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Abstract

Excessive reuse of holdout data can lead to overfitting. Known results show that, in the worst-
case, given the accuracies of k adaptively chosen classifiers on a data set of size n, one can create a
classifier with a bias of Θ(

√
k/n) for any binary prediction problem. We show a new upper bound

of Õ(max{
√
k log(n)/(mn), k/n}) on the worst-case bias that any attack can achieve in a prediction

problem with m classes. Moreover, we present an efficient attack that achieves a bias of Ω(
√
k/(m2n))

and improves on previous work for the binary setting (m = 2). We also present an inefficient attack
that achieves a bias of Ω̃(k/n). Complementing our theoretical work, we give new practical attacks to
stress-test multiclass benchmarks by aiming to create as large a bias as possible with a given number of
queries. Our experiments show that the additional uncertainty of prediction with a large number of classes
indeed mitigates the effect of our best attacks.

Our work extends developments in understanding overfitting due to adaptive data analysis to multi-
class prediction problems. It also bears out the surprising fact that multiclass prediction problems are
significantly more robust to overfitting when reusing a test (or holdout) dataset. This offers an explanation
as to why popular multiclass prediction benchmarks, such as ImageNet, may enjoy a longer lifespan than
what analysis in the context of binary classification suggests.

1 Introduction

Several machine learning benchmarks have shown surprising longevity, such as the ILSVRC 2012 image
classification benchmark based on the ImageNet database [Rus+15]. Even though the test set contains only
50,000 data points, hundreds of results have been reported on this test set. Large-scale hyperparameter tuning
and experimental trials across numerous studies likely add thousands of queries to the test data. Despite this
excessive data reuse, recent replication studies [Rec+18; Rec+19; YB19] have shown that the best performing
models transfer rather gracefully to a newly collected test set collected from the same source according to the
same protocol.

What matters is not only the number of times that a test (or holdout) set has been accessed, but also
how it is accessed. Modern machine learning practice is adaptive in its nature. Prior information about
a model’s performance on the test set inevitably influences future modeling choices and hyperparameter
settings. Adaptive behavior, in principle, can have a radical effect on generalization.
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†Google Brain
‡University of California, Berkeley. Work done while at Google.
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Standard concentration bounds teach us to expect a maximum error of O(
√

log(k)/n) when estimating
the means of k non-adaptively chosen bounded functions on a data set of size n. However, this upper bound
sharply deteriorates to O(

√
k/n) for adaptively chosen functions, an exponential loss in k. Moreover, there

exists a sequence of adaptively chosen functions, what we will call an attack, that causes an estimation error
of Ω(

√
k/n) [Dwo+14].

What this means is that in principle an analyst can overfit substantially to a test set with relatively few
queries to the test set. Powerful results in adaptive data analysis provide sophisticated holdout mecha-
nisms that guarantee better error bounds through noise addition [Dwo+15b] and limited feedback mecha-
nisms [BH15]. However, the standard holdout method remains widely used in practice, ranging from machine
learning benchmarks and data science competitions to validating scientific research and testing products
during development. If the pessimistic bound were indicative of performance in practice, the holdout method
would likely be much less useful than it is.

It seems evident that there are factors that prevent this worst-case overfitting from happening in practice.
In this work, we isolate the number of classes in the prediction problem as one such factor that has an
important effect on the amount of overfitting we expect to see. Indeed, we find that in the worst-case the
number of queries required to achieve certain bias grows at least linearly with the number of classes, a
phenomenon that we establish theoretically and substantiate experimentally.

1.1 Our contributions

We study in both theory and experiment the effect that multiple classes have on the amount of overfitting
caused by test set reuse. In doing so, we extend important developments for binary prediction to the case of
multiclass prediction.

To state our results more formally, we introduce some notation. A classifier is a mapping f : X → Y,
where Y = [m] = {1, . . . ,m} is a discrete set consisting of m classes and X is the data domain. A data
set of size n is a tuple S ∈ (X × Y )n consisting of n labeled examples (xi, yi)i∈[n], where we assume
each point is drawn independently from a fixed underlying population. In our model, we assume that a data
analyst can query the data set by specifying a classifier f : X → Y and observing its accuracy accS(f) on
the data set S, which is simply the fraction of points that are correctly labeled f(xi) = yi. We denote by
acc(f) = Pr{f(x) = y} the accuracy of f over the underlying population from which (x, y) are drawn.
Proceeding in k rounds, the analyst is allowed to specify a function in each round and observe its accuracy
on the data set. The function chosen at a round t may depend on all previously revealed information. The
analyst builds up a sequence of adaptively chosen functions f1, . . . , fk in this manner.

