A. Proofs

A.1. Optimistic Follow-the-Regularized-Leader

We offer a proof of Theorem 8.

First, we introduce the following argmin-function:

$$\tilde{x}: \boldsymbol{L} \mapsto \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{X}} \left\{ \langle \boldsymbol{x}, \boldsymbol{L} \rangle + \frac{1}{\eta} R(\boldsymbol{x}) \right\}.$$
(18)

Furthermore, let $L^t := \sum_{\tau=1}^t \ell^{\tau}$. With this notation, the decisions produced by OFTRL, as defined in (8), can be expressed as $\boldsymbol{x}^t = \tilde{x}(\boldsymbol{L}^{t-1} + \boldsymbol{m}^t)$.

Continuity of the argmin-function. The first step in the proof is to study the continuity of the argmin-function \tilde{x} . Intuitively, the role of the regularizer R is to *smooth out* the linear objective function $\langle \cdot, L \rangle$. So, it seems only reasonable to expect that, the higher the constant that multiplies R, the less the argmin $\tilde{x}(L)$ is affected by small changes of L. In fact, the following holds:

Lemma 5. The argmin-function \tilde{x} is η -Lipschitz continuous with respect to the dual norm, that is

$$\|\tilde{x}(\boldsymbol{L}) - \tilde{x}(\boldsymbol{L}')\| \le \eta \|\boldsymbol{L} - \boldsymbol{L}'\|_*.$$

Proof. The variational inequality for the optimality of $\tilde{x}(L)$ implies

$$\left\langle L + \frac{1}{\eta} \nabla R(\tilde{x}(\boldsymbol{L})), \tilde{x}(\boldsymbol{L}') - \tilde{x}(\boldsymbol{L}) \right\rangle \ge 0.$$
 (19)

Symmetrically for $\tilde{x}(L')$, we find that

$$\left\langle L' + \frac{1}{\eta} R(\tilde{x}(L')), \tilde{x}(L) - \tilde{x}(L') \right\rangle \ge 0.$$
(20)

Summing inequalities 19 and 20, we obtain

$$\frac{1}{\eta} \left\langle \nabla R(\tilde{x}(\boldsymbol{L})) - \nabla R(\tilde{x}(\boldsymbol{L}')), \tilde{x}(\boldsymbol{L}) - \tilde{x}(\boldsymbol{L}') \right\rangle \leq \left\langle \boldsymbol{L}' - \boldsymbol{L}, \tilde{x}(\boldsymbol{L}) - \tilde{x}(\boldsymbol{L}') \right\rangle.$$

Using strong convexity of $R(\cdot)$ on the left-hand side and the generalized Cauchy-Schwarz inequality on the right-hand side, we obtain

$$\frac{1}{\eta} \|\tilde{x}(\boldsymbol{L}) - \tilde{x}(\boldsymbol{L}')\|^2 \le \|\tilde{x}(\boldsymbol{L}) - \tilde{x}(\boldsymbol{L}')\| \|\boldsymbol{L} - \boldsymbol{L}'\|_*,$$

and dividing by $\|\tilde{x}(L) - \tilde{x}(L')\|$ we obtain the Lipschitz continuity of the argmin-function \tilde{x} .

A direct consequence of Lemma 5 is the following corollary, which measures the stability (small step size) of the decisions output by OFTRL:

Corollary 2. At each time t, the iterates produced by OFTRL satisfy $\|\mathbf{x}^t - \mathbf{x}^{t-1}\| \leq 3\eta \Delta_{\ell}$.

Proof.

$$\begin{aligned} \|\boldsymbol{x}^{t} - \boldsymbol{x}^{t-1}\| &= \left\| \tilde{x}(\boldsymbol{L}^{t-1} + \boldsymbol{m}^{t}) - \tilde{x}(\boldsymbol{L}^{t-2} + \boldsymbol{m}^{t-1}) \right\| \\ &\leq \eta \|\boldsymbol{\ell}^{t-1} + \boldsymbol{m}^{t} - \boldsymbol{m}^{t-1}\|_{*} \leq 3\eta \Delta_{\ell}, \end{aligned}$$

where the first inequality holds by Lemma 5 and the second one by definition of Δ_{ℓ} and the triangle inequality.

The rest of the proof, specifically the predictivity parameters α and β of OFTRL follow directly from the proof of Theorem 19 in the appendix of Syrgkanis et al. (2015).

