
Band-limited Training and Inference for Convolutional Neural Networks

Adam Dziedzic * 1 John Paparrizos * 1 Sanjay Krishnan 1 Aaron Elmore 1 Michael Franklin 1

Abstract
The convolutional layers are core building blocks
of neural network architectures. In general, a con-
volutional filter applies to the entire frequency
spectrum of the input data. We explore artificially
constraining the frequency spectra of these filters
and data, called band-limiting, during training.
The frequency domain constraints apply to both
the feed-forward and back-propagation steps. Ex-
perimentally, we observe that Convolutional Neu-
ral Networks (CNNs) are resilient to this compres-
sion scheme and results suggest that CNNs learn
to leverage lower-frequency components. In par-
ticular, we found: (1) band-limited training can
effectively control the resource usage (GPU and
memory); (2) models trained with band-limited
layers retain high prediction accuracy; and (3)
requires no modification to existing training al-
gorithms or neural network architectures to use
unlike other compression schemes.

1. Introduction
Convolutional layers are an integral part of neural network
architectures for computer vision, natural language process-
ing, and time-series analysis (Krizhevsky et al., 2012; Kam-
per et al., 2016; Bińkowski et al., 2017). Convolutions
are fundamental signal processing operations that amplify
certain frequencies of the input and attenuate others. Re-
cent results suggest that neural networks exhibit a spectral
bias (Rahaman et al., 2018; Xu et al., 2018); they ultimately
learn filters with a strong bias towards lower frequencies.
Most input data, such as time-series and images, are also
naturally biased towards lower frequencies (Agrawal et al.,
1993; Faloutsos et al., 1994; Torralba & Oliva, 2003). This
begs the question—does a convolutional neural network
(CNN) need to explicitly represent the high-frequency com-

*Equal contribution 1Department of Computer Science,
University of Chicago, Chicago, USA. Correspondence
to: Adam Dziedzic <ady@uchicago.edu>, John Paparrizos
<jopa@uchicago.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ponents of its convolutional layers? We show that the answer
to the question leads to some surprising new perspectives on:
training time, resource management, model compression,
and robustness to noisy inputs.

Consider a frequency domain implementation of the convo-
lution function that: (1) transforms the filter and the input
into the frequency domain; (2) element-wise multiplies both
frequency spectra; and (3) transforms the outcome product
to the original domain. Let us assume that the final model is
biased towards lower Fourier frequencies (Rahaman et al.,
2018; Xu et al., 2018). Then, it follows that discarding
a significant number of the Fourier coefficients from high
frequencies after step (1) should have a minimal effect. A
smaller intermediate array size after step (1) reduces the
number of multiplications in step (2) as well as the memory
usage. This gives us a knob to tune the resource utilization,
namely, memory and computation, as a function of how
much of the high frequency spectrum we choose to repre-
sent. Our primary research question is whether we can train
CNNs using such band-limited convolutional layers, which
only exploit a subset of the frequency spectra of the filter
and input data.

While there are several competing compression techniques,
such as reduced precision arithmetic (Wang et al., 2018;
Aberger et al.; Hubara et al., 2017), weight pruning (Han
et al., 2015), or sparsification (Li et al., 2017), these tech-
niques can be hard to operationalize. CNN optimization
algorithms can be sensitive to the noise introduced during
the training process, and training-time compression can re-
quire specialized libraries to avoid instability (Wang et al.,
2018; Aberger et al.). Furthermore, pruning and sparsifi-
cation techniques only reduce resource utilization during
inference. In our experiments, surprisingly, band-limited
training does not seem to suffer the same problems and
gracefully degrades predictive performance as a function
of compression rate. Band-limited CNNs can be trained
with any gradient-based algorithm, where layer’s gradient is
projected onto the set of allowed frequencies.

We implement an FFT-based convolutional layer that se-
lectively constrains the Fourier spectrum utilized during
both forward and backward passes. In addition, we apply
standard techniques to improve the efficiency of FFT-based
convolution (Mathieu et al., 2013), as well as new insights



Band-limited Training and Inference for Convolutional Neural Networks

about exploiting the conjugate symmetry of 2D FFTs, as
suggested in (Rippel et al., 2015a). With this FFT-based
implementation, we �nd competitive reductions in memory
usage and �oating point operations to reduced precision
arithmetic (RPA) but with the added advantage of training
stability and a continuum of compression rates.

