
Stable-Predictive Optimistic Counterfactual Regret Minimization

A. Proofs
A.1. Optimistic Follow-the-Regularized-Leader

We offer a proof of Theorem 8.

First, we introduce the following argmin-function:

x̃ : L 7→ argmin
x∈X

{
〈x,L〉+

1

η
R(x)

}
. (18)

Furthermore, let Lt :=
∑t
τ=1 `

τ . With this notation, the decisions produced by OFTRL, as defined in (8), can be expressed
as xt = x̃(Lt−1 + mt).

Continuity of the argmin-function. The first step in the proof is to study the continuity of the argmin-function x̃. Intuitively,
the role of the regularizer R is to smooth out the linear objective function 〈·,L〉. So, it seems only reasonable to expect that,
the higher the constant that multiplies R, the less the argmin x̃(L) is affected by small changes of L. In fact, the following
holds:

Lemma 5. The argmin-function x̃ is η-Lipschitz continuous with respect to the dual norm, that is

‖x̃(L)− x̃(L′)‖ ≤ η‖L−L′‖∗.

Proof. The variational inequality for the optimality of x̃(L) implies
〈
L+

1

η
∇R(x̃(L)), x̃(L′)− x̃(L)

〉
≥ 0. (19)

Symmetrically for x̃(L′), we find that
〈
L′ +

1

η
R(x̃(L′)), x̃(L)− x̃(L′)

〉
≥ 0. (20)

Summing inequalities 19 and 20, we obtain

1

η

〈
∇R(x̃(L))−∇R(x̃(L′)), x̃(L)− x̃(L′)

〉
≤
〈
L′ −L, x̃(L)− x̃(L′)

〉
.

Using strong convexity of R(·) on the left-hand side and the generalized Cauchy-Schwarz inequality on the right-hand side,
we obtain

1

η
‖x̃(L)− x̃(L′)‖2 ≤ ‖x̃(L)− x̃(L′)‖ ‖L−L′‖∗,

and dividing by ‖x̃(L)− x̃(L′)‖ we obtain the Lipschitz continuity of the argmin-function x̃.

A direct consequence of Lemma 5 is the following corollary, which measures the stability (small step size) of the decisions
output by OFTRL:

Corollary 2. At each time t, the iterates produced by OFTRL satisfy ‖xt − xt−1‖ ≤ 3η∆`.

Proof.

‖xt − xt−1‖ =
∥∥∥x̃(Lt−1 + mt)− x̃(Lt−2 + mt−1)

∥∥∥

≤ η‖`t−1 + mt −mt−1‖∗ ≤ 3η∆`,

where the first inequality holds by Lemma 5 and the second one by definition of ∆` and the triangle inequality.

The rest of the proof, specifically the predictivity parameters α and β of OFTRL follow directly from the proof of Theorem 19
in the appendix of Syrgkanis et al. (2015).
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A.2. Regret Bounds

Lemma 1. For all k ∈ K, R4,Tk =
∑

j∈Ck
R4,Tj .

Proof. By definition of R4,Tk ,

R4,Tk =
T∑

t=1

〈`4,tk ,x4,tk 〉 − min
x̃4

k ∈X
4
k

T∑

t=1

〈`4,tk , x̃4k 〉.

By using (12) and (11), we can break the dot products and the minimization problem into independent parts, one for each
j ∈ Ck:

R4,Tk =
∑

j∈Ck

T∑

t=1

〈`4,tj ,x4,tj 〉 −
∑

j∈Ck
min

x̃4
j ∈X

4
j

T∑

t=1

〈`4,tj , x̃4j 〉

=
∑

j∈Ck

(
T∑

t=1

〈`4,tj ,x4,tj 〉 − min
x̃4

j ∈X
4
j

T∑

t=1

〈`4,tj , x̃4j 〉
)

=
∑

j∈Ck
R4,Tj ,

as we wanted to show.

Lemma 2. For all j ∈ J , R4,Tj ≤ R̂Tj + max
k∈Cj

R4,Tk .