A.2. Regret Bounds

Lemma 1. For all $k \in \mathcal{K}$, $R_k^{\Delta,T} = \sum_{j \in \mathcal{C}_k} R_j^{\Delta,T}$.

Proof. By definition of $R_k^{\triangle,T}$,

$$R_k^{\triangle,T} = \sum_{t=1}^T \langle \boldsymbol{\ell}_k^{\triangle,t}, \boldsymbol{x}_k^{\triangle,t} \rangle - \min_{\tilde{\boldsymbol{x}}_k^{\triangle} \in X_k^{\triangle}} \sum_{t=1}^T \langle \boldsymbol{\ell}_k^{\triangle,t}, \tilde{\boldsymbol{x}}_k^{\triangle} \rangle.$$

By using (12) and (11), we can break the dot products and the minimization problem into independent parts, one for each $j \in C_k$:

$$\begin{split} R_k^{\triangle,T} &= \sum_{j \in \mathcal{C}_k} \sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \boldsymbol{x}_j^{\triangle,t} \rangle - \sum_{j \in \mathcal{C}_k} \min_{\tilde{\boldsymbol{x}}_j^{\triangle} \in X_j^{\triangle}} \sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \tilde{\boldsymbol{x}}_j^{\triangle} \rangle \\ &= \sum_{j \in \mathcal{C}_k} \left(\sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \boldsymbol{x}_j^{\triangle,t} \rangle - \min_{\tilde{\boldsymbol{x}}_j^{\triangle} \in X_j^{\triangle}} \sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \tilde{\boldsymbol{x}}_j^{\triangle} \rangle \right) \\ &= \sum_{j \in \mathcal{C}_k} R_j^{\triangle,T}, \end{split}$$

as we wanted to show.

Lemma 2. For all
$$j \in \mathcal{J}$$
, $R_j^{\triangle,T} \leq \hat{R}_j^T + \max_{k \in \mathcal{C}_j} R_k^{\triangle,T}$.

Proof. By definition of $R_j^{\triangle,T}$,

$$R_j^{\triangle,T} = \sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \boldsymbol{x}_j^{\triangle,t} \rangle - \min_{\tilde{\boldsymbol{x}}_j^\triangle \in X_j^\triangle} \sum_{t=1}^T \langle \boldsymbol{\ell}_j^{\triangle,t}, \tilde{\boldsymbol{x}}_j^\triangle \rangle.$$

By combining (13) and (11), we can break the dot products and the minimization problem into independent parts, one for each $k \in C_j$, as well as a part that depends solely on \hat{x}_j :

$$\begin{split} R_{j}^{\triangle,T} &= \sum_{t=1}^{T} \left(\langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \hat{\boldsymbol{x}}_{j}^{t} \rangle + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \hat{\boldsymbol{x}}_{j}^{t} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \boldsymbol{x}_{k}^{\triangle,t} \rangle \right) \\ &- \min_{\tilde{\boldsymbol{x}}_{j} \in \Delta^{n_{j}}} \left\{ \left(\sum_{t=1}^{T} \langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \tilde{\boldsymbol{x}}_{j} \rangle \right) + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \tilde{\boldsymbol{x}}_{ja} \left(\min_{\tilde{\boldsymbol{x}}_{k}^{\triangle} \in X_{k}^{\triangle}} \sum_{t=1}^{T} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \tilde{\boldsymbol{x}}_{k}^{\triangle} \rangle \right) \right\} \\ &= \sum_{t=1}^{T} \left(\langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \hat{\boldsymbol{x}}_{j}^{t} \rangle + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \hat{\boldsymbol{x}}_{ja}^{t} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \boldsymbol{x}_{k}^{\triangle,t} \rangle \right) \\ &- \min_{\tilde{\boldsymbol{x}}_{j} \in \Delta^{n_{j}}} \left\{ \left(\sum_{t=1}^{T} \langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \tilde{\boldsymbol{x}}_{j} \rangle \right) + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \tilde{\boldsymbol{x}}_{ja} \left(-R_{k}^{\triangle,T} + \sum_{t=1}^{T} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \boldsymbol{x}_{k}^{\triangle,t} \rangle \right) \right\} \end{split}$$