Band-limited training may additionally provide a new per-
spective on adversarial robustness (Papernot et al., 2015).
Adversarial attacks on neural networks tend to involve high-
frequency perturbations of input data (Huang et al., 2017;
Madry et al., 2017; Papernot et al., 2015). Our experiments
suggest that band-limited training produces models that can
better reject noise than their full spectra counterparts.

Our experimental results over CNN training for time-series
and image classi�cation tasks lead to several interesting
�ndings. First, band-limited models retain their predictive
accuracy, even though the approximation error in the indi-
vidual convolution operations can be relatively high. This
indicates that models trained with band-limited spectralearn
to use low-frequency components. Second, the amount of
compression used during training should match the amount
of compression used during inference to avoid signi�cant
losses in accuracy. Third, coef�cient-based compression
schemes (that discard a �xed number of Fourier coef�cients)
are more effective than ones that adaptively prune the fre-
quency spectra (discard a �xed fraction of Fourier-domain
mass). Finally, the test accuracy of the band-limited models
gracefully degrades as a function of the compression rate.

In summary, we contribute:

1. A novel methodology for band-limited training and
inference of CNNsthat constrains the Fourier spec-
trum utilized during both forward and backward passes.
Our approach requires no modi�cation of the existing
training algorithms or neural network architecture, un-
like other compression schemes.

2. An ef�cient FFT-based implementation of the
band-limited convolutional layer for 1D and 2D data
that exploits conjugate symmetry, fast complex multi-
plication, and frequency map reuse.

3. An extensive experimental evaluation across 1D
and 2D CNN training tasks that illustrates: (1) band-
limited training can effectively control the resource
usage (GPU and memory) and (2) models trained with
band-limited layers retain high prediction accuracy.

2. Related work

Model Compression: The idea of model compression to
reduce the memory footprint or feed-forward (inference)
latency has been extensively studied (also related to distil-
lation) (He et al., 2018; Hinton et al., 2015; Sindhwani
et al., 2015; Chen et al., 2015a). The ancillary bene�ts of

compression and distillation, such as adversarial robustness,
have also been noted in prior work (Huang et al., 2017;
Madry et al., 2017; Papernot et al., 2015). One of the �rst
approaches was called weight pruning (Han et al., 2015),
but recently, the community is moving towards convolution-
approximation methods (Liu et al., 2018; Chen et al., 2016).
We see an opportunity for a detailed study of the training
dynamics with both �lter and signal compression in convo-
lutional networks. We carefully control this approximation
by tracking the spectral energy level preserved.
Reduced Precision Training: We see band-limited neu-
ral network training as a form of reduced-precision train-
ing (Hubara et al., 2017; Sato et al., 2017; Alistarh et al.,
2018; De Sa et al., 2018). Our focus is to understand how a
spectral-domain approximation affects model training, and
hypothesize that such compression is more stable and grace-
fully degrades compared to harsher alternatives.
Spectral Properties of CNNs: There is substantial recent
interest in studying the spectral properties of CNNs (Rip-
pel et al., 2015a; Rahaman et al., 2018; Xu et al., 2018),
with applications to better initialization techniques, theoreti-
cal understanding of CNN capacity, and eventually, better
training methodologies. More practically, FFT-based convo-
lution implementations have been long supported in popular
deep learning frameworks (especially in cases where �lters
are large in size). Recent work further suggests that FFT-
based convolutions might be useful on smaller �lters as well
on CPU architectures (Zlateski et al., 2018).
Data transformations: Input data and �lters can be repre-
sented in Winograd, FFT, DCT, Wavelet or other domains.
In our work we investigate the most popular FFT-based fre-
quency representation that is natively supported in many
deep learning frameworks (e.g., PyTorch) and highly opti-
mized (Vasilache et al., 2015). Winograd domain was �rst
explored in (Lavin & Gray, 2016) for faster convolution but
this domain does not expose the notion of frequencies. An
alternative DCT representation is commonly used for image
compression. It can be extracted from JPEG images and
provided as an input to a model. However, for the method
proposed in (Gueguen et al., 2018), the JPEG quality used
during encoding is 100%. The convolution via DCT (Reju
et al., 2007) is also more expensive than via FFT.
Small vs Large Filters: FFT-based convolution is a
standard algorithm included in popular libraries, such as
cuDNN1. While alternative convolutional algorithms (Lavin
& Gray, 2016) are more ef�cient for small �lter sizes (e.g.,
3x3), the larger �lters are also signi�cant. (1) During the
backward pass, the gradient acts as a large convolutional
�lter. (2) The trade-offs are chipset-dependent and (Zlateski
et al., 2018) suggest using FFTs on CPUs. (3) For ImageNet,
both ResNet and DenseNet use 7x7 �lters in their 1st layers
(improvement via FFT noted by (Vasilache et al., 2015)),

