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Abstract
Many interesting applications of reinforcement
learning (RL) involve MDPs that include numer-
ous “dead-end” states. Upon reaching a dead-end
state, the agent continues to interact with the envi-
ronment in a dead-end trajectory before reaching
an undesired terminal state, regardless of what-
ever actions are chosen. The situation is even
worse when existence of many dead-end states is
coupled with distant positive rewards from any
initial state (we term this as Bridge Effect). Hence,
conventional exploration techniques often incur
prohibitively many training steps before conver-
gence. To deal with the bridge effect, we propose
a condition for exploration, called security. We
next establish formal results that translate the se-
curity condition into the learning problem of an
auxiliary value function. This new value func-
tion is used to cap “any” given exploration policy
and is guaranteed to make it secure. As a spe-
cial case, we use this theory and introduce secure
random-walk. We next extend our results to the
deep RL settings by identifying and addressing
two main challenges that arise. Finally, we empir-
ically compare secure random-walk with standard
benchmarks in two sets of experiments including
the Atari game of Montezuma’s Revenge.

1. Introduction and Motivation
Theoretically, if a Markov Decision Process (MDP) cor-
responding to an environment is fully specified, then its
(optimal) value function can be computed without any em-
pirical interaction with the actual environment (Sutton &
Barto, 1998; Bertsekas & Tsitsiklis, 1996). However, in
many real-world problems, transition probabilities and/or re-
warding transitions are not known in advance and the agent

1Microsoft Research, 2000 McGill College Avenue, Suite 550,
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has to interact with the environment and learn from its expe-
rience. There always exists a (greedy) policy corresponding
to the learned value function, which we call exploitation
policy and is desired to converge to the optimal policy that
maximises the expected return. One main challenge for the
agent is then to decide when to exploit its current knowl-
edge by sticking to the exploitation policy and when/how to
explore other actions to increase its knowledge by following
other policies, which we call exploration policies.

Exploration has always been a core problem in RL. Perhaps
the oldest and still the most widely-used methods are the
ones which perturb the exploitation policy, for example, ε-
greedy, Boltzmann, and count-based explorations. In tabular
settings, several techniques have been suggested, mostly on
the basis of regret minimization, which are hardly scalable.
However, methods such as count-based techniques have re-
cently been extended to deep RL settings (Bellemare et al.,
2016). In this paper, we highlight that these existing meth-
ods fail to secure basic properties in certain environments,
causing the learning progress to be extremely slow. For ex-
ample, exploring uninteresting portions of an environment
(uninteresting in the context of achieving the desired task)
may result in wasted training efforts that generate little to
no relevant information. Furthermore, exploring unsafe por-
tions of the environment may be costly and/or raise safety
concerns. Thus, the agent’s needs to generate new informa-
tion must be balanced with considerations associated with
limited training time, cost, and safety concerns.

In particular, one may note that, in many MDPs of interest,
at many states, a large portion of the available actions are
likely to result in an undesired terminal state. Upon reaching
an undesired terminal state, the environment is forced to
terminate/restart before the goal is achieved. As an example,
consider the Atari game of Montezuma’s Revenge, shown
in Figure 1. A first task to be done is to go all the way to the
key position and capture it. On playing the game, one may
immediately notice that at most of the states many actions
result in an imminent death, which causes the agent to lose
one life and be re-positioned to the initial state. Furthermore,
most of such applications include dead-end states (formally
defined in Section 2). Having reached a dead-end state, the
agent will reach an undesired terminal state with probability
one, but after some —possibly random— number of steps,
regardless of whatever action it chooses. Returning to Mon-
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Figure 1. Atari game of Montezuma’s Revenge. The first goal is to
get the key after passing through a dangerous environment, where
at most states, many of the actions cause an undesired termination
after a sequence of uncontrollable and inescapable steps.

tezuma’s Revenge, a death happens only after a trajectory
of unknown length, which is both inescapable and uncon-
trollable (even worse, there is often an animation segment,
in which the agent should still continue interacting with the
game console). This inherently produces a tremendously
large number of training steps with no information gain
about the goal. Additionally, such undesired terminations,
and dead-ends by extension, prohibit the agent to easily
move far from its initial position in order to find any source
of positive rewards (e.g., picking up the key).