Proof. By definition of R4,Tj ,

R4,Tj =
T∑

t=1

〈`4,tj ,x4,tj 〉 − min
x̃4

j ∈X
4
j

T∑

t=1

〈`4,tj , x̃4j 〉.

By combining (13) and (11), we can break the dot products and the minimization problem into independent parts, one for
each k ∈ Cj , as well as a part that depends solely on x̂j :

R4,Tj =
T∑

t=1


〈[`

4,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂tja〈`4,tk ,x4,tk 〉




− min
x̃j∈∆nj





(
T∑

t=1

〈[`4,tj ]j , x̃j〉
)

+
∑

a∈Aj

k=ρ(j,a)

x̃ja

(
min

x̃4
k ∈X

4
k

T∑

t=1

〈`4,tk , x̃4k 〉
)




=
T∑

t=1


〈[`

4,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂tja〈`4,tk ,x4,tk 〉




− min
x̃j∈∆nj





(
T∑

t=1

〈[`4,tj ]j , x̃j〉
)

+
∑

a∈Aj

k=ρ(j,a)

x̃ja

(
−R4,Tk +

T∑

t=1

〈`4,tk ,x4,tk 〉
)
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≤
T∑

t=1


〈[`

4,t
j ]j , x̂

t
j〉+

∑

a∈Aj

k=ρ(j,a)

x̂tja〈`4,tk ,x4,tk 〉




− min
x̃j∈∆nj





T∑

t=1


〈[`

4,t
j ]j , x̃j〉+

∑

a∈Aj

k=ρ(j,a)

x̃ja〈`4,tk ,x4,tk 〉








+ max
x̃j∈∆nj

∑

a∈Aj

x̃jaR
4,T
k ,

where the equality follows by the definition of R4,Tk , and the inequality follows from breaking the minimization of a sum
into a sum of minimization problems. By identifying the difference between the first two terms as the counterfactual regret
R̂Tj (that is, the regret of R̂j up to time T ), we obtain

R4,Tj ≤ R̂Tj + max
x̃j∈∆nj

∑

k∈Cj
x̃jaR

4,T
k = R̂Tj + max

k∈Cj
R4,Tk ,

as we wanted to show.

A.3. Stable-Predictive Regret Minimizer

We will prove both Lemma 3 and Lemma 4 with respect to the 2-norm. This does not come at the cost of generality, since
all norms are equivalent on finite-dimensional vector spaces, that is, for every choice of norm ‖ · ‖, there exist constants
m,M > 0 such that for all x, m‖x‖ ≤ ‖x‖2 ≤M‖x‖.
Lemma 3. Let k ∈ K be an observation node, and assume that R4j is a (γj , O(1), O(1))-stable-predictive regret minimizer
over the sequence-form strategy space X4j for each j ∈ Ck. Then, R4k is a (γk, O(1), O(1))-stable-predictive regret
minimizer over the sequence-form strategy space X4k .

Proof. By hypothesis, for all j ∈ Ck we have

R4,Tj ≤ O(1)

γj
+O(1)γj

T∑

t=1

‖`4,tj −m4,tj ‖22 (21)

and
‖x4,tj − x4,t−1

j ‖2 ≤ γj , (22)

where x4,tj is the decision output by R4j at time t.

Substituting (21) into the regret bound of Lemma 1:

R4,Tk ≤ O(1)
∑

j∈Ck

1

γj
+O(1)

∑

j∈Ck

T∑

t=1

γj‖`4,tj −m4,tj ‖22

≤ O(1)
n

3/2
k

γk
+O(1)

γk√
nk

T∑

t=1

∑

j∈Ck
‖`4,tj −m4,tj ‖22

=
O(1)

γk
+O(1)γk

T∑

t=1

‖`4,tk −m4,tk ‖22 (23)

where the second inequality comes from substituting the value γj = γk/
√
nk as per (14), and the equality comes from the

fact that the `4,tj and m4,tj form a partition of the vectors `4,tk and m4,tk , respectively.