1https://developer.nvidia.com/cudnn



Band-limited Training and Inference for Convolutional Neural Networks

which can be combined with spectral pooling (Rippel et al.,
2015b). (4) The theoretical properties of the Fourier domain
are well-understood, and this study elicits frequency domain
properties of CNNs.

3. Band-Limited Convolution

Let x be an input tensor (e.g., a signal) andy be another
tensor representing the �lter. We denote the convolution
operation asx � y. Bothx andy can be thought of as dis-
crete functions (mapping tensor index positionsn to values
x[n]). Accordingly, they have a corresponding Fourier rep-
resentation, which re-indexes each tensor in the spectral (or
frequency) domain:

Fx [! ] = F (x[n]) Fy [! ] = F (y[n])

This mapping is invertiblex = F � 1(F (x)) . Convolutions
in the spectral domain correspond to element-wise multipli-
cations:

x � y = F � 1(Fx [! ] � Fy [! ])

The intermediate quantityS[! ] = Fx [! ] �Fy [! ] is called the
spectrumof the convolution. We start with the modeling as-
sumption that for a substantial portion of the high-frequency
domain,jS[! ]j is close to 0. This assumption is substan-
tiated by the recent work by Rahman et al. studying the
inductive biases of CNNs (Rahaman et al., 2018), with ex-
perimental results suggesting that CNNs are biased towards
learning low-frequency �lters (i.e., smooth functions). We
take this a step further and consider the joint spectra of
both the �lter and the signal to understand the memory and
computation implications of this insight.

3.1. Compression

Let M c[! ] be a discrete indicator function de�ned as fol-
lows:

M c[! ] =

(
1; ! � c
0; ! > c

M c[! ] is a mask that limits theS[! ] to a certainband
of frequencies. Theband-limitedspectrum is de�ned as,
S[! ] � M c[! ], and the band-limited convolution operation is
de�ned as:

x � c y = F � 1f (Fx [! ] � M c[! ]) � (Fy [! ] � M c[! ])g (1)

= F � 1(S[! ] � M c[! ]) (2)

The operation� c is compatible with automatic differentia-
tion as implemented in popular deep learning frameworks
such asPyTorch andTensorFlow. The maskM c[! ] is ap-
plied to both the signalFx [! ] and �lter Fy [! ] (in equation
1) to indicate the compression of both arguments and fewer
number of element-wise multiplications in the frequency
domain.

3.2. FFT Implementation

We implement band-limited convolution with the Fast
Fourier Transform. FFT-based convolution is supported
by many Deep Learning libraries (e.g., cuDNN). It is most
effective for larger �lter-sizes where it signi�cantly reduces
the amount of �oating point operations. While convolutions
can be implemented by many algorithms, including matrix
multiplication and the Winograd minimal �ltering algorithm,
the use of an FFT is actually important (as explained above
in section 2). The compression maskM c[! ] is sparse in the
Fourier domain.F � 1(M c) is, however, dense in the spatial
or temporal domains. If the algorithm does not operate in
the Fourier domain, it cannot take advantage of the sparsity
in the frequency domain.

3.2.1. THE EXPENSE OFFFT-BASED CONVOLUTION

It is worth noting that pre-processing steps are crucial for a
correct implementation of convolution via FFT. The �lter is
usually much smaller (than the input) and has to be padded
with zeros to the �nal length of the input signal. The input
signal has to be padded on one end with as many zeros as
the size of the �lter to prevent the effects of wrapped-around
�lter data (for example, the last values of convolution should
be calculated only from the �nal overlap of the �lter with
the input signal and should not be polluted with values from
the beginning of the input signal).