Importantly, undesired terminations (but not dead-ends) are
often directly signalled from the environment. However,
considering a negative reward in the case of undesired ter-
mination is not a generic solution. The reason is that, in
particular, the negative rewards will then become ubiquitous
in certain parts of the environment. Hence, once function
approximation is used, the resulting negative values are gen-
eralised and the agent can easily become scared of passing
through certain parts of the environment, even though it may
be necessary to do so in order to reach a positive reward.
This is a serious issue and it is often for this very reason that
designers avoid using negative rewards in their implementa-
tions (see for example Ecoffet et al. (2019) for a discussion
on the adverse effect of negative rewards).

In this paper, we consider a different approach. We start
with the necessity that any action that is likely to result in
entering a dead-end should similarly assume less probability
in the exploration policy; a property that is called security.
We then formalize a learning problem to nicely remove “all”
the assumptions regarding domain knowledge, except for
an undesired-termination signal (e.g., losing a life), which
is a fair assumption. We finally derive algorithms for both
tabular and deep RL settings.

The rest of this paper is organized as the following. After
the formal definitions are presented, we establish our first
main result, which enables us to precisely introduce secure
exploration in a generic way and with no specific assump-

tion. Next, we present secure random walk in the tabular
settings with the proof of convergence for Q-learning under
security. We then extend the results for deep RL settings
by identifying and addressing two main challenges. Next,
we present experimental results for two interesting domains
of the Bridge game and Atari game of Montesuma’s Re-
venge, and conclude the paper with further remarks and
future research directions.

2. Problem Formalism
We assume standard reinforcement learning settings (Sutton
& Barto, 1998) of an MDPM = (S,A, T, r, γ), where S
and A are the discrete sets of states and actions; T : S �
A � S ! [0, 1] is a transition function that defines the
transition probability from state s to s0 if action a is taken;
r : S � A � S ! [rmin, rmax] is a reward function and
γ 2 [0, 1] denotes a scalar discount factor. A trajectory
is a sequence of < st, at, rt, s

0
t > with s0t = st+1 and s0

being the first state. A policy π(s, a) = P[At = a j St = s]
defines how an action is selected in a given state. Therefore,
selecting actions according to a stationary policy results in
a trajectory. A trajectory starting from any state induces
return as G =

P1
j=0 γ

jrj . We assume that all returns are
finite and bounded. A trajectory is therefore called optimal
if it induces maximum return. A value function q(s, a) =
E�[G j S0 = s,A0 = a] is defined in conjunction with a
policy π to evaluate the expected return of taking action a at
state s and following π thereafter. Additionally, the optimal
value function is defined as q�(s, a) = max�q(s, a), which
is the maximum expected return of all trajectories starting
from (s, a). We further augment M with a non-empty
termination set ST � S, which is the set of all terminal
states. A terminal state is by definition a state, at which the
environment terminates its dynamics. All terminal states are
by definition zero-valued. We require that, from all states,
there exist at least one trajectory with non-zero probability
to a terminal state.

Definition 1 (Undesired Terminal State). A terminal state
su 2 SU � ST is called an undesired terminal state if
reaching su prevents achieving maximum return.

Definition 2 (Dead-end). A state s0 2 SD is called a dead-
end if all the trajectories starting from s0 reach an undesired
terminal state with probability 1 (w.p.1) in some finite (pos-
sibly random) number of steps.

The set of all the dead-ends and all the undesired terminal
states are denoted by SD and SU , respectively. The environ-
ment defines all su 2 SU ; however, we do not augment SU
to the MDP’s tuple to avoid uncommon notation. Definition
2 implies that, after entering a dead-end state s0, regardless
of taken actions afterwards, an undesired termination will
occur in some (finite but possibly random) number of in-
escapable steps. A direct consequence of Definition 2 is the
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following result, which can be proved by induction.
Proposition 1. If a state is dead-end, then so are all
the states after that on all the possible trajectories.

Consequently, although dead-end is a state by definition, we
also conveniently use the term to refer to a trajectory starting
from a dead-end state and length of a dead-end to refer to
the (random) length of that trajectory. In practical situations,
undesired terminal states are flagged once entered; however,
this assumption hardly exists for entrance states to the dead-
end trajectories (they instead should be learned). We can
now state the following qualitative definition.
Definition 3 (Bridge Effect). Bridge effect exists in an envi-
ronment if under uniform policy, the probability of reaching
a positive reward inN steps is less than that of transitioning
into a dead-end, for all N > 1.