We are interested in the largest value that accS(ft)−acc(ft) can attain over all 1 ≤ t ≤ k. Our theoretical
analysis focuses on the worst case setting where an analyst has no prior knowledge (or, equivalently, has a
uniform prior) over the correct label of each point in the test set. In this setting, the highest expected accuracy
achievable on the unknown distribution is 1/m. In effect, we analyze the expected advantage of the analyst
over random guesses.

In reality, an analyst typically has substantial prior knowledge about the labels and starts out with a far
stronger classifier than one that predicts at random. Using domain information, models, and training data,
there are many conceivable ways to label many points with high accuracy and to pare down the set of labels
for points the remaining points. Indeed, our experiments explore a couple of techniques for reducing label
uncertainty given a good baseline classifier. After incorporating all prior information, there is usually still a
large set of points for which there remains high uncertainty over the correct label. Effectively, to translate the
theoretical bounds to a practical context, it is useful to think of the dataset size n as the number of point that
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are hard to classify, and to think of the class count m as a number of (roughly equally likely) candidate labels
for those points.

Our theoretical contributions are several upper and lower bounds on the achievable bias in terms of the
number of queries k, the number of data points n, and the number of classes m. We first establish an upper
bounds on the bias achievable by any attack in the uniform prior setting.

Theorem 1.1 (Informal). There is a distribution P over examples labeled by m classes such that any
algorithm that makes at most k queries to a dataset S ∼ Pn must satisfy with high probability

max
1≤t≤k

accS(ft) =
1

m
+O

(
max

{√
k log n

nm
,
k log n

n

})
.

This bound has two regimes that emerge from the concentration properties of the binomial distribution.
The more important regime for our discussion is when k = Õ(n/m) for which the bound is Õ(

√
k/(nm)).

In other words, achieving the same bias requires O(m) more queries than in the binary case. What is perhaps
surprising in this bound is that the difficulty of overfitting is not simply due to an increase in the amount of
information per label. The label set {1, . . . ,m} can be indexed with only log(m) bits of information.

We remark that these bounds hold even if the algorithm has access to the data points without the
corresponding labels. The proofs follow from information-theoretic compression arguments and can be easily
extended to any algorithm for which one can bound the amount of information extracted by the queries
(e.g. via the approach in [Dwo+15a]).

Complementing this upper bound, we describe two attack algorithms that establish lower bounds on the
bias in the two parameter regimes.

Theorem 1.2 (Point-wise attack, informal). For sufficiently large n and n ≥ k ≥ kmin = O(m logm) there
is an attack that uses k queries and on any dataset S outputs f such that

accS(f) =
1

m
+ Ω

(√
k

nm2

)
.

The algorithm underlying Theorem 1.2 outputs a classifier that computes a weighted plurality of the
labels that comprise its queries, with weights determined by the per-query accuracies observed. Such an
attack is rather natural, in that the function it produces is close to those produced by boosting and other
common techniques for model aggregation. It also allows for simple incorporation of any prior distribution
over a label of each point. In addition, it is adaptive in the relatively weak sense: all queries are independent
from one another except for the final classifier that combines them.

This attack is computationally efficient and we prove that it is optimal within a broad class of attacks that
we call point-wise. Roughly speaking, such an attack predicts a label independently for each data point rather
than reasoning jointly over the labels of multiple points in the test set. The proof of Theorem 1.2 requires a
rather delicate analysis of the underlying random process.

Theorems 1.1 and 1.2 leave open a gap between bounds in the dependence on m. We conjecture that our
analysis of the attack in Theorem 1.2 is asymptotically optimal and thus, considering the optimality of the
attack, gives a lower bound for all point-wise attacks. If correct, this conjecture suggests that the effect of a
large number of labels on mitigating overfitting is even more pronounced for such attacks. Some support for
this conjecture is given in our experimental section (Figure 4).