Due to this padding and expansion, FFT-based convolution
implementations are often expensive in terms of memory
usage. Such an approach is typically avoided on GPU ar-
chitecture, but recent results suggest improvements on CPU
architecture (Zlateski et al., 2018). The compression mask
M c[! ] reduces the size of the expanded spectra; we need
not compute the product for those values that are masked
out. Therefore, a band-limiting approach has the potential
to make FFT-based convolution more practical for smaller
�lter sizes.

3.2.2. BAND-LIMITING TECHNIQUE

We present the transformations from a natural image to a
band-limited FFT map in Figure 1.

The FFT domain cannot be arbitrarily manipulated as we
must preserveconjugate symmetry. For a 1D signal this is
straight-forward.F [� ! ] = F � [! ], where the sign of the
imaginary part is opposite when! < 0. The compression is
applied by discarding the high frequencies in the �rst half
of the signal. We have to do the same to the �lter, and then,
the element-wise multiplication in the frequency domain is
performed between the compressed signal (input map) and
the compressed �lter. We use zero padding to align the sizes
of the signal and �lter. We execute the inverse FFT (IFFT)
of the output of this multiplication to return to the original



Band-limited Training and Inference for Convolutional Neural Networks

Figure 1.Transformations from input image to compressed FFT
map. (1) Natural image in the spatial domain. (2) FFT transfor-
mation to frequency domain and a) exact band-limiting to 50%,
b) practical band-limiting to 50%, c) lowest frequencies shifted to
corners. The heat maps of magnitudes of Fourier coef�cients are
plotted for a single channel (0-th) in a logarithmic scale (dB) with
linear interpolation and the max value is colored with white while
the min value is colored with black.

Figure 2.An example of a square input map with marked conjugate
symmetry (Graycells). Almost half of the input cells marked with
0s (zeros) are discarded �rst due to the conjugate symmetry. The
remaining map is compressed layer by layer (we present how
the �rst two layers: 1 and 2 are selected).Blue and Orange
cells represent a minimal number of coef�cients that have to be
preserved in the frequency domain to fully reconstruct the initial
spatial input. Additionally, theOrangecells represent real-valued
coef�cients.

spatial or time domain.

In addition to the conjugate symmetry there are certain
values that are constrained to be real. For example, the �rst
coef�cient is real (the average value) for the odd and even
length signals and the middle element (

�
N
2

�
+ 1 ) is also

real for the even-length signals. We do not violate these
constraints and keep the coef�cients real, for instance, by
replacing the middle value with zero during compression or
padding the output with zeros.

The conjugate symmetry for a 2D signalF [� !; � � ] =
F � [!; � ] is more complicated. If the real input map is of
sizeM � N , then its complex representation in the frequency
domain is of sizeM � (

�
N
2

�
+ 1) . The real constraints for

2D inputs were explained in detail in Figure 2, similarly
to (Rippel et al., 2015a). For the most interesting and most

common case of even height and width of the input, there are
always four real coef�cients in the spectral representation
(depicted asOrangecells: top-left corner, middle value in
top row, middle value in most-left column and the value in
the center). The DC component is located in the top-left
corner. The largest values are placed in the corners and
decrease towards the center. This trend is our guideline in
the design of the compression pattern, in which for theleft
half of the input, we discard coef�cients from the center in
L-like shapes towards the top-left and bottom-left corners.

3.2.3. MAP REUSE

The FFT computations of the tensors: input map, �lter, and
the gradient of the output as well as the IFFT of the �nal
output tensors are one of the most expensive operations in
the FFT-based convolution. We avoid re-computation of the
FFT for the input map and the �lter by saving their frequency
representations at the end of the forward pass and reusing
them in the corresponding backward pass. The memory
footprint for the input map in the spatial and frequency
domains is almost the same. We retain only half of the
frequency coef�cients but they are represented as complex
numbers. Further on, we assume square input maps and
�lters (the most common case). For anN � N real input
map, the initialcomplex-sizeis N � (

�
N
2

�
+ 1) . The �lter

(also called kernel) is of sizeK � K . The FFT-ed input
map has to be convolved with the gradient of sizeG � G
in the backward pass and usuallyG > K . Thus, to reuse
the FFT-ed input map and avoid wrapped-around values,
the required padding is of size:P = max(K � 1; G � 1).
This gives us the �nal full spatial size of tensors used in
FFT operations(N + P) � (N + P) and the corresponding

full complex-size(N + P) � (
j

(N + P )
2

k
+ 1) that is �nally

compressed.