When the probability of falling into a dead-end is much
higher than that of reaching any positive reward, bridge
effect becomes a severe learning barrier. It often happens
when there is a non-zero and non-negligible probability of
entering a dead-end in most states (at least in all trajectories
from initial state to any positively-rewarded transition), and
that all the positively-rewarded transitions are relatively far
from the initial state. The term “bridge” is inspired by the
challenge of passing a bridge, where most actions are likely
to cause falling. The bridge effect is a fundamental issue
in practice, which can easily prohibit effective learning in
reasonable time, regardless of the learning method in use.

2.1. Security

Given an MDPM = (S,A, T, r, γ) and in the course of
training, let us formally distinguish between the exploration
policy η : S �A ! [0, 1], and the exploitation policy π. As
mentioned before, through training, π is then meant to con-
verge to the optimal policy, which maximizes the expected
return. In light of the discussion above, we therefore require
the following condition to secure the exploration:

Property 1 (Security). A policy η(�, �) is secure if for
any λ 2 [0, 1] the following condition holds:X

s02SD

T (s, a, s0) � 1� λ =) η(s, a) � λ (1)

for all s 2 SnSD.

In words, if (s, a) enters a dead-end with some level of
certainty, then a should be excluded from η(s, �) with same
level of certainty. This property say nothing about when s0 is
not a dead-end. One may therefore say it only secures explo-
ration with respect to the dead-ends. Any exploration policy
that holds Property 1 is then called secure exploration.

We note that at a given state s, Property 1 can be enforced

on a given policy η(s, �) by cutting and re-weighting the
probabilities in η(s, �) so that it satisfies Property 1. This
is possible only if it is mathematically allowed, due toP
a η(s, a) = 1. For example, if all the actions transition

to some dead-end with sufficiently large probability, then
η may not be reduced sufficiently for all the actions. An-
other trivial example is when there is only one action, which
leaves no choice. Such policies cannot become secure.

2.2. Secure Exploration

As much as Property 1 is desired in practice, it is not easy
to enforce it. The drawback is twofold: having information
about dead-ends as well as accessing the transition function
T , both of which are not likely to exist. In this section, we
establish our first main result, which intrinsically removes
both drawbacks.

Returning to the core idea of separating π and η, the goal
here is to characterize η with a proper value function, so
that the value function can be learned algorithmically. More
generally, η can be related to the value function of a relevant
MDPMe = (S,A, T, re, γe). We call it exploration MDP
and it has the same state and action spaces as well as transi-
tion function asM. This allows for considering a different
scheme for expected return, thereby satisfying different
goals or conditions during exploration. We should empha-
size thatMe directly induces an optimal value function q�e ;
however, η is not an optimal policy ofMe. Specifically, η
is guided/corrected by q�e but is not greedy to q�e .

To be able to properly define re and γe, let us start with a
basic observation. Assume an MDP with reward of �1 for
entering an undesired terminal state and 0 otherwise. The
optimal value of a given dead-end state is therefore nega-
tive; however, its magnitude depends on the length of the
dead-end trajectory (i.e., number of steps from the dead-end
state to an undesired termination) and the discount factor.
Hence, although the optimal value of dead-end states are
negative, they can be arbitrarily close to zero. As a result, it
is impossible in general to identify a dead-end trajectory’s
entrance based only on its value. It implies that in such set-
tings, knowing when undesired terminations happen seems
insufficient to identify dead-ends. To overcome this issue,
recall that the undesired terminal states are well-defined
(signalled when get in). But, we still need to be able to
formally discern if a state is dead-end. To this end, let us
state the following properties forMe.

Property 2. Me is characterized as follows

P2.1 re = �1 if enter an undesired terminal state and
re = 0 otherwise.

P2.2 No discount: γe = 1.
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It can be seen that the optimal value of all the dead-ends (and
only the dead-ends) will be exactly �1. We then establish
the following main result (all the proofs of our theorems are
presented in the supplementary materials, Section S1).

Theorem 1. Let q�e be the optimal value function of
Me under P2.1 and P2.2. Let further η be any arbi-
trary policy that satisfies the following:

η(s, a) � 1 + q�e(s, a), 8(s, a) 2 S �A (2)

where q�e(s, �) 6= �1 at least for one action. Then η is
secure.

