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Abstract
Neural density estimators are flexible families of
parametric models which have seen widespread
use in unsupervised machine learning in recent
years. Maximum-likelihood training typically dic-
tates that these models be constrained to specify
an explicit density. However, this limitation can
be overcome by instead using a neural network
to specify an energy function, or unnormalized
density, which can subsequently be normalized
to obtain a valid distribution. The challenge with
this approach lies in accurately estimating the
normalizing constant of the high-dimensional en-
ergy function. We propose the Autoregressive
Energy Machine, an energy-based model which
simultaneously learns an unnormalized density
and computes an importance-sampling estimate
of the normalizing constant for each conditional
in an autoregressive decomposition. The Autore-
gressive Energy Machine achieves state-of-the-
art performance on a suite of density-estimation
tasks.

1. Introduction
Modeling the joint distribution of high-dimensional random
variables is a key task in unsupervised machine learning.
In contrast to other unsupervised approaches such as vari-
ational autoencoders (Kingma & Welling, 2013; Rezende
et al., 2014) or generative adversarial networks (Goodfel-
low et al., 2014), neural density estimators allow for exact
density evaluation, and have enjoyed success in modeling
natural images (van den Oord et al., 2016b; Dinh et al.,
2017; Salimans et al., 2017; Kingma & Dhariwal, 2018),
audio data (van den Oord et al., 2016a; Prenger et al., 2018;
Kim et al., 2018), and also in variational inference (Rezende
& Mohamed, 2015; Kingma et al., 2016). Neural density
estimators are particularly useful where the focus is on ac-
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curate density estimation rather than sampling, and these
models have seen use as surrogate likelihoods (Papamakar-
ios et al., 2019) and approximate posterior distributions
(Papamakarios & Murray, 2016; Lueckmann et al., 2017)
for likelihood-free inference.

(a) Data

(b) ResMADE (c) AEM

Figure 1: Accurately modeling a distribution with sharp
transitions and high-frequency components, such as the
distribution of light in a image (a), is a challenging task. We
find that an autoregressive energy-based model (c) is able
to preserve fine detail lost by an alternative model (b) with
explicit conditionals.

Neural networks are flexible function approximators, and
promising candidates to learn a probability density func-
tion. Typically, neural density models are normalized a
priori, but this can hinder flexibility and expressiveness. For
instance, many flow-based density estimators (Dinh et al.,
2017; Papamakarios et al., 2017; Huang et al., 2018) rely
on invertible transformations with tractable Jacobian which
map data to a simple base density, so that the log probability
of an input point can be evaluated using a change of vari-
ables. Autoregressive density estimators (Uria et al., 2013;
Germain et al., 2015) often rely on mixtures of parametric
distributions to model each conditional. Such families can
make it difficult to model the low-density regions or sharp
transitions characterized by multi-modal or discontinuous
densities, respectively.

The contributions of this work are shaped by two main
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Figure 2: Importance sampling estimates of log normalizing
constants deteriorate with increasing dimension. The target
and proposal distributions are spherical Gaussians with σ =
1 and σ = 1.25, respectively. The true log normalizing
constant is logZ = 0. We plot the distribution of estimates
over 50 trials, with each trial using 20 importance samples.

observations.

• An energy function, or unnormalized density, fully
characterizes a probability distribution, and neural net-
works may be better suited to learning such an energy
function rather than an explicit density.

• Decomposing the density estimation task in an autore-
gressive manner makes it possible to train such an
energy-based model by maximum likelihood, since it
is easier to obtain reliable estimates of normalizing
constants in low dimensions.

Based on these observations, we present a scalable and
efficient learning algorithm for an autoregressive energy-
based model, which we term the Autoregressive Energy
Machine (AEM). Figure 3 provides a condensed overview
of how an AEM approximates the density of an input point.

2. Background
2.1. Autoregressive neural density estimation

A probability density function assigns a non-negative scalar
value p(x) to each vector-valued input x, with the prop-
erty that

∫
p(x) dx = 1 over its support. Given a dataset

D =
{
x(n)

}
N
n=1 of N i.i.d. samples drawn from some

unknown D-dimensional distribution p?(x), the density
estimation task is to determine a model p(x) such that
p(x) ≈ p?(x). Neural density estimators are parametric
models that make use of neural network components to
increase their capacity to fit complex distributions, and au-
toregressive neural models are among the best performing

of these.