3.3. Implementation in PyTorch and CUDA

Our compression in the frequency domain is implemented
as a module in PyTorch that can be plugged into any ar-
chitecture as a convolutional layer. The code is written in
Python with extensions in C++ and CUDA for the main
bottleneck of the algorithm. The most expensive compu-
tationally and memory-wise component is the Hadamard
product in the frequency domain. The complexity analy-
sis of the FFT-based convolution is described in (Mathieu
et al., 2013) (section 2.3, page 3). The complex multiplica-
tions for the convolution in the frequency domain require
3Sf 0fn 2 real multiplications and5Sf 0fn 2 real additions,
whereS is the mini-batch size,f 0 is the number of �lter
banks (i.e., kernels or output channels),f is the number
of input channels, andn is the height and width of the in-
puts. In comparison, the cost of the FFT of the input map is
Sfn 22logn, and usuallyf 0 >> 2logn. We implemented in



Band-limited Training and Inference for Convolutional Neural Networks

Table 1.Test accuracies for ResNet-18 on CIFAR-10 and
DenseNet-121 on CIFAR-100 with the same compression rate
across all layers. We vary compression from 0% (full-spectra
model) to 50% (band-limited model).

CIFAR 0% 10% 20% 30% 40% 50%

10 93.69 93.42 93.24 92.89 92.61 92.32
100 75.30 75.28 74.25 73.66 72.26 71.18

CUDA the fast algorithm to multiply complex numbers with
3 real multiplications instead of 4 as described in (Lavin &
Gray, 2016).

Our approach to convolution in the frequency domain aims
at saving memory and utilizing as many GPU threads as
possible. In our CUDA code, we fuse the element-wise
complex multiplication (which in a standalone version is
an injective one-to-one map operator) with the summation
along an input channel (a reduction operator) in a thread ex-
ecution path to limit the memory size from2Sff 0n2, where
2 represents the real and imaginary parts, to the size of the
output2Sf 0n2, and avoid any additional synchronization by
focusing on computation of a single output cell:(x; y) co-
ordinates in the output map. We also implemented another
variant of convolution in the frequency domain by using
tensor transpositions and replacing the complex tensor mul-
tiplication (CGEMM) with three real tensor multiplications
(SGEMM).

4. Results

We run our experiments on single GPU deployments with
NVidia P-100 GPUs and 16 GBs of total memory. The
objective of our experiments is to demonstrate the robust-
ness and explore the properties of band-limited training and
inference for CNNs.

4.1. Effects of Band-limited Training on Inference

First, we study how band-limiting training effects the �nal
test accuracy of two popular deep neural networks, namely,
ResNet-18 and DenseNet-121, on CIFAR-10 and CIFAR-
100 datasets, respectively. Speci�cally, we vary the com-
pression rate between 0% and 50% for each convolutional
layer (i.e., the percentage of coef�cients discarded) and we
train the two models for 350 epochs. Then, we measure
the �nal test accuracy using the same compression rate as
the one used during training. Our results in Table 1 show
a smooth degradation in accuracy despite the aggressive
compression applied during band-limiting training.

To better understand the effects of band-limiting training, in
Figure 3, we explore two different compression schemes:
(1) �xed compression, which discards the same percentage

Figure 3.Test accuracy as a function of the compression rate for
ResNet-18 on CIFAR-10 and DenseNet-121 on CIFAR-100. The
�xed compression scheme that uses the same compression rate for
each layer gives the highest test accuracy.

of spectral coef�cients in each layer and (2) energy com-
pression, which discards coef�cients in an adaptive manner
based on the speci�ed energy retention in the frequency
spectrum. By Parseval's theorem, the energy of an input
tensorx is preserved in the Fourier domain and de�ned as:
E(x) =

P N � 1
n =0 jx[n]j2 =

P 2�
! =0 jFx [! ]j (for normalized

FFT transformation). For example, for two convolutional
layers of the same size, a �xed compression of 50% discards
50% of coef�cients in each layer. On the other hand, the en-
ergy approach may �nd that 90% of the energy is preserved
in the 40% of the low frequency coef�cients in the �rst con-
volutional layer while for the second convolutional layer,
90% of energy is preserved in 60% of the low frequency
coef�cients.

