
Autoregressive Energy Machines

Charlie Nash * 1 Conor Durkan * 1

Abstract
Neural density estimators are flexible families of
parametric models which have seen widespread
use in unsupervised machine learning in recent
years. Maximum-likelihood training typically dic-
tates that these models be constrained to specify
an explicit density. However, this limitation can
be overcome by instead using a neural network
to specify an energy function, or unnormalized
density, which can subsequently be normalized
to obtain a valid distribution. The challenge with
this approach lies in accurately estimating the
normalizing constant of the high-dimensional en-
ergy function. We propose the Autoregressive
Energy Machine, an energy-based model which
simultaneously learns an unnormalized density
and computes an importance-sampling estimate
of the normalizing constant for each conditional
in an autoregressive decomposition. The Autore-
gressive Energy Machine achieves state-of-the-
art performance on a suite of density-estimation
tasks.

1. Introduction
Modeling the joint distribution of high-dimensional random
variables is a key task in unsupervised machine learning.
In contrast to other unsupervised approaches such as vari-
ational autoencoders (Kingma & Welling, 2013; Rezende
et al., 2014) or generative adversarial networks (Goodfel-
low et al., 2014), neural density estimators allow for exact
density evaluation, and have enjoyed success in modeling
natural images (van den Oord et al., 2016b; Dinh et al.,
2017; Salimans et al., 2017; Kingma & Dhariwal, 2018),
audio data (van den Oord et al., 2016a; Prenger et al., 2018;
Kim et al., 2018), and also in variational inference (Rezende
& Mohamed, 2015; Kingma et al., 2016). Neural density
estimators are particularly useful where the focus is on ac-

*Equal contribution 1School of Informatics, University of Edin-
burgh, United Kingdom. Correspondence to: Charlie Nash <char-
lie.nash@ed.ac.uk>, Conor Durkan <conor.durkan@ed.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

curate density estimation rather than sampling, and these
models have seen use as surrogate likelihoods (Papamakar-
ios et al., 2019) and approximate posterior distributions
(Papamakarios & Murray, 2016; Lueckmann et al., 2017)
for likelihood-free inference.

(a) Data

(b) ResMADE (c) AEM

Figure 1: Accurately modeling a distribution with sharp
transitions and high-frequency components, such as the
distribution of light in a image (a), is a challenging task. We
find that an autoregressive energy-based model (c) is able
to preserve fine detail lost by an alternative model (b) with
explicit conditionals.

Neural networks are flexible function approximators, and
promising candidates to learn a probability density func-
tion. Typically, neural density models are normalized a
priori, but this can hinder flexibility and expressiveness. For
instance, many flow-based density estimators (Dinh et al.,
2017; Papamakarios et al., 2017; Huang et al., 2018) rely
on invertible transformations with tractable Jacobian which
map data to a simple base density, so that the log probability
of an input point can be evaluated using a change of vari-
ables. Autoregressive density estimators (Uria et al., 2013;
Germain et al., 2015) often rely on mixtures of parametric
distributions to model each conditional. Such families can
make it difficult to model the low-density regions or sharp
transitions characterized by multi-modal or discontinuous
densities, respectively.

The contributions of this work are shaped by two main

Autoregressive Energy Machines

Figure 2: Importance sampling estimates of log normalizing
constants deteriorate with increasing dimension. The target
and proposal distributions are spherical Gaussians with � =
1 and � = 1:25, respectively. The true log normalizing
constant is logZ = 0. We plot the distribution of estimates
over 50 trials, with each trial using 20 importance samples.

observations.

� An energy function, or unnormalized density, fully
characterizes a probability distribution, and neural net-
works may be better suited to learning such an energy
function rather than an explicit density.

� Decomposing the density estimation task in an autore-
gressive manner makes it possible to train such an
energy-based model by maximum likelihood, since it
is easier to obtain reliable estimates of normalizing
constants in low dimensions.