The product rule of probability allows us to decompose
any joint distribution p(x) into a product of conditional
distributions:

p(x) =

D∏
d=1

p(xd|x<d). (1)

Autoregressive density estimators model each conditional
using parameters which are computed as a function of the
preceding variables in a given ordering. In this paper, we
use the term ARNN to describe any autoregressive neural
network which computes an autoregressive function of a D-
dimensional input x, where the dth output is denoted f(x<d).
The vector f(x<d) is often interpreted as the parameters of a
tractable parametric density for the dth conditional, such as
a mixture of location-scale distributions or the probabilities
of a categorical distribution, but it is not restricted to this
typical use-case.

Certain architectures, such as those found in recurrent mod-
els, perform the autoregressive computation sequentially,
but more recent architectures exploit masking or causal
convolution in order to output each conditional in a single
pass of the network. Both types of architecture have found
domain-specific (Sundermeyer et al., 2012; Theis & Bethge,
2015; Parmar et al., 2018), as well as general-purpose (Uria
et al., 2013; Germain et al., 2015) use. In particular we
highlight MADE (Germain et al., 2015), an architecture that
masks weight matrices in fully connected layers to achieve
causal structure. It is a building block in many models
with autoregressive components (Kingma et al., 2016; Papa-
makarios et al., 2017; Huang et al., 2018), and we make use
of a similar architecture in this work.

2.2. Energy-based models

In addition to an autoregressive decomposition, we may also
write any density p(x) as

p(x) =
e−E(x)

Z
, (2)

where e−E(x) is the unnormalized density, E(x) is known
as the energy function, and Z =

∫
e−E(x) dx is the nor-

malizing constant. Assuming Z is finite, specifying an
energy function is equivalent to specifying a probability
distribution, since the normalizing constant is also defined
in terms of E(x). Models described in this way are known
as energy-based models. Classic examples include Boltz-
mann machines (Hinton, 2002; Salakhutdinov & Hinton,
2009; Hinton, 2012), products of experts (Hinton, 2002) and
Markov random fields (Osindero & Hinton, 2007; Köster
et al., 2009).

In order to do maximum-likelihood estimation of the pa-
rameters of an energy-based model, we must be able to
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Figure 3: Overview of an AEM. (a) An autoregressive neural network computes an autoregressive function of an input x,
such that the dth output depends only on x<d. The dth output is a pair of vectors (φd,γd) which correspond to the proposal
parameters and context vector, respectively, for the dth conditional distribution. (b) The context vector γd and input xd are
passed through the energy network to compute an unnormalized log probability for the dth conditional. (c) The parameters
φd define a tractable proposal distribution, such as a mixture of location-scale family distributions, which can be used to
compute an estimate of the normalizing constant Ẑd for the dth conditional by importance sampling.

evaluate or estimate the normalizing constant Z. This is
problematic, as it requires the estimation of a potentially
high-dimensional integral. As such, a number of methods
have been proposed to train energy-based models, which ei-
ther use cheap approximations of the normalizing constant,
or side-step the issue entirely. These include contrastive di-
vergence (Hinton, 2002), noise-contrastive estimation (Gut-
mann & Hyvärinen, 2010; Ceylan & Gutmann, 2018), and
score matching (Hyvärinen, 2005). In our case, phrasing
the density estimation problem in an autoregressive manner
allows us to make productive use of importance sampling, a
stochastic approximation method for integrals.

Importance sampling. Given a proposal distribution q(x)
which is non-zero whenever the target p(x) ∝ e−E(x) is
non-zero, we can approximate the normalizing constant Z
by

Z =

∫
e−E(x) dx =

∫
e−E(x)

q(x)
q(x) dx (3)

≈ 1

S

S∑
s=1

e−E(x
(s))

q(x(s))
, x(s) ∼ q(x), (4)

and this expression is an unbiased estimate of the normal-
izing constant for p(x). The quotients in the summand
are known as the importance weights. When q(x) does
not closely match p(x), the importance weights will have
high variance, and the importance sampling estimate will be
dominated by those terms with largest weight. Additionally,
when q(x) does not adequately cover regions of high density
under p(x), importance sampling underestimates the nor-
malizing constant (Salakhutdinov & Murray, 2008). Finding
a suitable distribution q(x) which closely matches p(x) is
problematic, since estimating the potentially complex dis-
tribution p(x) is the original problem under consideration.
This issue is exacerbated in higher dimensions, and impor-
tance sampling estimates may be unreliable in such cases.