The value of η on dead-end states (where q�e(s, a) = �1
8a 2 A) is not important since all trajectories from a dead-
end will reach an undesired termination anyways. It is
again worth mentioning that in Theorem 1, η is different
from the optimal solution ofMe, namely argmax q�e(s, �),
and is stochastic in general, as desired. We call κ(s, a) =
1 + qe(s, a) and κ�(s, a) = 1 + q�e(s, a) security cap and
optimal security cap functions, respectively.

Theorem 1 is an important theoretical result, since it trans-
lates Property 1 to a learning problem by removing the
explicit appearance of T as well as the explicit knowledge
about dead-end states, and replacing them with q�e , which
is learnable. Hence, it makes it possible to move forward
to model-free methods. In practical contexts, Theorem 1
provides the means for securing any given exploration pol-
icy. One should keep in mind that the original exploration
policy η may be designed with other considerations, such
as curiosity and information gain. At a given state s, the
security cap can then be enforced by iteratively cutting and
re-weighting η(s, �) until (2) is satisfied. In this paper, we
consider securing ε-greedy exploration, which is arguably
the most basic exploration technique and it uses random
walk for exploration. Hence, the result is called secure
random walk (SRW).

We finish this section with a complementary result. In prac-
tice, it may also be favourable to set a security threshold on
qe, under which the action is not allowed to be taken. This
helps to mechanically remove fully non-secure (or suscep-
tible) actions. The following result provides the guarantee
that such a threshold may be found that excludes non-secure
actions without touching others. Let AD(s) denote the set
of actions at state s that transition to a dead-end w.p.1.

Theorem 2. Under P2.1 and P2.2, let v�e and q�e be the
optimal state and state-action value functions ofMe.
Then there exists a gap between v�e(s0) and q�e(s, a)
for all a 2 AnAD(s), s0 2 SD, and s 2 SnSD.
Furthermore, the gap is independent of dead-end’s
possible length.

Theorem 2 allows us to set a single threshold that does

not need any domain knowledge about possible length of
dead-ends. Any threshold in the open interval

I = (�1, max
s2SnSD

max
a02AnAD(s)

X
s02SD

T (s, a0, s0)) (3)

will separate actions, which result in irrefutable transition
(w.p.1) to dead-ends from the rest. Nevertheless, the maxi-
mum probability in equation (3) has to be known or guessed.
In any case, if it is decided to use such a threshold, it is easy
to append it to the main algorithm.

3. Tabular Settings
We first discuss the implementation of SRW in tabular set-
tings. In the next section, we will extend it to deep RL
settings as well.

Before going further, let us study if Property 1 influences
the convergence. The result may be summarized with the
following theorem.

Theorem 3. If the followings hold:

1. States and actions are finite (tabular settings).

2. Policy η exists that satisfies Property 1, and η is
used as the sole behavioural policy. Furthermore,
η visits all the non-dead-end states infinitely often.

3. q�(�, �) is initialized pessimistically and standard
conditions are applied on the step-size α� .

then, Q-learning of q�(s, a) converges to q��(s, a) for
s 2 SnSD and a 2 AnAD(s).

Theorem 3 asserts that holding Property 1 does not endanger
convergence of π to the optimal policy using Q-learning.
That follows from pessimistic initialization of q�, which
assures that the value of excluded state-actions does not
change a greedy policy. It is a strong result in that it holds
for the fully off-policy case. It can simply be extended to
the looser case of ε-greedy between π and η. Of note, in an
environment that involves bridge effect, only the exclusion
of AD(s) may improve the convergence rate dramatically;
rest assured Property 1 serves its purpose.

