
Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

A. The Algorithm Analyses

A.1. The Flow/Potential Interpretation

While we study a very general problem, it is very useful to
develop intuition based on the case where A is the vertex-
edge incidence matrix of a graph. In this case we will always
think of the sought solution x as a flow on the graph’s edges.
The corresponding dual object is a set of potentials � defined
on the graph’s vertices.

To be more precise, we consider the following setting. Let
G = (V,E) be an undirected graph. For each edge we
choose an arbitrary orientation, and define E+(v) be the set
of arcs leaving vertex v, and E

�(v) the set of arcs entering
vertex v, for all v.

Letting m = |E|, n = |V |, we consider the matrix A 2
Rn⇥m where

Ave =

8
><

>:

+1 if e 2 E
+(v),

�1 if e 2 E
�(v),

0 otherwise.

One can easily verify that given a vector x 2 Rm defined on
the arcs of the graph (which we will think of as a flow), after
applying the operator A we obtain the demand routed by
this flow Ax 2 Rn, which lives in the space of potentials

defined on the graph’s vertices.

Therefore the `1 minimization problem from 2.3 can be
interpreted as finding the flow x with minimum congestion
which routes the demand b , while the `1 minimization prob-
lem from 2.4 corresponds to finding the minimum cost flow
routing the demand b .

With this interpretation in mind, we proceed to define some
objects that in the case of electrical networks correspond to
energy and electrical flows.

We use weightings of A’s columns c 2 Rm which we refer
to as conductances. We equivalently refer to the reciprocals
r 2 Rm, with r i = 1/ci, which we call resistances. Our
analysis is exclusively based on tracking a potential function
which corresponds to the electrical energy of a flow.
Definition A.1 (Energy of a flow). Given a flow x 2 Rm,
along with a vector of resistances r 2 Rm, we let the energy
of x be

Er (x) = hr ,x 2i .
Overloading this notation, given a vector b 2 Rn, let the
electrical energy be

Er (b) = min
x :Ax=b

Er (x) , (A.1)

in other words this is the minimum energy over all flows
satisfying Ax = b . We drop the argument whenever b is
clear from the context.

A.2. Preliminaries on Electrical Energy

Throughout the paper, our analyses will rely on a potential
function, which in the case of resistor networks corresponds
to the electrical energy. In this section we provide a few
useful facts.
Lemma A.2 (Characterization of Electrical Energy). Given

a vector of resistances r 2 Rm
, we have the following

equivalent characterizations for the electrical energy.

Er (b) = b>
⇣
AD(r)�1A>

⌘+
b (A.2)

= max
�

2 · b>��
mX

i=1

⇣
A>�

⌘2
i

ri
(A.3)

=

0

B@ min
�:b>�=1

mX

i=1

⇣
A>�

⌘2
i

ri

1

CA

�1

. (A.4)

Furthermore, if x is the minimizing flow for the expression

in (A.1), and � is the maximizing set of potentials for the

expression in (A.3), then for all i:

xi = (A>�)i/ri . (A.5)

Since the proof is standard, we defer it to Section B.1.

As a corollary, we can derive a lower bound on the increase
in energy after increasing resistances.
Lemma A.3. Let r , r 0

, and let x =
argminx :Ax=bhr ,x 2i. Then, one has that

Er 0(b) � Er (b) +
mX

i=1

rix
2
i

✓
1� ri

r0i

◆
.

The proof can be found in Section B.3.

We can derive a similar lower bound on the inverse energy,
after increasing conductances.
Lemma A.4. Let � = argmin�:hb,�i=1hc, (A>�)2i.
Then one has that

1

E1/c 0(b)
� 1

E1/c(b)
+

1

E1/c(b)2
·

mX

i=1

ci(A
>�)2i

✓
1� ci

c0i

◆
.

We defer the proof to Section B.2.