Figure 2 demonstrates how the accuracy of an importance
sampling estimate of the normalizing constant for a standard
normal distribution deteriorates as dimensionality increases.

3. Autoregressive Energy Machines
The ability to specify a probability distribution using an
energy function is enticing, since now a neural network can
take on the more general role of an energy function in a
neural density estimator. Further decomposing the task in
an autoregressive manner means that importance sampling
offers a viable method for maximum likelihood training,
generally yielding reliable normalizing constant estimates
in the one-dimensional case when the proposal distribution
is reasonably well matched to the target (fig. 2). As such,
the main contribution of this paper is to combine eq. (1)
and eq. (2) in the context of a neural density estimator. We
model a density function p(x) as a product of D energy
terms

p(x) =

D∏
d=1

p(xd|x<d) =
D∏
d=1

e−E(xd;x<d)

Zd
, (5)

where Zd =
∫
e−E(xd;x<d) dxd is the normalizing constant

for the dth conditional. If we also specify an autoregressive
proposal distribution q(x) =

∏
d q(xd|x<d), we can esti-

mate the normalizing constant for each of the D terms in
the product by importance sampling:

Zd =

∫
e−E(xd;x<d) dxd (6)

≈ 1

S

S∑
s=1

e
−E

(
x
(s)
d ;x<d

)
q(x

(s)
d ;x<d)

, x
(s)
d ∼ q(xd;x<d). (7)

This setup allows us to make use of arbitrarily complex en-
ergy functions, while relying on importance sampling to esti-
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mate normalizing constants in one dimension; a much more
tractable problem than estimation of the full D-dimensional
integral.

3.1. A neural energy function

We implement the energy function as a neural network ENN
that takes as input a scalar xd as well as a context vector γd
that summarizes the dependence of xd on the preceding vari-
ables x<d. The ENN directly outputs the negative energy,
so that −E(xd;x<d) = −E(xd;γd) = ENN(xd;γd). In
our experiments, the ENN is a fully-connected network with
residual connections (He et al., 2016a). To incorporate the
context vector γd, we found concatenation to the input xd
to work well in practice. We share ENN parameters across
dimensions, which reduces the total number of parameters,
and allows us to learn features of densities which are com-
mon across dimensions. We also constrain the output of the
ENN to be non-positive using a softplus non-linearity, so
that the unnormalized density is bounded by one, since this
improved training stability.

3.2. Learning in an AEM

We denote by φd the vector of parameters for the dth pro-
posal conditional, which, like the context vector γd, is com-
puted as a function of x<d. In our case, this quantity con-
sists of the mixture coefficients, locations, and scales of a
tractable parametric distribution, and we find that a mix-
ture of Gaussians works well across a range of tasks. The
normalizing constant for the dth conditional can thus be
approximated by

Ẑd =
1

S

S∑
s=1

e
−E

(
x
(s)
d ;γd

)
q(x

(s)
d ;φd)

, x
(s)
d ∼ q(xd;φd), (8)

leading to an expression for the approximate log density of
an input data point x

log p(x) ≈
D∑
d=1

−E(xd;γd)− log Ẑd. (9)

Estimation of log densities therefore requires the energy
network to be evaluated S + 1 times for each conditional;
S times for the importance samples, and once for the data
point xd. In practice, we perform these evaluations in par-
allel, by passing large batches consisting of input data and
importance samples for all conditionals to the energy net
along with the relevant context vectors, and found S = 20 to
be sufficient. Although the importance sampling estimates
of the normalizing constants are unbiased, by taking the
logarithm of Ẑd in eq. (9) we bias our estimates of log p(x).
However, as we will show in Section 4.2, our estimates are
well-calibrated, and can be made more accurate by increas-
ing the number of importance samples. For the purposes of
training, we did not find this bias to be an issue.

As illustrated in fig. 3a, we obtain both context vectors and
proposal parameters in parallel using an autoregressive net-
work ARNN. The ARNN outputs proposal parameters φd
and context vectors γd for each of the D dimensions in a
single forward pass. These quantities are used both to esti-
mate log p(x) as in eq. (9), as well as to evaluate log q(x),
and we form a maximum-likelihood training objective

L(θ;x) = log p(x) + log q(x), (10)

where θ refers collectively to the trainable parameters in
both the ARNN and the ENN. We fit the AEM by maximiz-
ing eq. (10) across a training set using stochastic gradient
ascent, and find that a warm-up period where the proposal
is initially optimized without the energy model can improve
stability, allowing the proposal to cover the data sufficiently
before importance sampling begins.