In order to implement SRW, we need to simply enforce
the security cap on the uniform distribution over the action-
space. That is, actions are equiprobable under security cap.
We therefore keep the equality in equation (2) and normalise
the result:

η(s, a)
.
=

1 + qe(s, a)P
a0 1 + qe(s, a0)

=
1 + qe(s, a)

na +
P
a0 qe(s, a0)

(4)

Additionally, we require qe(�, �) to be initialized at zero.
Because all the qe’s are between �1 and 0, the resulting η is
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well-defined (except when all qe’s are �1, which happens
on dead-end trajectories). This way, η starts from a uniform
distribution and the probability of taking an action quickly
decreases when (and only when) it proves to be insecure.
Importantly, it is not affected by γ ofM, which means that
it is equally sensitive to all the dead-end states, thereby also
to all the transitions entering a dead-end trajectory. Notice
that the initialization is important. In the course of training,
after the dead-end’s values converge to �1, one may write:

qe(s, a) = �
X
s02SD

T (s, a, s0)+

X
s0 =2SD

T (s, a, s0) max
a0

qe(s
0, a0) (5)

Zero-initialization induces maxa0 qe(s
0, a0) � 0. Hence, (5)

implies qe(s, a) � �
P
s02SD

T (s, a, s0) � �(1 � λ). It
yields η(s, a) � 1 + qe(s, a) � λ. Therefore, η is secure
and the security cap is reliable even if qe has not yet fully
converged. One may be tempted to initialize qe at �1 to
assure security even before convergence of dead-ends. It
can be seen that qe(s, a) � �

P
s02SD

T (s, a, s0) always
holds, which implies η(s, a) � λ. However, under �1 ini-
tialization, (4) is undefined at the beginning and a uniform
policy should be used. The moment any qe(s, a) is updated
to a value slightly bigger than �1, the exploration policy
always selects a at s. This follows from (4) that will as-
sume probability one for a and zero for all other actions.
It clearly forfeits exploration. In practice, any value in the
semi-open interval (�1, 0] may be used for initialization,
which introduces a trade-off between earlier security versus
less exploration. We use zero-initialization, which assumes
maximum exploration and decays only if (s, a) proves dan-
gerous. SRW is therefore summarized as follows:

Definition 4 (Secure Random-Walk). Let qe be the value
function (under training) with zero-initialization, corre-
sponding toMe under P2.1 and P2.2. The secure random-
walk is defined as the following:

η(s, �) =

(
1/na if qe(s, a0) = �1,8a0 2 A

1+qe(s;�)
na+

∑
a0 qe(s;a0) otherwise

This definition manifests certain interesting properties: As
it learns, it guarantees Property 1 (due to Theorem 1 and
the discussion above) as well as convergence of Q-learning
when it is used as behavioural policy (due to Theorem 3). If
na +

P
a0 qe(s, a

0) < 1, the security cap can be reapplied
until η holds (2), though it is often not required in practice.

Definition 4 together with P2.1 and P2.2 provide sufficient
technical requirements and the stage is then set to define
the algorithm. In Algorithm 1, we present a generic SRW,
where Q-learning is used to learn both qe and q� side-by-
side. This is a fully off-policy version of the algorithm.

However, it is also an option to slowly switch from η to π
with an ε-greedy mechanism, for instance.

If it is decided to use a security threshold according to
Theorem 2, it suffices to simply limit the selected action (at
the two select lines) to also have its qe be larger than the
given threshold.

Finally, it is worth noting that SRW is theoretically guar-
anteed not to hurt performance if no dead-end is present.
It is immediate from Definition 4 that in the absence of
dead-ends, η reduces to a uniform policy; hence, ε-greedy
exploration.

Algorithm 1 Q-learning with secure random-walk.
Parameters: step sizes αe, α�.
set qe(s, a) = 0, 8(s, a) 2 S �A
set q�(s, a) pessimistically 8(s, a) 2 S �A
set s initial state
repeat

if qe(s, a) = �1 for all a 2 A then
select a � U(A)

else
compute η(s, �) from Equation (4)
select a � η(s, �)

end if
observe (r, s0)
if undesired termination then
q0e = 0
re = �1

else
q0e = maxa0 qe(s

0, a0)
re = 0

end if
qe(s, a) (1� αe)qe(s, a) + αe(re + q0e)
q�(s, a) (1� α�)q�(s, a)+

α�(r� + γ� maxa02A q�(s0, a0))
s s0

until q� converges

4. Deep Reinforcement Learning
Moving forward, it is desirable to extend Algorithm 1 to
a DQN (Mnih et al., 2015) format with two networks for
qe and q�. However, there are two main challenges, which
influence a deep RL implementation: 1) cascading value-
overflow, and 2) catastrophic forgetting.