Based on these observations, we present a scalable and
efficient learning algorithm for an autoregressive energy-
based model, which we term the Autoregressive Energy
Machine (AEM). Figure 3 provides a condensed overview
of how an AEM approximates the density of an input point.

2. Background
2.1. Autoregressive neural density estimation

A probability density function assigns a non-negative scalar
value p(x) to each vector-valued input x, with the prop-
erty that

R
p(x) dx = 1 over its support. Given a dataset

D =
�

x(n)
	
N
n=1 of N i.i.d. samples drawn from some

unknown D-dimensional distribution p?(x), the density
estimation task is to determine a model p(x) such that
p(x) � p?(x). Neural density estimators are parametric
models that make use of neural network components to
increase their capacity to fit complex distributions, and au-
toregressive neural models are among the best performing

of these.

The product rule of probability allows us to decompose
any joint distribution p(x) into a product of conditional
distributions:

p(x) =

DY
d=1

p(xdjx<d): (1)

Autoregressive density estimators model each conditional
using parameters which are computed as a function of the
preceding variables in a given ordering. In this paper, we
use the term ARNN to describe any autoregressive neural
network which computes an autoregressive function of a D-
dimensional input x, where the dth output is denoted f(x<d).
The vector f(x<d) is often interpreted as the parameters of a
tractable parametric density for the dth conditional, such as
a mixture of location-scale distributions or the probabilities
of a categorical distribution, but it is not restricted to this
typical use-case.

Certain architectures, such as those found in recurrent mod-
els, perform the autoregressive computation sequentially,
but more recent architectures exploit masking or causal
convolution in order to output each conditional in a single
pass of the network. Both types of architecture have found
domain-specific (Sundermeyer et al., 2012; Theis & Bethge,
2015; Parmar et al., 2018), as well as general-purpose (Uria
et al., 2013; Germain et al., 2015) use. In particular we
highlight MADE (Germain et al., 2015), an architecture that
masks weight matrices in fully connected layers to achieve
causal structure. It is a building block in many models
with autoregressive components (Kingma et al., 2016; Papa-
makarios et al., 2017; Huang et al., 2018), and we make use
of a similar architecture in this work.

2.2. Energy-based models

In addition to an autoregressive decomposition, we may also
write any density p(x) as

p(x) =
e�E(x)

Z
; (2)

where e�E(x) is the unnormalized density, E(x) is known
as the energy function, and Z =

R
e�E(x) dx is the nor-

malizing constant. Assuming Z is finite, specifying an
energy function is equivalent to specifying a probability
distribution, since the normalizing constant is also defined
in terms of E(x). Models described in this way are known
as energy-based models. Classic examples include Boltz-
mann machines (Hinton, 2002; Salakhutdinov & Hinton,
2009; Hinton, 2012), products of experts (Hinton, 2002) and
Markov random fields (Osindero & Hinton, 2007; Köster
et al., 2009).

In order to do maximum-likelihood estimation of the pa-
rameters of an energy-based model, we must be able to

Autoregressive Energy Machines

x1

x2

x3

ARNN

(� 1;
 1)

(� 2;
 2)

(� 3;
 3)

(a) Autoregressive network

xd
 d

ENN

�E (xd;
 d)

(b) Energy network

n
x (s)

d

o
S
s=1 � q(xd; � d)

Ẑd =
1
S

SX

s=1

e�E (x (s)
d ;
 d)

q(x (s)
d ; � d)

logp(x) �
DX

d=1

�E (xd;
 d) � log Ẑd

(c) Density estimation

Figure 3: Overview of an AEM. (a) An autoregressive neural network computes an autoregressive function of an inputx,
such that thedth output depends only onx<d . Thedth output is a pair of vectors(� d;
 d) which correspond to the proposal
parameters and context vector, respectively, for thedth conditional distribution. (b) The context vector
 d and inputxd are
passed through the energy network to compute an unnormalized log probability for thedth conditional. (c) The parameters
� d de�ne a tractable proposal distribution, such as a mixture of location-scale family distributions, which can be used to
compute an estimate of the normalizing constantẐd for thedth conditional by importance sampling.