A.3. Convergence Proof for `1 Minimization

Having put together all these tools, we are ready to analyze
the algorithms presented in Section 3. We first prove that
`1-MINIMIZATION returns a correct infeasibility certifi-
cate, whenever it returns on line 20. This lemma is key to
understanding the intuition behind the algorithm.

Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

Lemma A.5. Whenever `1-MINIMIZATION returns on

line 20, r/krk1 is a correct approximate infeasibility cer-

tificate in the sense that

Er/krk1
(d) � (1� ")2M2

.

Proof. First notice that by Lemma 2.1, the lower bound
on energy is indeed an approximate infeasibility certificate.
Now we proceed to prove that throughout the iterations of
the algorithm, energy increases at the right rate.

We show that every iteration satisfies the invariant

Er(t+1)(d)� Er(t)(d)

kr (t+1) � r (t)k1
� M

2
. (A.6)

This is easy to verify using Lemma A.3, which lower bounds
the increase in energy after perturbing resistances. We see
that using the perturbation rule defined on line 13 of the
algorithm, energy increases as follows

Er(t+1)(d) � Er(t) +
mX

i=1

r
(t)
i (x(t)

i)2 ·

1� 1

↵
(t)
i

!
.

For every coordinate of r (t) that has changed we see that
the ratio between the contribution to above lower bound of
that specific coordinate, and the increase in resistance is

r
(t)
i (x(t)

i)2
✓
1� 1

↵(t)
i

◆

ri

⇣
↵
(t)
i � 1

⌘ =
(x(t)

i)2

↵
(t)
i

= M
2
.

Therefore, summing up over all coordinates we obtain
the desired inequality. Finally, we notice that initially
Er(0)(d) � 0, and kr (0)k1 = 1. So once kr (t)k1 � 1

" ,
one has that, using (A.6),

Er(t)(d)� Er(0)(d)

kr (t)k1 � 1
� M

2
,

and thus

Er(t)(d) � M
2(kr (t)k1 � 1), and equivalently:

Er(t)/kr(t)k1
(d) � M

2

✓
1� 1

kr (t)k1

◆
� M

2(1� ") ,

which implies what we needed.

Knowing that the algorithm is correct, we can now proceed
and prove that it converges fast (convergence rate can be
slightly improved by using a more careful schedule for M
and "; we defer this improvement to Section C).

Lemma A.6. The algorithm `1-MINIMIZATION returns

a solution after O(m1/3 log(1/")/"+ log(m/")/"2) itera-

tions.

Proof. We show that unless the algorithm returns an approx-
imately feasible solution on lines 11 or 15, then there exists
a coordinate i 2 [m] for which ri increases very fast.

Suppose the algorithm has run for T iterations without re-
turning an approximately feasible solution. Consider the
partial sum of iterates obtained so far s(t0) for some t

0 T .
Since the algorithm did not return on line 11, we know that
ks(t0)k1/t

0 � (1 + ")M . Therefore there exists a coordi-
nate i 2 [m] for which s(t0)

i � (1 + ")Mt
0. In other words,

letting I be the set of iterates that have contributed to s(t0),
one definitely has that

X

t2I

|x (t)| � t
0 · (1 + ")M ,

and thus X

t2I

q
↵
(t)
i � t

0 · (1 + ") ,

where we used the fact that for each iteration t 2 I one has
that

q
↵
(t)
i = |x(t)

i |M due to the perturbation rule defined
on line 13. This implies that restricting ourselves only to
iterations where ↵i increased the corresponding resistance
ri, we have that

X

t2I,↵(t)
i >1

q
↵
(t)
i � t

0
" , (A.7)

By the condition on line 7 we see that for all iterations t 2 I ,
one has q

↵
(t)
i m

1/3
. (A.8)

Also since we only consider the iterations t 2 I with ↵
(t)
i >

1, the rule from line 13 also enforces that for all these
iterations q

↵
(t)
i � 1 + " . (A.9)

Equations (A.7), (A.8) and (A.9) suggest that the product
Q

t2I,↵(t)
i >1

q
↵
(t)
i increases very fast: intuitively the worst

case should occur either when all the factors contribute
equally, either all of them are as small as possible (i.e. 1 +
", or as large as possible, i.e. m

1/3). We formalize this
intuition in Lemma B.1, which implies that

Y

t2I,↵(t)
i >1

q
↵
(t)
i � min

(⇣
m

1/3
⌘ t0"

m1/3
, (1 + ")

t0"
1+"

)
.