4.1. Cascading Value-overflow in Deep RL

There is an inherent problem when using DQN (and simi-
lar algorithms). Due to the quadratic loss function, value
overflow is bound to happen. In particular, quadratic loss
allows for the estimated q to be bigger than Bellman q if
it is positive (the negative side is not a big issue due to the
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MAX operator in Bellman target). This can be severely de-
structive because the estimatedq is used for bootstrapping,
which meansq is always pushed toward some larger value.
The max operator forces the value function to almost surely
result in an overestimation. However, it does not stop there.
The overestimation will exponentially cascade like a chain
effect and theq values quickly become too large. Note here
that the root of this problem is quadratic loss and not the
use of same Q-table (or network) for both bootstrapping
and action-selection or estimation error, both of which may
be addressed by Double Q-learning and Double DQN (van
Hasselt et al., 2016). Note also that the use of small-enough
 effectively hides the issue. The reason is that the boot-
strappedq is weighted by and is therefore exponentially
decayed by . Additionally, reward-clipping also diminishes
the issue by making the return small. We experimentally
show that commonly-used = 0 :99 is often suf�cient to
prevent the over�ow, but perhaps not larger (see Figure 4).
In the case of security, = 1 is required. As a result, the
cascading over�ow issue will become a large obstacle. To
address cascading over�ow, recall that under P2.1 and P2.2,
r e = 0 everywhere except when an undesired termination
happens, wherer e = � 1. As a result, the return is always
between� 1 and0. This allows us to clip thebootstrapping
value in Bellman target to stay inside[� 1; 0]. This tech-
nique in principle stops cascading of over�owed values and
should �x training ofqe.

4.2. Catastrophic Forgetting

If a is not secure ats, it will not be selected and will be
soon removed from the experience replay buffer. As a result,
in just a few epochs, theqe-network will forget the value
of (s; a). More critically, as� learns to stay secure,qe-
network may saturate on the abundance of zero-rewarding
transitions and a catastrophic forgetting happens. There
are different approaches that may be considered to partially
deal with this issue. A simple method is to stop training
qe-network after a speci�c number of epochs (which also
introduces a new hyper-parameter for when to stop training
of qe). However, stopping training ofqe inherently involves
a dilemma: early-stopping causes not learning the value of
farther dead-ends, while late stopping causes forgetting the
value of closer dead-ends. The forgetting issue is a general
problem in deep learning community. We therefore stick to
the naive method of early-stopping for now and leave more
advanced approaches for the future research.

Aside from these challenges, we should also highlight that in
the lack of dead-ends, the “exploration network” is trained
with zero rewards and will learn to output zero values.
Hence, as it is trained, its effect reduces to� -greedy, simi-
larly to the tabular case.

Figure 2.The bridge problem. Left: Agent starts fromA and
should reachB. Each vertical blue path is an inescapable and un-
controllable fall trajectory with a random lengthl i (demonstrated
by the gradient blue). Right: The corresponding part of MDP for
statei on the bridge.

5. Experimental Results

5.1. Tabular: Bridge Game

We begin with a variation of the classical cliff-walking prob-
lem (Sutton & Barto, 1998), which we callbridge game.
Consider a bridge of lengthL , shown in Figure 2. The agent
starts at the left end of the bridge and its goal is to reach
the right end, resulting in some very large rewardrB � +1 .
At each step,na actions are available, where actionan goes
right with probability (w.p.)xn , goes left w.p.yn , and falls
down w.p.zn . Once on the bridge, assume the following:

� For a0: x0 close to1, y0 = 0 andz0 close to0 (z0 =
1 � x0);

� Fora1: x1 = z1 = 0 andy1 = 1 ;

� For all other actions,aj , j � 2: x j = yj = 0 , and
zj = 1 .

Once the agent falls, all actions cause a transition to an-
other non-bridge state until reaching an undesired terminal
state. It therefore takes random (but �nite) number of un-
controllable steps to terminate and return to the initial po-
sition. Hence, the agent is always at the risk of falling into
a random-length inescapable trajectory before the episode
undesirablyterminates and it can restart. The reward signal
is + r B if reachB and zero everywhere. Direct evaluation
of Bellman equation yields the following result.

Proposition 2. If rB is suf�ciently large and < 1,
the optimal policy is� (s; a0) = 1 , for all the bridge
statess.