evaluate or estimate the normalizing constantZ . This is
problematic, as it requires the estimation of a potentially
high-dimensional integral. As such, a number of methods
have been proposed to train energy-based models, which ei-
ther use cheap approximations of the normalizing constant,
or side-step the issue entirely. These include contrastive di-
vergence (Hinton, 2002), noise-contrastive estimation (Gut-
mann & Hyv̈arinen, 2010; Ceylan & Gutmann, 2018), and
score matching (Hyv̈arinen, 2005). In our case, phrasing
the density estimation problem in an autoregressive manner
allows us to make productive use of importance sampling, a
stochastic approximation method for integrals.

Importance sampling. Given a proposal distributionq(x)
which is non-zero whenever the targetp(x) / e�E (x) is
non-zero, we can approximate the normalizing constantZ
by

Z =
Z

e�E (x) dx =
Z

e�E (x)

q(x)
q(x) dx (3)

�
1
S

SX

s=1

e�E (x (s))

q(x (s))
; x (s) � q(x); (4)

and this expression is an unbiased estimate of the normal-
izing constant forp(x). The quotients in the summand
are known as the importance weights. Whenq(x) does
not closely matchp(x), the importance weights will have
high variance, and the importance sampling estimate will be
dominated by those terms with largest weight. Additionally,
whenq(x) does not adequately cover regions of high density
underp(x), importance sampling underestimates the nor-
malizing constant (Salakhutdinov & Murray, 2008). Finding
a suitable distributionq(x) which closely matchesp(x) is
problematic, since estimating the potentially complex dis-
tributionp(x) is the original problem under consideration.
This issue is exacerbated in higher dimensions, and impor-
tance sampling estimates may be unreliable in such cases.

Figure 2 demonstrates how the accuracy of an importance
sampling estimate of the normalizing constant for a standard
normal distribution deteriorates as dimensionality increases.

3. Autoregressive Energy Machines

The ability to specify a probability distribution using an
energy function is enticing, since now a neural network can
take on the more general role of an energy function in a
neural density estimator. Further decomposing the task in
an autoregressive manner means that importance sampling
offers a viable method for maximum likelihood training,
generally yielding reliable normalizing constant estimates
in the one-dimensional case when the proposal distribution
is reasonably well matched to the target (�g. 2). As such,
the main contribution of this paper is to combine eq.(1)
and eq.(2) in the context of a neural density estimator. We
model a density functionp(x) as a product ofD energy
terms

p(x) =
DY

d=1

p(xd jx<d) =
DY

d=1

e�E (x d ;x <d)

Zd
; (5)

whereZd =
R

e�E (x d ;x <d) dxd is the normalizing constant
for thedth conditional. If we also specify an autoregressive
proposal distributionq(x) =

Q
d q(xd jx<d), we can esti-

mate the normalizing constant for each of theD terms in
the product by importance sampling:

Zd =
Z

e�E (x d ;x <d) dxd (6)

�
1
S

SX

s=1

e�E
�

x (s)
d ;x <d

�

q(x (s)
d ; x<d)

; x (s)
d � q(xd; x<d): (7)

This setup allows us to make use of arbitrarily complex en-
ergy functions, while relying on importance sampling to esti-

Autoregressive Energy Machines

mate normalizing constants in one dimension; a much more
tractable problem than estimation of the fullD -dimensional
integral.

3.1. A neural energy function

We implement the energy function as a neural network ENN
that takes as input a scalarxd as well as a context vector
 d

that summarizes the dependence ofxd on the preceding vari-
ablesx<d . The ENN directly outputs the negative energy,
so that�E (xd; x<d) = �E (xd;
 d) = ENN(xd;
 d). In
our experiments, the ENN is a fully-connected network with
residual connections (He et al., 2016a). To incorporate the
context vector
 d, we found concatenation to the inputxd

to work well in practice. We share ENN parameters across
dimensions, which reduces the total number of parameters,
and allows us to learn features of densities which are com-
mon across dimensions. We also constrain the output of the
ENN to be non-positive using a softplus non-linearity, so
that the unnormalized density is bounded by one, since this
improved training stability.