Hence setting

t
0 � 10

✓
m

1/3 log(1/")

"
+

log(m/")

"2

◆

suffices to lower bound this product by
p
m/". Since each

iteration a resistance r
(t)
i gets multiplied by the correspond-

ing ↵
(t)
i , and all resistances are initially 1/m, this lower

Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

bound implies that r(t)i � 1/". But this means that the
algorithm will finish execution after the current iteration,
according to the condition on line 5.

Finally, we need to upper bound the number of iterations not
in I; these correspond to those iterations where kx (t)k1 �
m

1/3 · M , so there exists some index i for which ↵
(t)
i �

m
2/3. Therefore some resistance gets multiplied by m

2/3.
Since all resistances are initially 1/m, in the worst case,
each such iteration increases one resistance from 1/m to
m

�1/3. Therefore this can happen at most m1/3 log(1/")/"
times, before the sum of resistances becomes at least 1/",
and the algorithm finishes.

Combining these two cases, we obtain our bound.

We can prove the convergence bound for
`1-MINIMIZATION similarly. The main difference is
that this time we maintain conductances, and the potential
function that enables us to prove convergence is 1/E1/c .

A.4. Convergence Proof for `1-Minimization

Lemma A.7. Whenever `1-MINIMIZATION returns on

line 20, c/kck1 is a correct approximate feasibility cer-

tificate in the sense that

1

Ekck1/c
� 1/(1 + ")2

M2
.

Proof. By Lemma 2.2, this also yields a solution x such
that Ax = b and kxk1

p
Ekxk1/c M(1 + ").

In order to prove that at the end of the execution the `1 norm
of this solution is small enough, this time we track as poten-
tial function the inverse energy 1/E1/c . More precisely, we
show that every iteration satisfies the invariant

1
E
c(t+1) (d)

� 1
E
c(t)

(d)

kc(t+1) � c(t)k1
� 1

M2
. (A.10)

This is easy to verify using Lemma A.4, which lower bounds
the increase in inverse energy after perturbing conductances.
We see that using the perturbation rule defined on line 13 of
the algorithm, inverse energy increases as follows

1

E1/c(t+1)(d)
� 1

E1/c(t)

+
1

E2
1/c(t)

·
mX

i=1

c
(t)
i (A>�(t))2i ·

1� 1

↵
(t)
i

!
.

For every coordinate of c(t) that has changed we see that
the ratio between the contribution to above lower bound of

that specific coordinate, and the increase in conductance is

1

E2
1/c(t)

·
c
(t)
i (A>�(t))2i

✓
1� 1

↵(t)
i

◆

ci

⇣
↵
(t)
i � 1

⌘ =
(A>�(t))2i
E2
1/c(t)

· 1

↵
(t)
i

=

A>�(t))i

b>�(t)

!2

· 1

↵
(t)
i

=
1

M2
,

where we used the fact that b>�(t) = E1/c(t) (Lemma A.2).

Therefore, summing up over all coordinates we obtain the
desired inequality. Since E1/c(0) � 0 and kc(0)k1 = 1, we
know that once kc(t)k1 � 1 + 1

(1+")2�1 = O(1"), one has
that, using (A.10),

1
E
1/c(t)

(d) �
1

E
1/c(0)

(d)

kc(t)k1 � 1
� 1

M2

and thus,

1

E1/c(t)(d)
� kc(t)k1 � 1

M2
, and equivalently:

Ekc(t)k1/c(t)(d) = E(1/c(t))(d) · kc(t)k1

 M
2 · kc(t)k1

kc(t)k1 � 1
 M

2(1 + ")2 ,

which is what we needed.