$$\leq \sum_{t=1}^{T} \left(\langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \hat{\boldsymbol{x}}_{j}^{t} \rangle + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \hat{\boldsymbol{x}}_{j}^{t} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \boldsymbol{x}_{k}^{\triangle,t} \rangle \right) \\ - \min_{\tilde{\boldsymbol{x}}_{j} \in \Delta^{n_{j}}} \left\{ \sum_{t=1}^{T} \left(\langle [\boldsymbol{\ell}_{j}^{\triangle,t}]_{j}, \tilde{\boldsymbol{x}}_{j} \rangle + \sum_{\substack{a \in A_{j} \\ k = \rho(j,a)}} \tilde{\boldsymbol{x}}_{ja} \langle \boldsymbol{\ell}_{k}^{\triangle,t}, \boldsymbol{x}_{k}^{\triangle,t} \rangle \right) \right\} + \max_{\tilde{\boldsymbol{x}}_{j} \in \Delta^{n_{j}}} \sum_{a \in A_{j}} \tilde{\boldsymbol{x}}_{ja} R_{k}^{\triangle,T},$$

where the equality follows by the definition of $R_k^{\Delta,T}$, and the inequality follows from breaking the minimization of a sum into a sum of minimization problems. By identifying the difference between the first two terms as the counterfactual regret \hat{R}_j^T (that is, the regret of $\hat{\mathcal{R}}_j$ up to time T), we obtain

$$R_j^{\Delta,T} \le \hat{R}_j^T + \max_{\tilde{\boldsymbol{x}}_j \in \Delta^{n_j}} \sum_{k \in \mathcal{C}_j} \tilde{\boldsymbol{x}}_{ja} R_k^{\Delta,T} = \hat{R}_j^T + \max_{k \in \mathcal{C}_j} R_k^{\Delta,T},$$

as we wanted to show.

A.3. Stable-Predictive Regret Minimizer

We will prove both Lemma 3 and Lemma 4 with respect to the 2-norm. This does not come at the cost of generality, since all norms are equivalent on finite-dimensional vector spaces, that is, for every choice of norm $\|\cdot\|$, there exist constants m, M > 0 such that for all $\boldsymbol{x}, m \|\boldsymbol{x}\| \le \|\boldsymbol{x}\|_2 \le M \|\boldsymbol{x}\|$.

Lemma 3. Let $k \in \mathcal{K}$ be an observation node, and assume that $\mathcal{R}_{j}^{\triangle}$ is a $(\gamma_{j}, O(1), O(1))$ -stable-predictive regret minimizer over the sequence-form strategy space X_{j}^{\triangle} for each $j \in C_{k}$. Then, $\mathcal{R}_{k}^{\triangle}$ is a $(\gamma_{k}, O(1), O(1))$ -stable-predictive regret minimizer over the sequence-form strategy space X_{k}^{\triangle} .

Proof. By hypothesis, for all $j \in C_k$ we have

$$R_{j}^{\Delta,T} \leq \frac{O(1)}{\gamma_{j}} + O(1)\gamma_{j} \sum_{t=1}^{T} \|\boldsymbol{\ell}_{j}^{\Delta,t} - \boldsymbol{m}_{j}^{\Delta,t}\|_{2}^{2}$$
(21)

and

$$\|\boldsymbol{x}_{j}^{\triangle,t} - \boldsymbol{x}_{j}^{\triangle,t-1}\|_{2} \leq \gamma_{j},\tag{22}$$

where $x_j^{ riangle,t}$ is the decision output by $\mathcal{R}_j^{ riangle}$ at time t.

Substituting (21) into the regret bound of Lemma 1:

$$R_{k}^{\Delta,T} \leq O(1) \sum_{j \in \mathcal{C}_{k}} \frac{1}{\gamma_{j}} + O(1) \sum_{j \in \mathcal{C}_{k}} \sum_{t=1}^{T} \gamma_{j} \|\boldsymbol{\ell}_{j}^{\Delta,t} - \boldsymbol{m}_{j}^{\Delta,t}\|_{2}^{2}$$

$$\leq O(1) \frac{n_{k}^{3/2}}{\gamma_{k}} + O(1) \frac{\gamma_{k}}{\sqrt{n_{k}}} \sum_{t=1}^{T} \sum_{j \in \mathcal{C}_{k}} \|\boldsymbol{\ell}_{j}^{\Delta,t} - \boldsymbol{m}_{j}^{\Delta,t}\|_{2}^{2}$$