3.2. Learning in an AEM

We denote by� d the vector of parameters for thedth pro-
posal conditional, which, like the context vector
 d, is com-
puted as a function ofx<d . In our case, this quantity con-
sists of the mixture coef�cients, locations, and scales of a
tractable parametric distribution, and we �nd that a mix-
ture of Gaussians works well across a range of tasks. The
normalizing constant for thedth conditional can thus be
approximated by

Ẑd =
1
S

SX

s=1

e�E
�

x (s)
d ;
 d

�

q(x (s)
d ; � d)

; x (s)
d � q(xd; � d); (8)

leading to an expression for the approximate log density of
an input data pointx

logp(x) �
DX

d=1

�E (xd;
 d) � log Ẑd: (9)

Estimation of log densities therefore requires the energy
network to be evaluatedS + 1 times for each conditional;
S times for the importance samples, and once for the data
point xd. In practice, we perform these evaluations in par-
allel, by passing large batches consisting of input data and
importance samples for all conditionals to the energy net
along with the relevant context vectors, and foundS = 20 to
be suf�cient. Although the importance sampling estimates
of the normalizing constants are unbiased, by taking the
logarithm ofẐd in eq.(9) we bias our estimates oflogp(x).
However, as we will show in Section 4.2, our estimates are
well-calibrated, and can be made more accurate by increas-
ing the number of importance samples. For the purposes of
training, we did not �nd this bias to be an issue.

As illustrated in �g. 3a, we obtain both context vectors and
proposal parameters in parallel using an autoregressive net-
work ARNN. The ARNN outputs proposal parameters� d

and context vectors
 d for each of theD dimensions in a
single forward pass. These quantities are used both to esti-
matelogp(x) as in eq.(9), as well as to evaluatelogq(x),
and we form a maximum-likelihood training objective

L (� ; x) = log p(x) + log q(x); (10)

where� refers collectively to the trainable parameters in
both the ARNN and the ENN. We �t the AEM by maximiz-
ing eq.(10) across a training set using stochastic gradient
ascent, and �nd that a warm-up period where the proposal
is initially optimized without the energy model can improve
stability, allowing the proposal to cover the data suf�ciently
before importance sampling begins.

It is important to note that we do not optimize the pro-
posal distribution parameters� with respect to the impor-
tance sampling estimate. This means that the proposal is
trained independently of the energy-model, and estimates
of logp(x) treat the proposal samples and proposal density
evaluations as constant values for the purposes of optimiza-
tion. In practice, this is implemented by stopping gradients
on variables connected to the proposal distribution in the
computational graph. We �nd maximum-likelihood training
of q to be effective as a means to obtain a useful proposal
distribution, but other objectives, such as minimization of
the variance of the importance sampling estimate (Kuleshov
& Ermon, 2017; M̈uller et al., 2018), might also be con-
sidered, although we do not investigate this avenue in our
work.

3.3. Sampling

Although it is not possible to sample analytically from our
model, we can obtain approximate samples by �rst drawing
samples from the proposal distribution and then resampling
from this collection using importance weights computed
by the energy model (eq.(4)). This method is known as
sampling importance resampling (Rubin, 1988), and is con-
sistent in the limit of in�nite proposal samples, but we found
results to be satisfactory using just 100 proposal samples.

3.4. ResMADE

For general purpose density estimation of tabular data, we
present a modi�ed version of the MADE architecture (Ger-
main et al., 2015) that incorporates residual connections (He
et al., 2016a). In the standard MADE architecture, causal
structure is maintained by masking certain weights in the
network layers. We observe that in consecutive hidden lay-
ers with the same number of units and shared masks, the
connectivity of the hidden units with respect to the inputs
is preserved. As such, incorporating skip connections will

