
Supplement: Band-limited Training and Inference for Convolutional Neural
Networks

1. Implementation Details
We present details on the map reuse, CUDA implementation
and shifting of the DC coefficient.

1.1. Map Reuse

We divide the input map M (with half of the map already
removed due to the conjugate symmetry) into two parts: up-
per D1 and lower D2. We crop out the top-left (S1) corner
from D1 and bottom-left (S2) corner from D2. The two
compressed representations S1 and S2 can be maintained
separately (small saving in computation time) or concate-
nated (more convenient) for the backward pass. In the back-
ward pass, we pad the two corners S1 and S2 to their initial
sizes D1 and D2, respectively. Finally, we concatenate D1
and D2 to get the FFT map M’, where the high frequency
coefficients are replaced with zeros.

If the memory usage should be decreased as much as possi-
ble and the filter is small, we can trade the lower memory
usage for the longer computation time and save the filter in
the spatial domain at the end of the forward pass, followed
by the FFT re-computation of the filter in the backward
pass. The full frequency representation of the input map
(after padding) is bigger than its spatial representation, thus
the profitability of re-computing the input to save the GPU
memory depends on the applied compression rate.

We also contribute a fast shift of the DC coefficients either to
the center or to the top-left corner. The code for the element-
wise solution uses two for loops and copy each element
separately. For the full FFT map, we divide it into quadrants
(I - top-right, II - top-left, III - bottom-left, IV - bottom-
right). Then, we permute the quadrants in the following
way: I → III, II → IV, III → I, IV → II.

1.2. CUDA

We use min(max threads in block, n2) threads per block and
the total number of GPU blocks is Sf ′, where S is the mini-
batch size, f ′ is the number of output channels, and n is the
height and width of the inputs. Each block of threads is used
to compute a single output plane. Intuitively, each thread
in a block of threads incrementally executes a complex
multiplication and sums the result to an aggregate for all f
input channels to obtain a single output cell (x, y).

Additional optimizations, such as maintaining the filters
only in the frequency domain or tiling, will be implemented
in our future work.

2. Experiments
2.1. Experimental Setup

For the experiments with ResNet-18 on CIFAR-10 and
DenseNet-121 on CIFAR-100, we use a single instance
of P-100 GPU with 16GBs of memory.

We also use data from the UCR archive, with the main
representative: 50 words time-series dataset with 270 values
per data point, 50 classes, 450 train data points, 455 test
data points, 2 MB in size. One of the best peforming CNN
models for the data is a 3 layer Fully Convolutional Neural
Network (FCN) with filter sizes: 8, 5, 3. The number of
filter banks is: 128, 256, 128. 1.

Our methodology is to measure the memory usage on GPU
by counting the size of the allocated tensors. The direct
measurement of hardware counters is imprecise because Py-
Torch uses a caching memory allocator to speed up memory
allocations and incurs much higher memory usage than is
actually needed at a given point in time.

2.2. DenseNet-121 on CIFAR-100

We train DenseNet-121 (with growth rate 12) on the CIFAR-
100 dataset.

In Figure 1 we show small differences in test accuracy dur-
ing training between models with different levels of energy
preserved for the FFT-based convolution.

In Figure 2 we show small differences in accuracy and loss
between models with different convolution implementations.
The results were normalized with respect to the values ob-
tained for the standard convolution used in PyTorch.

2.3. Reduced Precision and Bandlimited Training

In Figure 4 we plot the maximum allocation of the GPU
memory during 3 first iterations. Each iteration consists of
training (forward and backward passes) followed by test-

1http://bit.ly/2FbdQNV



Supplement: Band-limited Training and Inference for Convolutional Neural Networks

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Te
st

 a
cc

u
ra

cy
 (

%
)

Epoch

PyTorch

E=100

E=99.5

E=99

E=98

E=95

Figure 1. Comparing test accuracy during training for CIFAR-100
dataset trained on DenseNet-121 (growth rate 12) architecture
using convolution from PyTorch and FFT-based convolutions with
different energy rates preserved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

max train
accuracy

max test
accuracy

min train
loss

min test
loss

N
o

rm
al

iz
ed

 r
at

e

PyTorch E=100 E=99.5 E=99 E=98 E=95

Figure 2. Comparing accuracy and loss for test and train sets
from CIFAR-100 dataset trained on DenseNet-121 (growth rate
12) architecture using convolution from PyTorch and FFT-based
convolutions with different energy rates preserved.

ing (a single forward pass). We use CIFAR-10 data on
ResNet-18 architecture. We show the memory profiles of
RPA (Reduced Precision Arithmetic), bandlimited training,
and applying both. A detailed convergence graph is shown
in Figure 3.

2.4. Resource Usage vs Accuracy

The full changes in normalized resource usage (GPU mem-
ory or time for a single epoch) vs accuracy are plotted in
Figure 5.