$$= \frac{O(1)}{\gamma_{k}} + O(1) \gamma_{k} \sum_{t=1}^{T} \|\boldsymbol{\ell}_{k}^{\Delta,t} - \boldsymbol{m}_{k}^{\Delta,t}\|_{2}^{2}$$
(23)

where the second inequality comes from substituting the value $\gamma_j = \gamma_k / \sqrt{n_k}$ as per (14), and the equality comes from the fact that the $\ell_j^{\triangle,t}$ and $m_j^{\triangle,t}$ form a partition of the vectors $\ell_k^{\triangle,t}$ and $m_k^{\triangle,t}$, respectively.

We now analyze the stability properties of $\mathcal{R}_k^{\triangle}$:

$$\|\boldsymbol{x}_{k}^{\triangle,t} - \boldsymbol{x}_{k}^{\triangle,t-1}\|_{2} = \sqrt{\sum_{j \in \mathcal{C}_{k}} \|\boldsymbol{x}_{j}^{\triangle,t} - \boldsymbol{x}_{j}^{\triangle,t-1}\|_{2}^{2}} \leq \sqrt{\sum_{j \in \mathcal{C}_{k}} \gamma_{j}^{2}} = \gamma_{k},$$

where the first equality follows from (1), the inequality holds by (22) and the second equality holds by substituting the value $\gamma_j = \gamma_k / \sqrt{n_k}$ as per (14). This shows that $\mathcal{R}_k^{\triangle}$ is γ_k -stable. Combining this with the predictivity bound (23) above, we obtain the claim.

Lemma 4. Let $j \in \mathcal{J}$ be a decision node, and assume that $\mathcal{R}_k^{\bigtriangleup}$ is a $(\gamma_k, O(1), O(1))$ -stable-predictive regret minimizer over the sequence-form strategy space X_k^{\bigtriangleup} for each $k \in C_j$. Suppose further that $\hat{\mathcal{R}}_j$ is a $(\kappa_j, O(1), O(1))$ -stable-predictive regret minimizer over the simplex Δ^{n_j} . Then, $\mathcal{R}_j^{\bigtriangleup}$ is a $(\gamma_k, O(1), O(1))$ -stable-predictive regret minimizer over the sequence-form strategy space X_j^{\bigtriangleup} .

Proof. By hypothesis, for all $k \in C_j$ we have

$$R_{k}^{\Delta,T} \leq \frac{O(1)}{\gamma_{k}} + O(1)\gamma_{k} \sum_{t=1}^{T} \|\boldsymbol{\ell}_{k}^{\Delta,t} - \boldsymbol{m}_{k}^{\Delta,t}\|_{2}^{2}$$
(24)

and

$$\|\boldsymbol{x}_{k}^{\Delta,t} - \boldsymbol{x}_{k}^{\Delta,t-1}\|_{2} \le \gamma_{k}.$$
(25)

We substitute (24) into the regret bound of Lemma 2. The key observation is that the loss vector—and their predictions entering the subtree rooted at k ($k \in C_j$) are simply forwarded from j; with this, we obtain:

$$R_{\Delta_j}^T \le \hat{R}_j^T + \frac{O(1)}{\gamma_k} + O(1)\gamma_k \sum_{t=1}^T \|\boldsymbol{\ell}_j^{\Delta,t} - \boldsymbol{m}_j^{\Delta,t}\|_2^2.$$
(26)

On the other hand, by hypothesis $\hat{\mathcal{R}}_j$ is a $(\kappa_j, O(1), O(1))$ -stable-predictive regret minimizer. Hence,

$$\hat{R}_{j}^{T} \leq \frac{O(1)}{\kappa_{j}} + O(1)\kappa_{j} \sum_{t=1}^{T} \|\hat{\ell}_{j}^{t} - \hat{m}_{j}^{t}\|_{2}^{2}$$
$$= \frac{O(1)}{\gamma_{j}} + O(1)\gamma_{j} \sum_{t=1}^{T} \|\ell_{j}^{\Delta,t} - m_{j}^{\Delta,t}\|_{2}^{2},$$
(27)

where the equality comes from the definition of κ_j (Equation (15)) and the fact that