Our second attack is based on an algorithm that exactly reconstructs the labels on a subset of the test set.
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Theorem 1.3 (Reconstruction-based attack, informal). For any k = Ω(m logm), there exists an attack A
with access to test set points such that A uses k queries and on any dataset S outputs f such that

accS(f) = min

{
1,

1

m
+ Ω

(
k log(k/m)

n logm

)}
.

The attack underlying Theorem 1.3 requires knowledge of the test points (but not their labels)—in contrast
to a point-wise attack like the previous—and is not computationally efficient in general. For some t ≤ n it
reconstructs the labeling of the first t points in the test set using queries that are random over the first t points
and fixed elsewhere. The value t is chosen to be sufficiently small so that the answers to k random queries
are sufficient to uniquely identify, with high probability, the correct labeling of t points jointly. This analysis
builds on and generalizes the classical results of Erdos and Rényi [ER63] and Chvátal [Chv83]. A natural
question for future work is whether a similar bias can be achieved without identifying test set points and in
polynomial time (currently a polynomial time algorithm is only known for the binary case [Bsh09]).

Experimental evaluation. The goal of our experimental evaluation is to come up with effective attacks
to stress-test multiclass benchmarks. We explore attacks based on our point-wise algorithm in particular.
Although designed for worst-case label uncertainty, the point-wise attack proves applicable in a realistic
setting once we reduce the set of points and the set of labels to which we apply it.

What drives performance in our experiments is the kind of prior information the attacker has. In our
theory, we generally assumed a prior-free attacker that has no a priori information about the labels in the
test set. In practice, an analyst almost always knows a model that performs better than random guessing.
We therefore split our experiments into two parts: (i) simulations in the prior-free case, and (ii) effective
heuristics for the ImageNet benchmark when prior information is available in the form of a well-performing
model.

Our prior-free simulations it becomes substantially more difficult to overfit as the number of classes
grows, as predicted by our theory. Under the same simulation, restricted to two classes, we also see that our
attack improves on the one proposed in [BH15] for binary classification.

Turning to real data and models, we consider the well-known 2012 ILSVRC benchmark based on
ImageNet [Rus+15], for which the test set consist of 50,000 data points with 1000 labels. Standard models
achieve accuracy of around 75% on the test set. It makes sense to assume that an attacker has access to
such a model and will use the information provided by the model to overfit more effectively. We ignore the
trained model parameters and only use the model’s so-called logits, i.e., the predictive scores assigned to
each class for each image in the test set. In other words, the relevant information provided by the the model is
a 50,000× 1000 array.

But how exactly can we use a well-performing model to overfit with fewer queries? We experiment with
three increasingly effective strategies:

1. The attacker uses the model’s logits as the prior information about the labels. This gives only a minor
improvement over a prior-free attack.

2. The attacker uses the model’s logits to restrict the attack to a subset of the test set corresponding to the
lowest “confidence” points. This strategy gives modest improvements over a prior-free attack.

3. The attacker can exploit the fact that the model has good top-R accuracy, meaning that, for every
image, the R highest weighted categories are likely to contain the correct class label. The attacker then
focuses only on selecting from the top R predicted classes for each point. For R = 2, this effectively
reduces class count to the binary case.
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In absolute terms, our best performing attack overfits by about 3% with 5000 queries.
Naturally, the multiclass setting admits attacks more effective than the prior-free baseline. However, even

after making use of the prior, the remaining uncertainly over multiple classes makes overfitting harder than in
the binary case. Such attacks also require more sophistication and hence it is natural to suspect that they are
less likely to be the accidental work of a well-intentioned practitioner.

1.2 Related work

The problem of biasing results due to adaptive reuse of the test data is now well-recognized. Most relevant to
us are the developments starting with the work of Dwork et al. [Dwo+14; Dwo+15b] on reusable holdout
mechanisms. In this work, noise addition and the tools of differential privacy serve to improve the

√
k/n

worst-case bias of the standard holdout method to roughly k1/4/
√
n. The latter requires a strengthened

generalization bound due to Bassily et al. [Bas+16]. Separately, computational hardness results suggest that
no trivial accuracy is possible in the adaptive setting for k > n2 [HU14; SU15].

Blum and Hardt [BH15] developed a limited feedback holdout mechanism, called the Ladder algorithm,
that only provides feedback when an analyst improves on the previous best result significantly. This simple
mechanism leads to a bound of log(k)2/3/n1/3 on what they call the leaderboard error. With the help of
noise addition, the bound can be improved to log(k)3/5/n2/5 [Har17]. Blum and Hardt also give an attack on
the standard holdout mechanism that achieves the

√
k/n bound for a binary prediction problem.