2.5. Dynamic Changes of Compression

Deep neural networks can better learn the model if the com-
pression is fixed and does not change with each iteration
depending on the distribution of the energy within the fre-

75

80

85

90

95

100

0 50 100 150 200 250 300 350

A
cc

u
ra

cy
 (

%
)

Epoch

fp32-train

fp16-train

fft50-train

fp32-test

fp16-test

fft50-test

Figure 3. Train and test accuracy during training for CIFAR-10
dataset trained on ResNet-18 architecture using convolution from
PyTorch (fp32), mixed-precision (fp16) and FFT-based convolu-
tions with 50% of compression for intermediate results and filters
(fft50). The highest test accuracy observed are: 93.69 (fp32), 91.53
(fp16), 92.32 (fft50).

quency coefficients of a signal.

We observe that the compression can be applied more ef-
fectively to the first layers and the deeper the layers the
less compression can be applied (for a given energy level
preserved).

The dynamic and static compression methods can be com-
bined. We determine how much compression should be ap-
plied to each layer via the energy level required to be saved
in each layer and use the result to set the static compression
for the full training. The sparsification in the Winograd do-
main requires us to train a full (uncompressed) model, then
inspect the Winograd coefficients of the filters and input
maps and zero-out these of them which are the smallest with
respect to their absolute values, and finally retrain the com-
pressed model. In our approach, we can find the required
number of coefficients to be discarded with a few forward
passes (instead of training the full network), which can save
time and also enables us to utilize less GPU memory from
the very beginning with the dynamic compression.

2.6. Compression Based on Preserved Energy

There are a few ways to compress signals in the frequency
domain for 2D data. The version of the output in the fre-
quency domain can be compressed by setting the DC com-
ponent in the top left corner in the frequency representation
of an image or a filter (with the absolute values of coeffi-
cients decreasing towards the center from all its corners)
and then slicing off rows and columns. The heat maps of
such a representation containing the absolute value of the
coefficients is shown in Figure 6.

The number of preserved elements even for 99% of the pre-
served energy is usually small (from 2X to 4X smaller than



Supplement: Band-limited Training and Inference for Convolutional Neural Networks

0 2 4 60

10

20
M

em
or

y 
 u

se
d 

(%
)

FFT-based compression (only)
fp32-0% fp32-50% fp32-75%

0 2 4 6
Time (sec)

0

10

20

M
em

or
y 

 u
se

d 
(%

)

FFT-based and mixed-precision compressions
fp32-0% fp16-0% fp16-50%

Figure 4. Memory used (%) for the first 3 iterations (train and
test) with mixed-precision and FFT-based compression techniques.
Mixed precision allows only a certain level of compression whereas
with the FFT based compression we can adjust the required com-
pression and accuracy. The two methods can be combined (fp16-
50%).

the initial input). Thus, for the energy based compression,
we usually proceed starting from the DC component and
then adding rows and columns in the vertically mirrored L
fashion. It can be done coarse-grained, where we just take
into account the energy of the new part of row or column
to be added, or fine-grained, where we add elements one
by one and if not the whole row or column is needed, we
zero-out the remaining elements of both an activation map
and a filter.

2.7. Visualization of the Compression in 1D

We present the visualization of our FFT-based compression
method in 7. The magnitude is conveniently plotted in a
logarithmic scale (dB).

2.8. Energy Based Compression for ResNet-18

Figure 8 shows the linear correlation between the accuracy
of a model and the energy that was preserved in the model
during training and testing. Each point in the graph requires
a fool training of a model for the indicated energy level
preserved.

Figure 9 shows the test accuracy during the training process
of the ResNet-18 model on the CIFAR-10 dataset.

Figure 10 shows the train accuracy during the training pro-
cess of the ResNet-18 model on the CIFAR-10 dataset.

2.9. Training vs. Inference Bandlimiting

To further corroborate our points, consider a scheme where
we train the network with one compression ratio and test

0 20 40 60 80
Compression ratio (%)

50

100

No
rm

al
ize

d
 p

er
fo

rm
an

ce
 (%

)

ResNet-18 on CIFAR-10

Test accuracy
Epoch time
GPU mem allocated

0 20 40 60 80
Compression ratio (%)

50

100

No
rm

al
ize

d
 p

er
fo

rm
an

ce
 (%

)

DenseNet-121 on CIFAR-100

Test accuracy
Epoch time
GPU mem allocated

Figure 5. Normalized performance (%) between models trained
with different FFT-compression ratios.

Figure 6. A heat map of absolute values (magnitudes) of FFT coef-
ficients with linear interpolation and the max value colored with
white and the min value colored with black. The FFT-ed input
is a single (0-th) channel of a randomly selected image from the
CIFAR-10 dataset.

with another (Figure 19).

We observe that the network is most accurate when the com-
pression used for training is the same that is used during
testing. We used the Friedman statistical test followed by the
post-hoc Nemenyi test to assess the performance of multiple
compression ratios during inference over multiple datasets.
Figure 14 shows the average rank of the test accuracies
of different compression ratios during inference across 25
randomly chosen time-series data from the UCR Archive.
The training was done while preserving 90% of the energy.
Inference with the same compression ratio (90%) is ranked
first, meaning that it performed the best in the majority of
the datasets. The Friedman test rejects the null hypothesis
that all measures behave similarly, and, hence, we proceed
with a post-hoc Nemenyi test, to evaluate the significance
of the differences in the ranks. The wiggly line in the fig-
ure connects all approaches that do not perform statistically


