fff(xxx)

∂xxx

〉T

qxqf

=
〈
∇xaaaθz(xxx)

〉
qx
MMMu,fs,J

〈
fff(xxx)Tfff(xxx)

〉
qxqf

=
∑
k

〈
f2
k (xxx)

〉
qxqf

= κ(xxx,xxx′)

+ Tr
[(〈

UUUu,fs,JUUU
T
u,fs,J

〉
qu
− Kθzz

)
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
The above expressions still involve computing expectations
of covariance functions and their derivatives, which can be
computed analytically for choices such as the exponentiated
quadratic covariance function.
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B.4. Inference algorithm

The full inference algorithm involves solving a set of ODEs
forward and backward in time, which we do using the for-
ward Euler method. We provide the full approach in Algo-
rithm 1, where the subscript r denotes the evaluation of the
functions at the rth point of the time grid between T0 and
Tend taking steps of size ∆t. Note that the derivatives of
the terms in `jump will need to be discretized appropriately
as well. Using the same time-grid as was used for solving
the ODEs, the delta-functions will contribute a factor of
1

∆t , such that the ∆t terms cancel in the update written in
Algorithm 1.

C. Learning Details
C.1. Conditioned Sparse Gaussian Process dynamics

The only term in the variational free energy that depends
on the parameters in fff are the KL-divergence between the
continuous-time processes and the KL-divergence relating
to the inducing points for fff .

C.1.1. INDUCING POINT COVARIANCES

Collecting the terms that contain SSSku we have

∂

∂SSSku
KL[q(uuuk)‖p(uuuk|θθθ)] =

1

2
ΩΩΩu
−1 − 1

2
SSSku
−1

∂E
∂SSSku

=
1

2

∫
T
dt

∂

∂SSSku
Tr

[[
SSSku 0
0 0

]
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
=

1

2

∫
T
dt[〈aaaθz(xxx)Taaaθz(xxx)〉qx ]:M,:M

where the last line selects the first M × M block from
〈aaaθz(xxx)Taaaθz(xxx)〉qx . We hence obtain the closed form update

SSSku =

(
ΩΩΩu
−1 +

∫
T
dt[〈aaaθz(xxx)Taaaθz(xxx)〉qx ]:M,:M

)−1

C.1.2. INDUCING POINTS AND JACOBIANS

To find the update efficiently, let JJJk = [JJJ
(1)
k,: , . . . ,JJJ

(L)
k,: ]T so

that we can write

µµµku = K̃KKzsK̃KK
−1

ss vvv
θ
k = K̃KKzsK̃KK

−1

ss

[
000
JJJk

]
= GGGJJJk

We can rewrite the quadratic terms in the Kullback-Leibler
divergences of the inducing points as∑

k

(µµµku −mmmk
u)TΩΩΩu

−1(µµµku −mmmk
u)

=
∑
k

[
mmmk
u

JJJk

]T [
ΩΩΩu
−1 −ΩΩΩu

−1GGG

−GGGTΩΩΩu
−1 GGGTΩΩΩu

−1GGG

] [
mmmk
u

JJJk

]
= Tr

[
MMMT

u,JΩ̃ΩΩMMMu,J

]

withMMMu,J =

[
mmm1
u . . . mmmK

u

JJJ1 . . . JJJK

]
and derivative

∂

∂MMMu,J

∑
k

KL[q(uuuk)‖p(uuuk|θθθ)] = Ω̃ΩΩMMMu,J

∂E
∂MMMu,J

=

∫
T
dt
[
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
[i,i]

MMMu,J

+

∫
T
dt
[〈
∇xaaaθz(xxx)

〉
qx

]T
[:,i]

SSSxAAA
T

−
∫
T
dt
[〈
aaaθz(xxx)

〉
qx

]T
[:,i]

(−AAAmmmx + bbb)T

Putting all terms together, we obtain the update

MMMu,J = BBB−1
1 (BBB2 −BBB3)

with

BBB1 =

(
Ω̃ΩΩ +

∫
T
dt
[
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
[uj,uj]

)
BBB2 =

∫
T
dt
[〈
aaaθz(xxx)

〉
qx

]T
[:,uj]
〈fffq〉Tqx

BBB3 =

∫
T
dt
[〈
∇xaaaθz(xxx)

〉
qx

]T
[:,uj]

SSSxAAA
T

and we have defined an indexing operation where [X][uj,uj]
selects the first M ×M and last LK × LK block of X
and [X][:,uj] selects the first M and last LK columns of X .
Hence, this selects the appropriate block matrices for the
updates. The one-dimensional integrals can be computed
efficiently using Gauss-Legendre quadrature.