Next we prove that the algorithm converges fast. Conver-
gence rate can be slightly improved by using a more careful
schedule for M and ", which we defer to Section C.

Lemma A.8. The algorithm `1-MINIMIZATION returns a

solution after O(m1/3 log(1/")/" + log(m/")/"2) itera-

tions.

Proof. The proof follows the lines of the proof we used for
Lemma A.6: unless the algorithm returns an approximate
infeasibility certificate on lines 11 or 15, then there exists a
coordinate i 2 [m] for which ci increases very fast.

Suppose the algorithm has run for T iterations without re-
turning an approximate infeasibility certificate. Consider
the partial sum of iterates obtained so far s(t0) for some
t
0 T . Since the algorithm did not return on line 11, we

know that ks(t0)k1/t
0 � 1

(1�")M , therefore there exists a

coordinate i 2 [m] for which s
(t0)
i � t

0 · 1
(1�")M . In other

words, letting I be the set of iterates that contributed to s(t0),
one has that

s
(t0)
i =

X

t2I

�����
(A>�(t))i

hb,�(t)i

����� � t
0 · 1

(1� ")M

Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

and thus, since by definition ↵
(t)
i =

⇣
(A>�(t))i
b>�(t)

⌘2
·M2,

X

t2I

q
↵
(t)
i � t

0 · 1

1� "
.

Therefore, restricting ourselves only to iterations where ↵i

increased the corresponding conductance ci, we have that

X

t2I,↵(t)
i >1

q
↵
(t)
i � t

0 ·
✓

1

1� "
� 1

◆
� t

0 · " . (A.11)

By the condition on line 7 we see that for all iterations t 2 I ,
one has

q
↵
(t)
i m

1/3
. (A.12)

So considering only the iterations t 2 I with ↵
(t)
i > 1, the

rule from line 13 also enforces that for all these iterations
q
↵
(t)
i � 1

1� "
. (A.13)

Combining Equations (A.11), (A.12), and (A.13), and apply-
ing Lemma B.1, exactly the same way we did in the proof
of Lemma A.6 implies that

Y

t2I,↵(t)
i >1

q
↵
(t)
i � min

8
<

:

⇣
m

1/3
⌘ t0"

m1/3
,

✓
1

1� "

◆ t0"
1/(1�")

9
=

;

So if

t
0 � 10

✓
m

1/3 log(1/")

"
+

log(m/")

"2

◆

once again we have that this product is lower bounded byr
m ·

⇣
1 + 1

(1+")2�1

⌘
, therefore the corresponding con-

ductance c
(T)
i � 1 + 1

(1+")2�1 , since its initial value was
1/m. Since we can only control the total number of it-
erations T , we can lower bound t

0 by showing that the
number of iterations not in I can not be too large. Just
as before, we lower bound the number of iterations where���A>�(t)

b>�(t)

���
1

� m
1/3

/M . Note that whenever this happens,

there exists an index i for which ↵
(t)
i � m

2/3. There-
fore some conductance gets multiplied by m

2/3. Again,
using an identical argument to the one from the proof of
Lemma A.6, we see that this can not happen more than
O(m1/3 log(1/")/") times. Combining this with the suffi-
cient number of iterations required by the other case, we
obtain our bound.

B. Deferred Proofs

B.1. Proof of Lemma A.2

Proof. We can write the formulation from (A.1) as an uncon-
strained optimization problem using Lagrange multipliers:

Er (b) = min
Ax=b

hr ,x 2i = min
x

max
�

hr ,x 2i+ 2h�, b �Ax i

= max
�

min
x

hr ,x 2i+ 2h�, b �Ax i .