$$\begin{split} \|\hat{\boldsymbol{\ell}}_{j}^{t} - \hat{\boldsymbol{m}}_{j}^{t}\|_{2}^{2} &\leq \sum_{k \in \mathcal{C}_{j}} \|\boldsymbol{x}_{k}^{\triangle,t}\|_{2}^{2} \cdot \|\boldsymbol{\ell}_{k}^{\triangle,t} - \boldsymbol{m}_{k}^{\triangle,t}\|_{2}^{2} \\ &\leq \|\boldsymbol{\ell}_{j}^{\triangle,t} - \boldsymbol{m}_{j}^{\triangle,t}\|_{2}^{2} \sum_{k \in \mathcal{C}_{j}} B_{k}^{2} \\ &= O(1)\|\boldsymbol{\ell}_{j}^{\triangle,t} - \boldsymbol{m}_{j}^{\triangle,t}\|_{2}^{2}. \end{split}$$

By substituting (27) into (26) and noting that $\gamma_k = O(1)\gamma_j$, we obtain

$$R_j^{\triangle,T} \le \frac{O(1)}{\gamma_j} + O(1)\gamma_j \sum_{t=1}^T \|\boldsymbol{\ell}_j^{\triangle,t} - \boldsymbol{m}_j^{\triangle,t}\|_2^2,$$

which establishes the predictivity of $\mathcal{R}_{i}^{\triangle}$.

To conclude the proof, we show that $\mathcal{R}_j^{\triangle}$ has stability parameter γ_j . To this end, note that by (2)

$$\begin{aligned} \|\boldsymbol{x}_{j}^{\triangle,t} - \boldsymbol{x}_{j}^{\triangle,t-1}\|_{2}^{2} &= \left\| \left(\sum_{a \in A_{j}} \hat{\boldsymbol{x}}_{ja}^{t} \boldsymbol{x}_{ja}^{\triangle,t} \right) - \left(\sum_{a \in A_{j}} \hat{\boldsymbol{x}}_{ja}^{t-1} \boldsymbol{x}_{ja}^{\triangle,t-1} \right) \right\|_{2}^{2} + \|\hat{\boldsymbol{x}}_{j}^{t} - \hat{\boldsymbol{x}}_{j}^{t-1}\|_{2}^{2} \\ &\leq \|\hat{\boldsymbol{x}}_{j}^{t} - \hat{\boldsymbol{x}}_{j}^{t-1}\|_{2}^{2} \left(1 + 2\sum_{k \in \mathcal{C}_{j}} \|\boldsymbol{x}_{k}^{\triangle,t}\|_{2}^{2} \right) + 2\sum_{k \in \mathcal{C}_{k}} \|\boldsymbol{x}_{k}^{\triangle,t} - \boldsymbol{x}_{k}^{\triangle,t-1}\|_{2}^{2} \\ &\leq 2n_{j}B_{j}^{2}\|\hat{\boldsymbol{x}}_{j}^{t} - \hat{\boldsymbol{x}}_{j}^{t-1}\|_{2}^{2} + 2\sum_{k \in \mathcal{C}_{k}} \|\boldsymbol{x}_{k}^{\triangle,t} - \boldsymbol{x}_{k}^{\triangle,t-1}\|_{2}^{2}, \end{aligned}$$

where we have used the Cauchy-Schwarz inequality and the definition of B_j (Equation 16). By using the stability of $\hat{\mathcal{R}}_j$, that is $\|\hat{x}_j^t - \hat{x}_j^{t-1}\|_2^2 \le \kappa_j^2 = \gamma_j^2/(4n_j B_j^2)$, as well as the hypothesis (25) and (14):

$$\|\boldsymbol{x}_{j}^{\Delta,t} - \boldsymbol{x}_{j}^{\Delta,t-1}\|_{2} \leq \frac{\gamma_{j}^{2}}{2} + 2\sum_{k \in \mathcal{C}_{j}} \left(\frac{\gamma_{j}}{2\sqrt{n_{j}}}\right)^{2} = \frac{\gamma_{j}^{2}}{2} + 2n_{j} \left(\frac{\gamma_{j}}{2\sqrt{n_{j}}}\right)^{2} = \gamma_{j}^{2}.$$

Hence, $\mathcal{R}_j^{\bigtriangleup}$ has stability parameter γ_j as we wanted to show.

B. Experiments

Figure 4. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use simultaneous updates.

Figure 5. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use alternating updates.