
Supplementary Material For
GDPP: Learning Diverse Generations using Determinantal Point Process

A. Experimental Details
To ensure a fair comparison, we use the same architecture and experimental setting for all competing methods.

A.1. Architecture

FC-128

Tan
h

FC-128

Tan
h

FC-2

Z

Generator

FC-128

Tanh

Tanh

FC-128

FC-1

Sigmoid

(x,y)

�휙

(true, false)

linear

Discriminator

FC-4096

BatchNorm

Relu

Reshape

Deconv2d-128

BatchNorm

Relu

Deconv2d-64

BatchNorm

Relu

Deconv2d-28*28*3

Sigmoid

Z

Generator

Conv2D-64

BatchNorm

L-Relu

Reshape

Conv2D-128

BatchNorm

L-Relu

Conv2D-256

BatchNorm

L-Relu

FC-1

Sigmoid

Image

�휙

(true, false)

Discriminator

(a) (b)

Figure 1. Architecture employed in (a) Synthetic experiments. (b) Stacked-MNIST and CIFAR-10 experiments.



Supplementary Material For GDPP

A.2. Hyperparameters

In all of our experiments, we use Adam Optimizer with β1 = 0.5 and ε = 1× 10−8. For the synthetic data experiments, we
follow the configurations used by (Srivastava et al., 2017) and (Metz et al., 2017). We use 1× 10−4 for the discriminator
learning rate, and 1×10−3 for the generator learning rate. For synthetic data, we use a batch size of 512. For Stacked-MNIST
and CIFAR-10 we use a batch size of 64. For CelebA, we use a batch size of 16.

For the Stacked MNIST, CIFAR-10 and CelebA datasets, we use 2× 10−4 as the learning rate for both of the generator and
the discriminator. To relatively stabilize the training of DCGAN, we follow the protocol in (Gulrajani et al., 2017) to train it
by applying a learning rate scheduler. The decay is to happen with a ratio of 1/(#max− iters) at every iteration.

In our experiments, we used the official implementations of: WGAN (Arjovsky et al., 2017)1, WGAN-GP (Gulrajani
et al., 2017)2, DCGAN (Radford et al., 2015)3, ALI (Dumoulin et al., 2017)4, VEEGAN (Srivastava et al., 2017)5 and
DeLiGAN (Gurumurthy et al., 2017)6.

B. Synthetic Data Collections
The first data collection is introduced in (Metz et al., 2017) as a mixture of eight 2D Gaussian distributions arranged in
a ring. This distribution is the easiest to mimic since it only requires the generated data to have an equal repulsion from
the center of the distribution, even if it is not targeted to the modes. The second and third collections were introduced by
(Srivastava et al., 2017). In the second collection, there is a mixture of twenty-five 2D Gaussian distributions arranged in a
grid. Unlike the first collection, this one requires a more structured knowledge of the true data modes’ locations. The last
collection is a mixture of ten 700 dimensional Gaussian distributions embedded in a 1200 dimensional space. This mixture
arrangement mimics the higher dimensional manifolds of natural images and demonstrates the effectiveness of each method
on manipulating sparse patterns.

C. Additional Experiments
C.1. Invariance to Poor Initialization

Since the weights of the generator are being initialized using a random number generator N (0, 1), the result of a generative
model may be affected by poor initializations. In Figure 2 we show qualitative examples on 2D Grid data, where we use
high standard deviation for the random number generator (i.e., σ > 100) as an example of poor initializations. Evidently,
GDPP-GAN attains the true-data structure manifold even with poor initializations. On the other extreme, WGAN-GP tends
to map the input noise to a disperse distribution covering all modes but with low-quality generations.

C.2. (Srivastava et al., 2017) Experimental Setting on Real Data

To show the robustness of our approach to the experimental setting, we further examine it under another more challenging
setting. The setting described in (Srivastava et al., 2017) entails an architecture and hyperparameters that produce relatively
poor results as compared with the setting of Table 3. For example, In (Srivastava et al., 2017) setting, DCGAN produces 99
modes, while in our experimental setting, DCGAN produces 427 modes on Stacked MNIST dataset. We note that our main
results in Table 3 are computed using the same experimental setting suggested by (Gulrajani et al., 2017) and (Metz et al.,
2017) on a more realistic architecture. Our method remains to have a clear advantage when compared to the rest of the
baselines for both CIFAR-10 and Stacked-MNIST (e.g., covering 90.6% more modes on Stacked-MNIST from 150 to 286
and at a higher quality). We obtain the first four rows from (Srivastava et al., 2017).

1https://github.com/martinarjovsky/WassersteinGAN
2https://github.com/igul222/improved_wgan_training
3https://github.com/carpedm20/DCGAN-tensorflow
4https://github.com/IshmaelBelghazi/ALI
5https://github.com/akashgit/VEEGAN
6https://github.com/val-iisc/deligan

https://github.com/martinarjovsky/WassersteinGAN
https://github.com/igul222/improved_wgan_training
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/IshmaelBelghazi/ALI
https://github.com/akashgit/VEEGAN
https://github.com/val-iisc/deligan


Supplementary Material For GDPP

Figure 2. The effect of poor initialization on generations: GDPP-GAN models true manifold structure even with poor initializations, while
WGAN-GP maps noise to disperse distribution covering the modes with low quality samples.