It is important to note that we do not optimize the pro-
posal distribution parameters φ with respect to the impor-
tance sampling estimate. This means that the proposal is
trained independently of the energy-model, and estimates
of log p(x) treat the proposal samples and proposal density
evaluations as constant values for the purposes of optimiza-
tion. In practice, this is implemented by stopping gradients
on variables connected to the proposal distribution in the
computational graph. We find maximum-likelihood training
of q to be effective as a means to obtain a useful proposal
distribution, but other objectives, such as minimization of
the variance of the importance sampling estimate (Kuleshov
& Ermon, 2017; Müller et al., 2018), might also be con-
sidered, although we do not investigate this avenue in our
work.

3.3. Sampling

Although it is not possible to sample analytically from our
model, we can obtain approximate samples by first drawing
samples from the proposal distribution and then resampling
from this collection using importance weights computed
by the energy model (eq. (4)). This method is known as
sampling importance resampling (Rubin, 1988), and is con-
sistent in the limit of infinite proposal samples, but we found
results to be satisfactory using just 100 proposal samples.

3.4. ResMADE

For general purpose density estimation of tabular data, we
present a modified version of the MADE architecture (Ger-
main et al., 2015) that incorporates residual connections (He
et al., 2016a). In the standard MADE architecture, causal
structure is maintained by masking certain weights in the
network layers. We observe that in consecutive hidden lay-
ers with the same number of units and shared masks, the
connectivity of the hidden units with respect to the inputs
is preserved. As such, incorporating skip connections will



Autoregressive Energy Machines

Proposal AEM
Data Density Samples Density Samples

(a)

Einstein conditionals ∝ p(x2|x1)
Image Proposal AEM

(b)

Figure 4: (a) Estimated densities and samples for both the proposal distribution and AEM on a range of synthetic two-
dimensional densities. For the checkerboard grid (row 2), we used fixed uniform conditionals for the proposal distribution.
AEM densities are evaluated with a normalizing constant estimated using 1000 importance samples. We present histograms
of 106 samples from each trained model, for comparison with each training dataset of the same cardinality. (b) Unnormalized
conditional distributions proportional to p(x2|x1) for a selection of vertical slices on the Einstein task. An energy-based
approach allows for a better fit to the true pixel intensities in the image, which feature high-frequency components ill-suited
for a finite mixture of Gaussians.

maintain the architecture’s autoregressive structure.

Following the documented success of residual blocks (He
et al., 2016a;b) as a component in deep network architec-
tures, we implement a basic residual block for MADE-style
models that can be used as a drop-in replacement for typical
masked layers. Each block consists of two masked-dense
layers per residual block, and uses pre-activations following
He et al. (2016b). We use the term ResMADE to describe an
autoregressive architecture featuring these blocks, and make
use of the ResMADE as an ARNN component across our
experiments. For a more detailed description see Appendix
??.

4. Experiments
For our experiments, we use a ResMADE with four residual
blocks for the ARNN, as well as a fully-connected residual
architecture for the ENN, also with four residual blocks.
The number of hidden units in the ResMADE is varied per
task. We use the Adam optimizer (Kingma & Ba, 2014),
and anneal the learning rate to zero over the course of
training using a cosine schedule (Loshchilov & Hutter,

2016). For some tasks, we find regularization by dropout
(Srivastava et al., 2014) to be beneficial. Full experimental
details are available in Appendix ??, and code is avail-
able at https://github.com/conormdurkan/
autoregressive-energy-machines.

4.1. Synthetic datasets

We first demonstrate that an AEM is capable of fitting com-
plex two-dimensional densities. For each task, we generate
106 data points for training. Results are displayed in fig. 4a.
We plot each AEM density by estimating the normalizing
constant with 1000 importance samples for each conditional.
AEM samples are obtained by resampling 100 proposal sam-
ples as described in section 3.3.

Spirals The spirals dataset is adapted from Grathwohl et al.
(2019). Though capable of representing the spiral density,
the ResMADE proposal fails to achieve the same quality of
fit as an AEM, with notable regions of non-uniform density.