C.2. Sparse Gaussian Process dynamics

Similarly, closed form updates are available in the sim-
pler case, when fff is modelled by a classic sparse Gaussian
Process, i.e. using inducing points without the additional
conditioning on fixed points and Jacobians.

SSSku = KKKzz

(
KKKzz +

∫
T
dt 〈κκκ(ZZZ,xxx)κκκ(xxx,ZZZ)〉qx

)−1

KKKzz

MMMu = SSSkuKKK
−1
zz

(∫
T
dtΦΦΦ1fff

T
q −

∫
T
dtΦΦΦd1SSSxAAA

T

)
Where ΦΦΦ1 = 〈k(xxx,ZZZ)〉qx and ΦΦΦd1 =

〈
∂
∂xxxk(xxx,ZZZ)

〉
qx

.

C.3. Linear dynamics

Our modelling framework also easily extends to other pa-
rameterisation of fff . For example, in a continuous-time lin-
ear dynamical system with fff(xxx) = −ÃAAxxx+ b̃bb direct minimi-
sation of the KL-divergence between the continuous-time
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Algorithm 1 Inference algorithm
Input: data {yi, ti}Ti=1,mmmx,0, SSSx,0, qf (fff), ∆t, T0, Tend
InitializeAAA(t), bbb(t)
R = T0−Tend

∆t
repeat

for r = 0 to R− 1 do
mmmx,r+1 ←mmmx,r −∆t (AAArmmmx,r − bbbr)
SSSx,r+1 ← SSSx,r −∆t

(
AAArSSSx,r +SSSx,rAAAr

T − I
)

end for
for r = R to 1 do
λλλr−1 ← λλλr −∆t

(
AAAr

Tλλλr +
(
∂`cont

∂mmmx
− ∂E

∂mmmx

)
|t=r∆t

)
−∆t∂`

jump

∂mmmx

∣∣∣
t=(r−1)∆t

ΨΨΨr−1 ←ΨΨΨr −∆t
(
AAAr

TΨΨΨr + ΨΨΨrAAAr + P�
(
∂`cont

∂SSSx
− ∂E

∂SSSx

)
|t=r∆t

)
−∆tP� ∂`jump

∂SSSx

∣∣∣
t=(r−1)∆t

end for
AAA =

〈
∂fff
∂xxx

〉
qxqf

+ 2ΨΨΨ

bbb = 〈fff(xxx)〉qxqf +AAAmmmx − λλλ
until convergence in F∗
return: {AAAr, bbbr,λλλr,ΨΨΨr,mmmx,r,SSSx,r}Rr=1

processes leads to the closed form updates

ÃAA =

(∫
T
dt
(
bbb〈xxx〉T − 〈fffq(xxx)xxxT〉

))(∫
T
dt〈xxxxxxT〉

)−1

b̃bb =
1

T

∫
T
dt (〈fffq(xxx)〉+AAA〈xxx〉)

reminiscent of the update equations for the generative pa-
rameters of a discrete-time Linear Dynamical System.

C.4. Output mapping

We consider an observation model of the form

yyy(ti) = CCCxxx(ti) + ddd+ εεεi

where εεεi ∼ N (ε|0,Γ). Dropping all terms that are constant
inCCC,ddd from the expression for the variational free energy,
we have

F∗ = −1

2

∑
t

〈
(yyyt −CCCxxxt − ddd)

T
Γ−1 (yyyt −CCCxxxt − ddd)

〉
qx

Differentiating and setting to zero gives

CCCnew =

(∑
t

(yyyt − ddd)mmmT
t

)(∑
t

(SSSx,t +mmmx,tmmm
T
x,t)

)−1

dddnew =
1

T

∑
t

(yyyt −CCCnewmmmx,t)

D. Chemical reaction dynamics
The dynamical system used to generate the data in section
5.4 is of the form

dbI−cA
dt

=
(
kabI−cA + kbbI−c2A

) (
S0 − bI−cA

)
+
F1bI−c0
VA

− (F3 + F4)bI−cA
VA

+
F4bI−cD
VA

dbI−cD
dt

=
(
kabI−cD + kbbI−c2D

) (
S0 − bI−cD

)
+
F4bI−cA
VD

− F4bI−cD
VD

To generate the simulations, we use the parameter settings

bI−c0 = 4.4× 10−5 k0 = 2.7× 10−3

VA = 4× 101 F4 = 3.25× 10−3

VD = 1 F3 = k0Va

ka = 2.1425× 10−1 F1 =
1

2
F3

kb = 2.1425× 104 F2 =
1

2
F3

S0 =
1

2

(
bI−c0 + 1.42× 10−3

)
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