Accuracy on a test set is an average of accuracies at individual points. Therefore our attacks on the test
set are related to the vast literature on (approximate) recovery from linear measurements, which we cannot
adequately survey here (see for example [Ver15]). The primary difference between our work and the existing
literature is the focus on the multiclass setting, which no longer has the simple linear structure of the binary
case. (In the binary case the accuracy measurement is essentially an inner product between the query and
the labels viewed in {±1}.) In addition, even in the binary case the closest literature (see below) focuses
the analysis on prediction with high accuracy (or small error) whereas we focus on the regime where the
advantage over random guessing is relatively small.

Perhaps the closest in spirit to our work are database reconstruction attacks in the privacy literature. In
this context, it was first demonstrated by Dinur and Nissim [DN03] that sufficiently accurate answers to
O(n) random linear queries allow exact reconstruction of a binary database with high probability. Many
additional attacks have been developed in this context allowing more general notions of errors in the answers
(e.g. [DMT07]) and specific classes of queries (e.g. [Kas+10; KRS13]). To the best of our knowledge, this
literature does not consider queries corresponding to prediction accuracy in the multiclass setting and also
focuses on (partial) reconstruction as opposed to prediction bias. Defenses against reconstruction attacks
have lead to the landmark development of the notion of differential privacy [Dwo+06].

Another closely related problem is reconstruction of a pattern in [m]n from accuracy measurements. For
a query q ∈ [m]n, such a measurement returns the number of positions in which q is equal to the unknown
pattern. In the binary case (m = 2), this problem was introduced by Shapiro [Sha60] and was studied in
combinatorics and several other communities under a variety of names, such as “group testing” and “the
coin weighing problem on the spring scale” (see [Bsh09] for a literature overview). In the general case, this
problem is closely related to a generalization of the Mastermind board game [Wik] with only black answer
pegs used. Erdos and Rényi [ER63] demonstrated that the optimal reconstruction strategy in the binary
case uses Θ(n/ log n) measurements. An efficient algorithm achieving this bound was given by Bshouty
[Bsh09]. General m was first studied by Chvátal [Chv83] who showed a bound of O(n logm/ log(n/m))
for m ≤ n (see Doerr et al. [Doe+16] for a recent literature overview). It is not hard to see that the setting
of this reconstruction problem is very similar to our problem when the attack algorithm has access to the
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test set points (and only their labels are unknown). Indeed, the analysis of our reconstruction-based attack
(Theorem 1.3) can be seen as a generalization of the argument from Erdos and Rényi [ER63] and Chvátal
[Chv83] to partial reconstruction. In contrast, our point-wise attack does not require such knowledge of the
test points and it gives bounds on the achievable bias (which has not been studied in the context of pattern
reconstruction).

An attack on a test set is related to a boosting algorithm. The goal of a boosting algorithm is to output a
high-accuracy predictor by combining the information from multiple low-accuracy ones. A query function to
the test set that has some correlation with the target function gives a low-accuracy predictor on the test set and
an attack algorithm needs to combine the information from these queries to get the largest possible prediction
accuracy on the test set. Indeed, our optimal point-wise attack (Theorem 1.2) effectively uses the same
combination rule as the Adaboost algorithm [FS97] and its multiclass generalization [Has+09]. Note that in
our setting one cannot modify the weights of individual points in the test set (as is required by boosting). On
the other hand, unlike a boosting algorithm, an attack algorithm can select which predictors to use as queries.
Another important difference is that boosting algorithms are traditionally analyzed in the setting when the
algorithm achieves high-accuracy, whereas we deal primarily with the more delicate low-accuracy regime.

2 Preliminaries

Let S = (xi, yi)i∈[n] denote the test set, where (xi, yi) ∈ X ×Y . Let m = |Y | and without loss of generality
we assume that Y = [m]. For f : X → Y its accuracy on the test set is accS(f) = 1

n

∑
i∈[n] Ind(f(xi) = yi)

We are interested in overfitting attack algorithms that do not have access to the test set S. Instead, they have
query access to accuracy on the test set S, i.e. for any classifier f : X → Y the algorithm can obtain the value
accS(f). We refer to each such access as a query, and we denote the execution of an algorithm A with access
to accuracy on the test S and AO(S). In addition, in some settings the attack algorithm may also have access
to the set of points x1, . . . , xn.