Checkerboard The checkerboard dataset is also adapted
from Grathwohl et al. (2019). This task illustrates that in
some cases a learned proposal distribution is not required;

https://github.com/conormdurkan/autoregressive-energy-machines
https://github.com/conormdurkan/autoregressive-energy-machines
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with a fixed, uniform proposal, an AEM is capable of accu-
rately modeling the data, including the discontinuities at the
boundary of each square.

Diamond The diamond task is adapted from the 100-mode
square Gaussian grid of Huang et al. (2018), by expanding
to 225 modes, and rotating 45 degrees. Although the Res-
MADE proposal does not have the capacity to represent all
modes of the target data, an AEM is able to recover these
lost modes.

Einstein We generate the Einstein data by sampling co-
ordinates proportional to the pixel intensities in an image of
Albert Einstein (Müller et al., 2018), before adding uniform
noise, and re-scaling the resulting points to [0, 1]2. This
task in particular highlights the benefits of an energy-based
approach. The distribution of light in an image features
sharp transitions and edges, high-frequency components,
and broad regions of near-constant density. Where a Res-
MADE proposal struggles with these challenges, an AEM
is able to retain much more fine detail. In addition, samples
generated by the AEM are difficult to distinguish from the
original dataset.

Finally, fig. 4b presents an alternative visualization of the
Einstein task. Each row corresponds to an unnormalized
conditional proportional to p(x2|x1) for a fixed value of x1.
While the ResMADE proposal, consisting of a mixture of
10 Gaussians for each conditional, achieves a good overall
fit to the true pixel intensities, it is ultimately constrained by
the smoothness of its mixture components.

4.2. Normalizing constant estimation

Though importance sampling in one dimension is much less
unwieldy than in high-dimensional space, it may still be
the case that the proposal distributions do not adequately
cover the support of the conditionals being modeled, lead-
ing to underestimates of the normalizing constants. Here
we demonstrate that the normalizing constants learned by
an AEM are well-calibrated by comparing to ‘true’ values
computed with explicit numerical integration. In particular,
we use a log-modified trapezoidal rule (Pitkin, 2017) to in-
tegrate the unnormalized log density output by the energy
network over each dimension. This approach exploits the
fast parallel computation of the energy net, allowing us to
saturate the domain of integration, and compensate for the
shortcomings of the trapezoidal rule compared to more ad-
vanced adaptive quadrature methods (Gander & Gautschi,
2000). We increase the number of integrand evaluations
until the integral converges to seven significant figures.

For each trained model on the Einstein, Power, Hepmass,
and BSDS300 tasks, we first randomly select 1000 dimen-
sions with replacement according to the data dimensionality,
disregarding the marginal p(x1) so as to not repeatedly com-

Figure 5: Accuracy of log normalizing constant estimates
increases with number of importance samples for each task.
Whiskers delineate the 5th and 95th percentiles of the rela-
tive error. The Einstein conditionals, as illustrated in fig. 4b,
prove particularly difficult, while BSDS300 conditionals are
in contrast much simpler to approximate.

pute the same value. Then, we compute the integral of
the log unnormalized density corresponding to that one-
dimensional conditional, using a log-trapezoidal rule and
context vectors generated from a held out-validation set of
1000 samples. This procedure results in 1000 ‘true’ integrals
for each task. We then test the AEM by comparing this true
value with estimates generated using increasing numbers
of importance samples. Note that in each task, the AEM
has never estimated the log normalizing constant for the
conditional densities under consideration, since these con-
ditionals are specified using the validation set, and not the
training set. Figure 5 visualizes the results of our calibration
experiments.

4.3. Density estimation on tabular data

We follow the experimental setup of Papamakarios et al.
(2017) in using a selection of pre-processed datasets
from the UCI machine learning repository (Dheeru &
Karra Taniskidou, 2017), and BSDS300 datasets of natural
images (Martin et al., 2001). AEM log likelihoods are esti-
mated using 20000 importance samples from the proposal
distribution.

As a normalized approximation to the AEM, we use a kernel
density estimate in which Gaussian kernels are centered at
proposal samples and weighted by the importance weights.
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Table 1: Test log likelihood (in nats) for UCI datasets and BSDS300, with error bars corresponding to two standard
deviations. AEM∗ results are estimated with 20,000 importance samples. The best performing model for each dataset is
shown in bold, as well the best performing model for which the exact log likelihood can be obtained. Results for non-AEM
models taken from existing literature. MAF-DDSF† report error bars across five repeated runs rather than across the test set.