In the supplementary materials, Section S2, we present a
concrete theoretical discussion on why it takes huge number
of training steps for tabular Q-learning to converge under
both cases of rewards. Furthermore, in Section S3, we
provide a formal discussion on why Boltzmann policy in
also not secure in general.

Figure 3 presents experimental results for different explo-
ration methodologies. In particular, we examined� -greedy,
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Boltzmann, and count-based methods as the baselines. As
for the count-based method, we add a motivation term
1=(1 +

p
N (s; a)) to q(s; a), whereN (s; a) is the number

of times(s; a) has been visited (Bellemare et al., 2016). To
ensure stability, a small enough step-size has to be used due
to stochasticity of the environment. We use� = 0 :1, 0:01,
and0:001for Boltzmann, count-based, and� -greedy, respec-
tively, all without annealing. We use a considerably simple
problem ofz0 = 1% and only one fall action (na = 3 ). As
it can be expected, the convergence time increases consider-
ably with the bridge length. Furthermore, Figure 3-(a)–(c)
reveals that even for such a simple problem and a surpris-
ingly small bridge ofL = 15, which corresponds to a
tiny state-space, the learning still needs tremendously large
number of episodes to converge even under count-based
exploration; the fact that is not directly expected.

In order to demonstrate the power of SRW, Figure 3-(d)
illustrates that Algorithm 1 solves the bridge problem orders
of magnitude faster than Q-learning with� -greedy, Boltz-
mann, or count-based exploration. Indeed, in the case of
L = 15, which is also illustrated in Figure 3-(a)–(c), bridge
problem can be solved three orders of magnitude faster. The
cases ofL = 20 andL = 25 require (tens of) millions of
episodes to converge without secure exploration. Figure
3-(e) depicts different cases of switching between� and�
using an� -greedy mechanism with different �x� . As it can
be expected, the best case happens when� = 1 (fully secure)
and as� decreases, it quickly deteriorates. In general, in
the environments involving bridge effect, one should expect
considerable improvement when securing the exploration
policy. In more complex environments of practical interest,
we conjecture that securing a smarter exploration technique
than random-walk (such as (pseudo-)count-based) should
obtain better results than the secure random-walk.

5.2. Deep RL: Montezuma's Revenge

Surprisingly, several Atari 2600 games in the ALE suit
(Bellemare et al., 2013), which look nearly unsolvable using
DQN and other similar methods are environments that in-
deed suffer from the bridge effect. In speci�c, at the bottom
of the score list in (Mnih et al., 2015), 5 out of 9 games may
receive better results by using secure random-walk explo-
ration. Most notably is of course Montezuma's Revenge.

The game of Montezuma's Revenge is commonly consid-
ered as the most dif�cult game among the Arcade Atari
Environment suite (Bellemare et al., 2013). We limit the
game to only pick the key on the �rst screen; something that
is still almost impossible using DQN without the help of
intrinsic rewards (for example in forms of pseudo-counts
(Bellemare et al., 2016)). We show that using SRW can
optimally achieve this goal with some quite basic implemen-
tation. Combination of more sophisticated techniques such

as recurrent networks, dueling architecture, generic priori-
tized experience replay, or using bonus-based exploration
may be used to improve the results even more. However,
we deliberately stick to some very basic implementation
in order to showcase the role of security. As for the base-
line, we use DQN with identical structure and same hyper-
parameters. The details of implementation and the used
hyper-parameters are described in the supplementary ma-
terials, Section S4. The results are illustrated in Figure 5.
To avoid forgetting issue, we stop training of exploration
network after 2M steps, which only guarantees security at
the top two levels of the screen. Even with that, the consid-
erable boost in performance is evident. We also tried having
bootstrapping correction when a positive reward is observed
for the exploitation policy. It clearly has a large effect on the
performance, and together with security, the agent always
achieves the goal very robustly1.

6. Related Work

The termsecure explorationand the concept of security in
RL is new, to the best of our knowledge. The concept of
dead-end may also be viewed as a safety issue, specially
in physical scenarios. However, we particularly use a dif-
ferent term to distinguish between safe RL and the present
paradigm, mainly because secure exploration essentially
concerns only the exploration. It is important to also note
that secure exploration is, in its nature, an additional process
on top of any given policy� to secure it. This makes it easy
to ful�ll other criterion, such as information gain (or curios-
ity) and safety as well. Nevertheless, to highlight particular
differences, we explain safe RL literature in more details.