By making the gradient with respect to x equal to 0, we see
that the inner minimization problem is optimized at 2ri ·
xi = 2(A>�)i for all i, and equivalently xi = (A>�)i/ri.
Plugging this back into the maximization objective w.r.t. �
we obtain

Er (b) = max
�

⌧
r ,
⇣
D(r)�1A>�

⌘2�

+ 2
D
�, b �AD(r)�1A>�

E

= max
�

2h�, bi � h�,AD(r)�1A>�i

= b>
⇣
AD(r)�1A>

⌘+
b ,

where for the last equality we used that by optimality condi-
tions one must have (AD(r)�1A>)� = b .

Finally, we prove (A.4) by using the fact that for any sym-
metric matrix L and vector b one has that

1

max� 2b
>�� �>L�

= min
�:b>�=1

�>L� ,

which can be seen by observing that both expressions are
optimized at � = L+b , then applying (A.3).

B.2. Proof of Lemma A.4

Proof. We use the following basic inequality: for x, x0
> 0

one has 1
x0 � 1

x + x�x0

x2 , which follows from (x� x
0)2 � 0.

Also, from the definition of energy in (A.1), we obtain an
upper bound on the new energy, after perturbing conduc-
tances. Let x = argminAx=bh1/c,x 2i, i.e. the electrical
flow corresponding to conductances c. We therefore have:

E1/c 0(b)
mX

i=1

1

c0i
x
2
i =

mX

i=1

1

ci
x
2
i +

mX

i=1

1

ci
x
2
i ·
✓
ci

c0i
� 1

◆

= E1/c(b) +
mX

i=1

1

ci
x
2
i

✓
ci

c0i
� 1

◆
.

Using the fact that by optimality, xi = ci(A
>�)i (per

Lemma A.2), and combining with the previous inequality

Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

we obtain

1

E1/c 0(b)
� 1

E1/c(b)
+

1

E1/c(b)2
·
�
E1/c(b)� E1/c 0(b)2

�

� 1

E1/c(b)
+

1

E1/c(b)2
·

mX

i=1

ci(A
>�)2i

✓
1� ci

c0i

◆
,

which is what we wanted.

B.3. Proof of Lemma A.3

Proof. We use the characterization from Equation A.3 for
characterizing electrical energy. Let � be the argument
that maximizes (A.3) for resistances r . We certify a lower
bound on Er 0(b) using � as follows:

Er 0(b) � 2 · b>��
mX

i=1

⇣
A>�

⌘2
i

r0i

= 2 · b>��
mX

i=1

⇣
A>�

⌘2
i

ri

+
mX

i=1

⇣
A>�

⌘2
i

ri
·
✓
1� ri

r0i

◆

= Er (b) +
mX

i=1

⇣
A>�

⌘2
i

ri
·
✓
1� ri

r0i

◆
.

Finally substituting the relation between flows and potentials
from Lemma A.2, Equation (A.5), we obtain the desired
claim.

B.4. Lower Bound Lemma

Lemma B.1. Let a set of nonnegative reals �1, . . . ,�k such

that 1 + " �i ⇢ for all i, and
Pk

i=1 �i � S. Then, for

any k, one has that

kY

i=1

�i � min{⇢S/⇢, (1 + ")S/(1+")} .

Proof. Consider a fixed k, and let us attempt to minimize
the product of �i’s subject to the constraints. Equivalently
we want to minimize

Pk
i=1 log(�i), which is a concave

function. Therefore its minimizer is attained on the bound-
ary of the feasible domain. This means that for some
0 k

0 k�1, there are k0 elements equal to 1+", k�1�k
0

equal to ⇢, and one which is exactly equal to the remaining
budget, i.e. S� k

0(1+ ")� (k� 1� k
0)⇢, which yields the

product (1 + ")k
0
⇢
k�k0�1(S � k

0(1 + ")� (k � 1� k
0)⇢).

This can be relaxed by allowing k and k
0 to be non-integral.