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

MADE-MOG 0.40± 0.01 8.47± 0.02 −15.15± 0.02 −12.27± 0.47 153.71± 0.28
MAF 0.30± 0.01 10.08± 0.02 −17.39± 0.02 −11.68± 0.44 156.36± 0.28
MAF-DDSF† 0.62± 0.01 11.96± 0.33 −15.09± 0.40 −8.86± 0.15 157.73± 0.04
TAN (VARIOUS) 0.60± 0.01 12.06± 0.02 −13.78± 0.02 −11.01± 0.48 159.80± 0.07

RESMADE-MOG (PROPOSAL) 0.61± 0.01 12.80± 0.01 −13.42± 0.01 −11.01± 0.23 157.41± 0.14
AEM-KDE 0.65± 0.01 12.89± 0.01 −12.87± 0.01 −10.33± 0.22 158.44± 0.14
AEM∗ 0.70± 0.01 13.03± 0.01 −12.85± 0.01 −10.17± 0.26 158.71± 0.14

Table 2: Latent variable modeling results with AEM priors.
AEM-VAE? results obtained with 1000 importance samples
and log p(x) lower-bounded using the method of Burda et al.
(2016) with 50 samples. IAF-DSF† report error bars across
five repeated runs rather than across the test set.

MODEL ELBO log p(x)

IAF-DSF† −81.92± 0.04 −79.86± 0.01
VAE −84.43± 0.23 −81.23± 0.21
RESMADE-VAE −82.96± 0.23 −79.89± 0.21
AEM-KDE-VAE −82.95± 0.23 −79.88± 0.21
AEM-VAE? −82.92± 0.23 −79.87± 0.21

We include the proposal itself as a mixture component in
order to provide probability density in regions not well-
covered by the samples. The KDE bandwidth and proposal
distribution mixture weighting are optimized on the valida-
tion set. We call the model under this evaluation scheme
AEM-KDE. KDE estimates also use 20000 samples from
the proposal distribution for each conditional.

Table 1 shows the test-set log likelihoods obtained by our
models and by other state-of-the-art models. We first note
that the AEM proposal distribution (ResMADE-MoG) pro-
vides a strong baseline relative to previous work. In particu-
lar, it improves substantially on the the MADE-MoG results
reported by Papamakarios et al. (2017), and improves on the
state-of-the-art results reported by NAF (Huang et al., 2018)
and TAN (Oliva et al., 2018). This demonstrates the benefits
of adding residual connections to the MADE architecture.
As such, practitioners may find ResMADE a useful com-
ponent in many applications which require autoregressive
computation.

AEM and AEM-KDE outperform both the proposal distribu-
tion and existing state-of-the-art methods on the Power, Gas
and Hepmass datasets, demonstrating the potential benefit of
flexible energy-based conditionals. Despite regularization,
overfitting was an issue for Miniboone due to the size of

the training set (n = 29, 556) relative to the data dimension
(D = 43). This highlights the challenges associated with
using very expressive models on domains with limited data,
and the need for stronger regularization methods in these
cases. On BSDS300, our models achieve the second highest
scores relative to previous work. On this dataset we found
that the validation scores (∼ 174) were substantially higher
than test-set scores (∼ 158), indicating differences between
their empirical distributions. Overall, the AEM-KDE ob-
tains improved scores relative to the proposal distribution,
and these scores are close to those of the AEM.

4.4. Latent variable modeling

We evaluate the AEM in the context of deep latent-variable
models, where it can be used as an expressive prior. We train
a convolutional variational autoencoder (VAE) (Kingma &
Welling, 2013; Rezende et al., 2014), making use of residual
blocks in the encoder and decoder in a similar architecture
to previous work (Huang et al., 2018; Kingma et al., 2016).
We initially train the encoder and decoder with a standard
Gaussian prior, and then train an AEM post-hoc to maximize
the likelihood of samples from the aggregate approximate
posterior

qagg(z) = Ex∼p?(x)[q(z|x)]. (11)

This training method avoids an issue where maximum-
likelihood training of the proposal distribution interferes
with the lower bound objective. During pre-training, we set
β = 0.9 in the modified variational objective

Lβ = Eq(z|x)[log p(x|z)]− βDKL(q(z|x) ‖ p(z)). (12)

This weighting of the KL-divergence term has the effect of
boosting the reconstruction log probability at the expense
of an aggregate posterior that is less well-matched to the
standard Gaussian prior. This provides an opportunity for
the AEM to improve on the original prior as a model of
the aggregate posterior. Weighting of the KL-divergence
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has been used in previous work to reduce the occurrence
of unused latent variables (Sønderby et al., 2016), and to
control the types of representations encoded by the latent
variables (Higgins et al., 2017).