Safety in RL (Garć�a & Ferńandez, 2015) is an overloaded
term, as it may be considered with respect to parametric un-
certainty (Thomas, 2015; Petrik et al., 2016; Laroche et al.,
2019), internal uncertainty (Altman, 1999; Carrara et al.,
2019), or interruptibility (Orseau & Armstrong, 2016; Guer-
raoui et al., 2017). It may also be divided into two main
approaches (for a survey see Garc�́a & Ferńandez (2015)).
The �rst approach tries to assert an optimization criterion,
such as worst case scenario (Heger, 1994), risk-sensitive cri-
terion by transforming the TD error (Mihatsch & Neuneier,
2002), and call-time criterion by de�ning the safety in terms
the probability of returning to the initial state (Moldovan &
Abbeel, 2012). A considerably longer tale of history exists
in the robust control literature, which designs the controller
on the basis of worst-case scenario (see for example Başar
& Bernhard (1995) that provides a nice game-theoretic ap-
proach). These approaches are inherently different from
ours in that they basically solve an optimization problem
with additional constraints to account for some sort of safety.
The second set of safe exploration approaches tries to de-

1Code is available at https://github.com/Maluuba/srw.
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Figure 3. Learning the bridge game with various length, using Q-learning with (a) ε-greedy (ε = 0.1), (b) Boltzmann, and (c) count-based
policies, respectively. Both Boltzmann and count-based are the learning curves averaged over 10 seeds. For ε-greedy, after each learning
episode we test π greedily with 10 seeds (due to stochasticity) and repeat the experiment with 5 different seeds. (d) learning optimal
policy with secure exploration. After each learning episode, the target policy is used 10 times greedily for evaluation. The experiments are
then repeated for 10 different seeds. (Compare the results with (a)–(c), specifically, for L = 15.) Interestingly, L = 25 is solved in less
than 3k episodes, while for the common algorithms to converge, it needs tens of millions of episodes. (e) same as (d) but with different
levels of ε-greedy switching between π and η.

Figure 4. Cascading overflow in Montezuma Revenge. All the
rewards are removed; hence, the maximum values should remain
around zero all times. The issue is worse for larger γ. After each
epoch, the network is used in 100 episodes, each of which consists
of fully random action-selection until all lives are lost. Each data
point is the maxs,aQ, obtained from the Q-network, evaluated at
all the state-actions seen.

fine an exploration process by asserting external knowledge
in terms of demonstrations or teacher advice, for example
see Garcı́a & Fernández (2015) for several recent and old
references. These methods are often suitable where safety
is more important than learning tabula rasa. Secure explo-
ration, in contrast, does not involve any external teacher.

7. Concluding Remarks
In this paper, we focused on the problem of dead-ends,
which are inescapable and uncontrollable trajectories with
undesired end and no positive reward. In particular, we
described the bridge effect as a high probability of entering
a dead-end in most states, coupled with distant positive re-
wards. Bridge effect, by its nature, prohibits exploration.
Our formal treatment and core contributions include: 1)
defining a desired property for the exploration policy to
hold, called security. 2) Formal results that enable us to
properly define the secure exploration, and quite generically

Figure 5. Getting the key (rkey = 100) in Montezuma’s Revenge.
The line for vanilla DQN has been removed (it is all zero). The
results are averaged over five random seeds.

secure any given exploration policy. Specifically, our theo-
retical results translate the security property into a learning
problem with required guarantees. 3) The SRW algorithm
with extension to deep RL architectures.

As an experimental evidence, we particularly show that a
given bridge game that takes tens of millions of episodes
to learn by Q-learning and any of ε-greedy, Boltzmann, or
count-based exploration, can easily be solved quite robustly
more than three orders of magnitude faster, using secure ex-
ploration. Finally, we tested our algorithm on the infamous
Atari game of Montezuma’s Revenge and we solved its first
task (getting the key) quite robustly and much faster that
other basic methods.

One strength of the present methodology is that it can be
combined with other exploration techniques because secu-
rity is inherently orthogonal to the main exploration strategy
in use. Moving forward, we believe that an approach sim-
ilar to ours may also be used to achieve different desired
properties for the exploration.