We now analyze the stability properties of R4k :

‖x4,tk − x4,t−1
k ‖2 =

√∑

j∈Ck
‖x4,tj − x4,t−1

j ‖22 ≤
√∑

j∈Ck
γ2
j = γk,

where the first equality follows from (1), the inequality holds by (22) and the second equality holds by substituting the value
γj = γk/

√
nk as per (14). This shows that R4k is γk-stable. Combining this with the predictivity bound (23) above, we

obtain the claim.
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Lemma 4. Let j ∈ J be a decision node, and assume that R4k is a (γk, O(1), O(1))-stable-predictive regret minimizer over
the sequence-form strategy space X4k for each k ∈ Cj . Suppose further that R̂j is a (κj , O(1), O(1))-stable-predictive regret
minimizer over the simplex ∆nj . Then, R4j is a (γk, O(1), O(1))-stable-predictive regret minimizer over the sequence-form
strategy space X4j .

Proof. By hypothesis, for all k ∈ Cj we have

R4,Tk ≤ O(1)

γk
+O(1)γk

T∑

t=1

‖`4,tk −m4,tk ‖22 (24)

and
‖x4,tk − x4,t−1

k ‖2 ≤ γk. (25)

We substitute (24) into the regret bound of Lemma 2. The key observation is that the loss vector—and their predictions—
entering the subtree rooted at k (k ∈ Cj) are simply forwarded from j; with this, we obtain:

RT4j
≤ R̂Tj +

O(1)

γk
+O(1)γk

T∑

t=1

‖`4,tj −m4,tj ‖22. (26)

On the other hand, by hypothesis R̂j is a (κj , O(1), O(1))-stable-predictive regret minimizer. Hence,

R̂Tj ≤
O(1)

κj
+O(1)κj

T∑

t=1

‖ ˆ̀t
j − m̂t

j‖22

=
O(1)

γj
+O(1)γj

T∑

t=1

‖`4,tj −m4,tj ‖22, (27)

where the equality comes from the definition of κj (Equation (15)) and the fact that

‖ ˆ̀t
j − m̂t

j‖22 ≤
∑

k∈Cj
‖x4,tk ‖22 · ‖`4,tk −m4,tk ‖22

≤ ‖`4,tj −m4,tj ‖22
∑

k∈Cj
B2
k

= O(1)‖`4,tj −m4,tj ‖22.
By substituting (27) into (26) and noting that γk = O(1)γj , we obtain

R4,Tj ≤ O(1)

γj
+O(1)γj

T∑

t=1

‖`4,tj −m4,tj ‖22,

which establishes the predictivity of R4j .

To conclude the proof, we show that R4j has stability parameter γj . To this end, note that by (2)

‖x4,tj − x4,t−1
j ‖22 =

∥∥∥∥∥∥


∑

a∈Aj

x̂tjax
4,t
ja


−


∑

a∈Aj

x̂t−1
ja x4,t−1

ja



∥∥∥∥∥∥

2

2

+ ‖x̂tj − x̂t−1
j ‖22

≤ ‖x̂tj − x̂t−1
j ‖22


1 + 2

∑

k∈Cj
‖x4,tk ‖22


+ 2

∑

k∈Ck
‖x4,tk − x4,t−1

k ‖22

≤ 2njB
2
j ‖x̂tj − x̂t−1

j ‖22 + 2
∑

k∈Ck
‖x4,tk − x4,t−1

k ‖22,

where we have used the Cauchy-Schwarz inequality and the definition of Bj (Equation 16). By using the stability of R̂j ,
that is ‖x̂tj − x̂t−1

j ‖22 ≤ κ2
j = γ2

j /(4njB
2
j ), as well as the hypothesis (25) and (14):

‖x4,tj − x4,t−1
j ‖2 ≤

γ2
j

2
+ 2

∑

k∈Cj

(
γj

2
√
nj

)2

=
γ2
j

2
+ 2nj

(
γj

2
√
nj

)2

= γ2
j .

Hence, R4j has stability parameter γj as we wanted to show.
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B. Experiments
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Figure 4. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use simultaneous updates.
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Figure 5. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use alternating updates.