Hence we aim to minimize the product (1 + ")k
0
⇢
k�k0

, sub-
ject to (1 + ")k0 + ⇢(k � k

0) = S. Finally, we observe

that we can always obtain a better solution by placing all
the available mass on a single one of the factors, i.e. we
lower bound either by (1 + ")S/(1+"), or ⇢S/⇢, whichever
is lowest.

C. Using Phases to Improve the Iteration

Count

In this section, we show that via minor modifications
to our algorithms, we can improve the number of itera-
tions to O

⇣
m1/3 log(1/")

"2/3
+ logm

"2

⌘
thus obtaining the bound

promised by Theorem 1.1. This relies on the observation
that the entire difficulty of the problem is concentrated on
improving the quality of a solution from (1 � 2")M to
(1 � ")M . For conciseness, let us focus on the `1 case,
and consider the convergence argument described in Sec-
tions A.3. Our goal there is to increase the sum of resistances
to 1/", since our argument assumes that the initial energy
could be arbitrarily small.

However, if we assume that we warm start the method with a
set of resistances r0, kr0k1 = 1, for which the correspond-
ing energy is already large enough, Er0 � (1 � 2")2M2,
we only need to iterate until we obtain a set of resistances
r such that krk1 = 3 (rather than 1/") in order to certify
that the current energy/resistance ratio is as large as desired,
i.e. Er/krk1 � (1 � ")2M2. This in turn improves the
number of iterations the algorithm needs before it returns.
We expand these ideas in what follows.

Now, suppose we have a set of resistances r0, such that
kr0k1 = 1 and Er0 � (1 � 2")2M2. Let us analyze the
number of iterations of the method described in Section A.3
that we require before we can return r such that Er/krk1 �
(1� ")2M2 or a solution x such that kxk1 (1 + ")M .

First, we claim that if each update satisfies the invariant from
Equation (A.6), then we can stop iteration once krk1 = 3.
Indeed, in this case, one has that

Er
krk1

=
Er0 + (Er � Er0)

kr0k1 + kr � r0k1

� (1� 2")2M2 + kr � r0k1M2

1 + kr � r0k1

� M
2

✓
1� 4"

1 + kr � r0k1

◆

� M
2(1� ")2 ,

whenever kr � r0k1 � 3.

The remaining analysis is carried over almost identically,
except that the threshold set on line 7 is changed to ⇢ = "m,
and our goal is to get

Q
t2I,↵(t)

i >1
↵i �

p
3m.

For the iterations that satisfy this threshold, by applying
Lemma B.1 we see that it is sufficient to witness a small

Improved Convergence for `1 and `1 Regression via Iteratively Reweighted Least Squares

number t0 of such iterations such that

min
n
⇢

t0"
⇢ , (1 + ")

t0"
1+"

o
�

p
3m,

so t
0 = ⇥

⇣
⇢
" · logm

log ⇢ + logm
"2

⌘
suffices.

For the iterations that do not satisfy the threshold, in the
worst case, each of them increases one resistance from 1/m
to ⇢

2
/m so this can happen at most O(m/⇢

2) times.

Setting ⇢ = ("m)1/3 we get that the total number of itera-
tions is at most O

⇣
m1/3

"2/3
log(1/") + logm

"2

⌘
.

All of this holds assuming we have a good warm start for
resistances. We obtain it by recursively invoking the same
method for target value (1� 1.75")2M2, and .25" accuracy.
In case of failure, this returns a vector x which certainly
satisfies kxk1 M , so this concludes the entire run on the
algorithm; otherwise, it returns a certificate consisting of
resistances for which the ratio between the corresponding
energy and `1 norm is at least (1� 2")2M2, so they can be
used as a warm start.

Recursion ends once " � 1/2. We note that since the desired
accuracy gets increased by a constant factor after each level
of recursion, the total number of iterations is dominated
by those performed at the top level (i.e. for the lowest ").
Hence our result.

Note that this method can also be implemented slightly more
naturally by running Algorithm 1 with a varying schedule
for M and ".