For more than 50% of compression rate for both techniques,
the �xed compression method achieves the max test accu-
racy of 92.32% (only about 1% worse than the best test
accuracy for the full model) whereas the preserved energy
method results in signi�cant losses (e.g., ResNet-18 reaches
83.37% on CIFAR-10). Our �ndings suggest that alter-
ing the compression rate during model training may affect
the dynamics of SGD. The worse accuracy of the models
trained with any form of dynamic compression is result of
the higher noise incurred by frequent changes to the number
of coef�cients that are considered during training. The test
accuracy for energy-based compression follows the coef�-
cient one for DenseNet-121 while they markedly diverge
for ResNet-18. ResNet combines outputs fromL andL + 1
layers by summation. In the adaptive scheme, this means
adding maps produced from different spectral bands. In
contrast, DenseNet concatenates the layers.



Band-limited Training and Inference for Convolutional Neural Networks

Figure 4.Compression changes during training with constant en-
ergy preserved: the longer we train the models with the same
energy preserved, the smaller compression is applied. The com-
pression rate (%) is calculated based on the size of the intermediate
results for the FFT based convolution. E - is the amount of energy
(in %) preserved in the spectral representation: 80, 90 and 95. We
trained ResNet-18 models on CIFAR-10 for 350 epochs. The best
test accuracy levels achieved by the models are: 69.47%, 83.37%
and 88.99%, respectively.

To dive deeper into the effects on SGD, we performed an ex-
periment where we keep the same energy preserved in each
layer and for every epoch. Every epoch we record what is
the physical compression (number of discarded coef�cients)
for each layer. The dynamic compression based on the en-
ergy preserved shows that at the beginning of the training
the network is focused on the low frequency coef�cients and
as the training unfolds, more and more coef�cients are taken
into account, which is shown in Figure 4. The compression
based on preserved energy does not steadily converge to a
certain compression rate but can decrease signi�cantly and
abruptly even at the end of the training process (especially,
for the initial layers).

4.2. Training Compression vs. Inference Compression

Having shown a smooth degradation in performance for var-
ious compression rates, we now study the effect of changing
the compression rates during training and inference phases.
This scenario is useful during dynamic resource allocation
in model serving systems.

Figure 5 illustrates the test accuracy of ResNet-18 and
DenseNet-121 models trained with speci�c coef�cient com-
pression rates (e.g., 0%, 50%, and 85%) while the com-
pression rates are changed systematically during inference.
We observe that the models achieve their best test accu-
racy when the same level of compression is used during
training and inference. In addition, we performed the same

Figure 5.The highest accuracy during testing is for the same com-
pression level as used for training and the test accuracy degrades
smoothly for higher or lower levels of compression. First, we train
models with different compression levels (e.g. DenseNet-121 on
CIFAR-100 with compression rates: 0%, 50%, 75%, and 85%).
Second, we test each model with compression levels ranging from
0% to 85%.

experiment across 25 randomly chosen time-series datasets
from the UCR archive (Chen et al., 2015b) using a 3-layer
Fully Convolutional Network (FCN), which has achieved
state-of-the-art results in prior work (Wang et al., 2017). We
used the Friedman statistical test (Friedman, 1937) followed
by the post-hoc Nemenyi test (Nemenyi, 1962) to assess
the performance of multiple compression rates during in-
ference over multiple datasets (see supplementary material
for details). Our results suggest that the best test accuracy
is achieved when the same compression rate is used during
training and inference and, importantly, the difference in
accuracy is statistically signi�cantly better in comparison to
the test accuracy achieved with different compression rate
during inference.

Overall, our experiments show that band-limited CNNs
learn the constrained spectrum and perform the best for sim-
ilar constraining during inference. In addition, the smooth
degradation in performance is a valuable property of band-
limited training as it permits outer optimizations to tune the
compression rate parameter without unexpected instabilities
or performance cliffs.

4.3. Comparison Against Reduced Precision Method

Until now, we have demonstrated the performance of band-
limited CNNs in comparison to the full spectra counterparts.
It remains to show how the compression mechanism com-
pares against a strong baseline. Speci�cally, we evaluate
band-limited CNNs against CNNs using reduced precision