A k-query test set overfitting attack is an algorithm that, given access to at most k accuracy queries on
some unknown test set S, outputs a function f . For any such possibly randomized algorithm A we define

acc(A)
.
= inf

S∈(X×Y )n
E

f=AO(S)
[accS(f)].

An algorithm is non-adaptive if none of its queries depend on the accuracy values of previous queries (however
the output function depends on the accuracies so a query for that function is adaptive).

The main attack we design will be from a restricted class of point-wise attacks. We define an attack is
point-wise if its queries and output function are generated for each point individually (while still having
access to accuracy on the entire dataset). More formally, A is defined using an algorithms B that evaluated
queries and the final classifier. A query f` at x is defined as the execution of B on values f1(x), . . . , f`−1(x)
and the corresponding accuracies: accS(f1), . . . , accS(f`−1). Similarly, for k query attack, the value of the
final classifier f at x is defined as the execution of B on f1(x), . . . , fk(x) and accS(f1), . . . , accS(fk). An
important property of point-wise attacks is that they can be easily implemented without access to data points.
Further, the accuracy they achieve depends only on the vector of target labels.

Our upper bounds on the bias will apply even to algorithms that have access to points x1, . . . , xn. The
accuracy of such algorithms depends only on target labels. Hence for most of the discussion we describe the
test set by the vector of labels ȳ = (y1, . . . , yn). Similarly, we specify each query by a vector of labels on the
points in the dataset q̄ = (q1, . . . , qn) ∈ [m]n. Accordingly, we use ȳ in place of the test set and q̄ in place of
a classifier in our definitions of accuracy and access to the oracle (e.g. accȳ(q̄) and AO(ȳ)).
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In addition to worst-case (expected) accuracy, we will also consider the average-case accuracy of the
attack algorithm on randomly sampled labels. The random choice of labels may reflect the uncertainty that
the attack algorithm has about the labels. Hence it is natural to refer to it as a prior distribution. In general,
the prior needs to be specified on all points in X , but for point-wise attacks or attacks that have access to
points it is sufficient to specify a vector π̄ = (π1, . . . , πn), where each πi is a probability mass function on
[m] corresponding to the prior on yi. We use ȳ ∼ π̄ to refer to ȳ being chosen randomly with each yi sampled
independently from πi. We let µnm denote the uniform distribution over [m]n. We also define the average
case accuracy of A relative to π̄ by

acc(A, π̄)
.
= E

ȳ∼π̄

[
E

r̄=AO(ȳ)
[accȳ(r̄)]

]
.

Note that for every π̄, acc(A) ≤ acc(A, π̄).
For a matrix of query values Q ∈ [m]n×k, i ∈ [n] and j ∈ [k], we denote by Qj the j-th column of

the matrix (which corresponds to query j) and by Qi the i-th row of the matrix: (Qi,1, . . . , Qi,k) (which
corresponds to all query values for point i). For a matrix of queries Q and label vector ȳ we denote by
accȳ(Q)

.
= (accȳ(Qj))j∈[k].

2.1 Random variables and concentration

For completeness we include several standard concentration inequalities that we use below.

Lemma 2.1 ((Multiplicative) Chernoff bound). Let X be the average of n i.i.d. Bernoulli random variables
with bias p. Then for α ∈ (0, 1)

Pr[X ≥ (1 + α)p] ≤ e
−α2pn

2+α and

Pr[X ≤ (1− α)p] ≤ e−
α2pn

2 .

We also state the Berry-Esseen theorem for the case of Bernoulli random variables.

Lemma 2.2. Let X be the average of n i.i.d. Bernoulli random variables with bias p ≤ 1/2. Then for every
real v,

|Pr[X ≤ v]−Pr[ζ ≤ v]| = O

(
1
√
pn

)
,

where ζ is distributed according to the Gaussian distribution with mean p and variance p(1− p).

3 Upper bound

In this section we formally establish the upper bound on bias that can be achieved by any overfitting attack
on a multiclass problem. The upper bound assumes that the attacker does not have any prior knowledge about
the test set. That is, its prior distribution is uniform over all possible labelings.