Improving the number of iterations for `1 minimization is
done analogously.

D. From Approximate Decision to

Approximate Optimization

Our algorithms are designed to solve an approximate de-
cision problem, given a guess for the value of the optimal
solution. While this follows from a standard reduction, for
the sake of completeness we prove here that this is sufficient
to optimize the problem approximately without paying more
than an additional constant overhead in running time.

To be more specific, let us first focus on `1 minimization.
Theorem 1.1 states that given a guess M and accuracy ", the
algorithm either returns an approximately feasible solution
with value kxk1 (1+ ")M , or an infeasibility certificate
certifying that kx ⇤k1 � (1� ")M . Hence this restricts the
search interval for the true value either within the interval
[0, (1 + ")M] or [(1� ")M,1).

We initialize our search interval to [kx 0k2/
p
m, kx 0k1]

where x 0 is the initial iterate obtained with uniform resis-
tances. Using Lemma 2.1 we easily verify that kx 0k2/

p
m

is indeed a lower bound on kx ⇤k1, since energy lower
bounds the squared optimal value.

Given a search interval [L,U], we let M =
p
LU , "̃ =

min
n

1
2 ,
�
U
L

�1/6 � 1
o

. We invoke Theorem 1.1 for target
value M and accuracy "̃. Depending on the outcome we
update the search interval to [L, (1+ "̃)M] or [(1� "̃)M,U].

When U/L 1+"/4 we stop the search, call the algorithm
for target value U(1+"/4) and accuracy "/4

1+"/4 , then output
the approximately feasible iterate returned by the algorithm.
The fact that this call indeed returns an approximately feasi-
ble iterate follows from the fact that U is certainly feasible,
since this is an invariant maintained by our search, and that
if the algorithm were to return an infeasibility certificate it
must have needed that U(1 + "/4)(1� "/4

1+"/4) < U , which
is false. Thus we know that the returned solution has value
at most U(1 + "/4)(1 + "/4

1+"/4) L(1 + "), so it satisfies
the desired approximation guarantee.

Finally, we analyze the cost of the search. Note that each
iteration of the search reduces logU � logL be a con-
stant factor, and it stops whenever it becomes at most
log(1 + "/4) = ⇥("). For as long as U/L > (3/2)6, the
algorithm is invoked with accuracy 1/2, and logU � logL
gets reduced by a constant factor, so this happens at most
O(log logm) times. Once U/L becomes small enough, i.e.
logU� logL < 6 log(3/2), we use accuracy exp((logU�
logL)/6)�1 = ⇥(log(U/L)). Note that from Theorem 1.1
we know that the number of iterations of the algorithm for a
single invocation depends on 1/"̃c, where c is a fixed con-
stant; due to our schedule for choosing "̃, the total cost of
this sequence of invocations is dominated by the cost of the
final one, where "̃ = ⇥(").

So letting T (") be the number of iterations required
by the algorithm from Theorem 1.1 to solve the ap-
proximate decision problem to accuracy ", we have that
solving the approximate optimization problem requires
O (T (1/2) log logm+ T (")) iterations.

The `1 minimization problem is treated similarly, so we
omit its description.

	Introduction
	Main Theorem
	Relation to Previous IRLS Methods and Slime-Mold Dynamics

	Preliminaries
	Basic Notation
	Proof Technique
	Approximate Solutions and Infeasibility Certificates

	The Algorithms
	The Minimization Algorithm
	The 1 Minimization Algorithm

	Experiments
	The Algorithm Analyses
	The Flow/Potential Interpretation
	Preliminaries on Electrical Energy
	Convergence Proof for Minimization
	Convergence Proof for 1-Minimization

	Deferred Proofs
	Proof of Lemma A.2
	Proof of Lemma A.4
	Proof of Lemma A.3
	Lower Bound Lemma

	Using Phases to Improve the Iteration Count
	From Approximate Decision to Approximate Optimization