Stacked-MNIST CIFAR-10
#Modes (Max 1000) KL div. IvO

DCGAN (Radford et al., 2016) 99 3.4 0.00844
ALI (Dumoulin et al., 2017) 16 5.4 0.0067
Unrolled-GAN (Metz et al., 2017) 48.7 4.32 0.013
VEEGAN (Srivastava et al., 2017) 150 2.95 0.0068
GDPP-GAN (Ours) 286 2.12 0.0051

Table 1. Performance on real datasets using the challenging experimental setting of (Srivastava et al., 2017). GDPP-GAN continues to
outperform all baselines on both Stacked-MNIST and CIFAR-10 for all metrics.

C.3. Eigendecomposition Running time

Eigendecomposition of an n× n matrix requires O(n3 + n2 log2 n log b) runtime within a relative error bound of 2−b as
shown in (Pan & Chen, 1999). In our GDPP loss, we perform two eigendecompositions every training iteration: LSB

, LDB

corresponding to the fake and true DPP kernels respectively. Therefore, the run-time analysis of our loss is O(n3) at every
iteration, where n is the batch size.

Normally the batch size does not exceed 1024 for most training paradigms due to memory constraints. In our experiments,
we used 512 for synthetic data and 64 or 16 for real data. Hence, the eigendecomposition does not account for a significant
delay in the method.

To further verify this claim, we measured the relative time that eigendecompositions take of each iteration time. We
obtained 11.61% for Synthetic data, 9.36% for Stacked-MNIST data and 8.27% for CIFAR-10. Additionally, Table 4 in the
original text shows that our method obtains the closest running time to the standard DCGAN, and is faster than the rest
of baselines by a large margin (e.g., 5.8× faster than WGAN-GP). The large margin in running time between GDPP and
WGAN-GP (Gulrajani et al., 2017) is attributed to two factors. First, WGAN-GP trains the discriminator several times
for every one iteration of the generator, which significantly increase the running time. Second, WGAN-GP calculates the
gradients of the discriminator at every iteration, which is a very computationally expensive operation. On the other hand,
GDPP does not alter the adversarial learning paradigm and only adds an insignificant computation overhead as discussed.

C.4. Number of statistically-Different bins (NDB)

(Richardson & Weiss, 2018) proposed to use a new evaluation metric to assess the severity mode collapse severity in
a generative model. They based their metric on a simple observation: In two sets of samples that represent the same
distribution, the number of samples that fall into a given bin should be the same up to a sampling noise. In other words, if
we clustered the true-data distribution and fake-data distribution to the same number of clusters/bins, then the number of
samples from each distribution in every bin should be similar.



Supplementary Material For GDPP

We follow (Richardson & Weiss, 2018) to compute this metric on MNIST (LeCun, 1998) dataset, and compare our method
with their results in Table 2. We note that we used their open-source implementation of the metric, and we obtained the first
three rows from their paper. We use 20,000 samples from our model and the MNIST training data to compute the NDB/K.

Model K =100 K =200 K =300

Train 0.06 0.04 0.05

MFA (Richardson & Weiss, 2018) 0.14 0.13 0.14
DCGAN (Radford et al., 2016) 0.41 0.38 0.46
WGAN (Arjovsky et al., 2017) 0.16 0.20 0.21

GDPP-GAN 0.11 0.15 0.12

Table 2. NDB/K - numbers of statistically different bins, with significance level of 0.05, divided by the number of bins K.

D. Additional Qualitative Results

(a) GDPP-GAN after 15K iterations. (b) GDPP-VAE after 45K iterations.

Figure 3. Random samples generated on Stacked-MNIST. GDPP-GAN converges faster than GDPP-VAE and generates sharper samples.

(a) Generations by GDPP-GAN after 100K iterations. (b) Generations by WGAN-GP after 200K iterations.

Figure 4. Random samples generated by GDPP-GAN and WGAN-GP respectively in an unsupervised setting. The generations are
qualitatively similar while GDPP-GAN outperforms WGAN-GP quantitatively even though it was trained for half the number of iterations.



Supplementary Material For GDPP

Figure 5. Fixed noise qualitative progression for different models. GDPP-GAN starts synthesizing realistic generations the first with more
diverse patterns than both DCGAN and WGAN-GP.

(a) random samples using WGAN-GP

(b) random samples when adding GDPP loss

Figure 6. Comparing (Karras et al., 2018) without (a) and with our loss (b) after 200,000 training iterations.



Supplementary Material For GDPP

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan. stat, 1050:26, 2017.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., and Courville, A. Adversarially learned
inference. ICLR, 2017.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of Wasserstein GANs. In
NIPS. 2017.

Gurumurthy, S., Sarvadevabhatla, R. K., and Babu, R. V. Deligan: Generative adversarial networks for diverse and limited
data. In CVPR, pp. 4941–4949, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation.
ICLR, 2018.

LeCun, Y. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled generative adversarial networks. ICLR, 2017.

Pan, V. Y. and Chen, Z. Q. The complexity of the matrix eigenproblem. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pp. 507–516. ACM, 1999.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial
networks. ICLR, 2016.

Richardson, E. and Weiss, Y. On gans and gmms. arXiv preprint arXiv:1805.12462, 2018.

Srivastava, A., Valkoz, L., Russell, C., Gutmann, M. U., and Sutton, C. Veegan: Reducing mode collapse in GANs using
implicit variational learning. In NIPS, 2017.