(a) Data (b) AEM-VAE

Figure 6: Binarized MNIST data examples and uncondi-
tional samples for AEM-VAE obtained by resampling from
100 proposal samples.

Table 2 shows that the AEM-VAE improves substantially
on the standard Gaussian prior, and that the results are com-
petitive with existing approaches on dynamically-binarized
MNIST (Burda et al., 2016). The AEM does not improve
on the proposal distribution scores, possibly because the
aggregate latent posterior is a mixture of Gaussians, which
is well-modeled by the ResMADE-MoG. Figure 6 shows
data examples and samples from the trained model.

5. Related Work
Flow-based neural density estimation Together with au-
toregressive approaches, flow-based models have also seen
widespread use in neural density estimation. Flow-based
models consist of invertible transformations for which Ja-
cobian determinants can be efficiently computed, allowing
exact density evaluation through the change-of-variables for-
mula. Multiple transformations are often stacked to enable
more complex models.

Efficiently invertible flows Flows exploiting a particular
type of transformation, known as a coupling layer, not only
allow for one-pass density evaluation, but also one-pass
sampling. Examples of such models include NICE (Dinh
et al., 2014) and RealNVP (Dinh et al., 2017), and the ap-
proach has recently been extended to image (Kingma &
Dhariwal, 2018) and audio (Prenger et al., 2018; Kim et al.,
2018) data. The case of continuous flows based on ordi-
nary differential equations has also recently been explored
by FFJORD (Grathwohl et al., 2019). However, efficient
sampling for this class of models comes at the cost of den-
sity estimation performance, with autoregressive models
generally achieving better log likelihood scores.

Autoregressive flows Originally proposed by Kingma et al.
(2016) for variational inference, autoregressive flows were
adapted for efficient density estimation by Papamakarios
et al. (2017) with MAF. Subsequent models such as NAF
(Huang et al., 2018) and TAN (Oliva et al., 2018) have de-
veloped on this idea, reporting state-of-the-art results for
density estimation. Sampling in these models is expensive,
since autoregressive flow inversion is inherently sequential.
In some cases, such as Huang et al. (2018), the flows do
not have an analytic inverse, and must be inverted numer-
ically for sampling. Despite these caveats, autoregressive
density estimators remain the best performing neural density
estimators for general density estimation tasks.

Energy-based models In this work we describe energy-
based models as unnormalized densities that define a prob-
ability distribution over random variables. However, there
exist multiple notions of energy-based learning in the ma-
chine learning literature, including non-probabilistic inter-
pretations (LeCun et al., 2006; Zhao et al., 2017). We focus
here on recent work which includes applications to den-
sity estimation with neural energy functions. Deep energy
estimator networks (Saremi et al., 2018) use an energy func-
tion implemented as a neural network, and train using the
score-matching framework. This objective avoids the need
to estimate the normalizing constant, but also makes it chal-
lenging to compare log-likelihood scores with other density
estimators. Bauer & Mnih (2018) propose an energy-based
approach for increasing the flexibility of VAE priors, in
which a neural network energy function is used to mask a
pre-specified proposal function. As in our work, training is
performed using importance sampling, but due to the larger
dimensionality of the problem, 210 samples were used in
the estimates during training.

Other related work Müller et al. (2018) propose neural
importance sampling, in which a flow-based neural sampler
is optimized in order to perform low-variance Monte Carlo
integration of a given target function. This is similar to the
goal of the proposal distribution in the AEM, but in our case
the proposal is trained jointly with an energy model, and we
do not assume that the target function is known a priori.

6. Conclusion
We proposed the Autoregressive Energy Machine, a neural
density estimator that addresses the challenges of energy-
based modeling in high dimensions through a scalable and
efficient autoregressive estimate of the normalizing constant.
While exact density evaluation is intractable for an AEM,
we have demonstrated that the flexibility of an energy-based
model enables us to model challenging synthetic data, as
well as achieve state-of-the-art results on a suite of bench-
mark datasets.
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