The upper bound applies to algorithms that have access to the points in the test set. The upper bound has

two distinct regimes. For k = Õ(n/m) the upper bound on bias is O
(√

k logn
nm

)
and so the highest bias

achieved in this regime is Õ(1/m) (i.e. total accuracy improves by at most a constant factor). For k ≥ n/m,
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the upper bound is O
(
k logn
n

)
. Note that, in this regime, the attacker pays on average one query to improve

the accuracy by one data point (up to log factors).
The proof of the upper bound relies on a simple description length argument, showing that finding a

classifier with desired accuracy and non-negligible probability of success requires learning many bits about
the target labeling.

Theorem 3.1. Let m,n, k be positive integers and µnm denote the uniform distribution over [m]n. Then for
every k-query attack algorithm A, δ > 0, b = k ln(n+ 1) + ln(1/δ), and

ε = 2 ·max

{√
b

nm
,
b

n

}
,

Pr
ȳ∼µnm,r̄=AO(ȳ)

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ δ.

Proof. We first observe that for any fixed labeling r̄, accȳ(r̄) for ȳ chosen randomly according to µnm is
distributed as the average of n independent Bernoulli random variables with bias 1/m. By the Chernoff
bound, for any fixed labeling r̄,

Pr
ȳ∼µnm

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ e−

mnε2

2+mε .

Therefore for any fixed distribution ρ over [m]n, we have

Pr
r̄∼ρ,ȳ∼µnm

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ e−

mnε2

2+mε . (1)

Consider the execution of A with responses of the accuracy oracle fixed to some sequence of values
α = (α1, . . . , αk) ∈ {0, 1/n, . . . , 1}k. We denote the resulting algorithm by Aα. It output distribution is
fixed (that is independent of ȳ). Therefore by eq. (1) we have:

Pr
r̄=Aα,ȳ∼µnm

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ e−

mnε2

2+mε .

We denote the set {0, 1/n, . . . , 1}k of possible values of α by V . Note that |V | ≤ (n+ 1)k and thus we get:

∑
α∈V

Pr
r̄=Aα,ȳ∼µnm

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ (n+ 1)k · e−

mnε2

2+mε .

Clearly, for every ȳ, the accuracy oracle O(ȳ) outputs some responses in V . Therefore,

Pr
ȳ∼µnm,r̄=AO(ȳ)

[
accȳ(r̄) ≥

1

m
+ ε

]
≤
∑
α∈V

Pr
r̄=Aα,ȳ∼µnm

[
accȳ(r̄) ≥

1

m
+ ε

]
≤ (n+ 1)k · e−

mnε2

2+mε .
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Now, if k ln(n+1)+ln(1/δ)
n ≥ 1

m then by definition of b and ε,

ε = 2 max

{√
b

nm
,
b

n

}

= 2
b

n
≥ 2

m
.

Therefore we obtain that, mnε
2

2+mε ≥
nε
2 and

(n+ 1)k · e−
mnε2

2+mε ≤ ek ln(n+1)−nε
2 = eln δ = δ.

Otherwise (when k ln(n+1)+ln(1/δ)
n < 1

m ) we have that

ε = 2

√
b

nm
<

2

m
.

In this case mnε2

2+mε ≥
mnε2

4 and

(n+ 1)k · e−
mnε2

2+mε ≤ ek ln(n+1)−mnε
2

4 = eln δ = δ.

Remark 3.2. The upper bound applies to arbitrary test set access models that limit the number of bits
revealed. Specifically, if the information that the attacker learns about the labeling can be represented using
t bits then the same upper bound applies for b = t+ ln(1/δ). It can also be easily generalized to algorithms
whose output has bounded (approximate) max-information with the labeling [Dwo+15a].

This upper bound can also be converted to a simpler one on the expected accuracy by setting δ = 1/n
and noticing that accuracy is bounded above by 1. Therefore, for

ε =
1

n
+ 2 ·max

{√
(k + 1) ln(n+ 1)

nm
,
(k + 1) ln(n+ 1)

n

}
,

we have acc(A, µnm) ≤ 1
m + ε.

4 Test set overfitting attacks

In this section we will examine two attacks that both rely on queries chosen uniformly at random. Our first
attack will be a point-wise attack that simply estimates the probability of each of the labels for the point,
given the per-query accuracies, and then outputs the most likely label. We will show that this algorithm is
optimal among all point-wise algorithms and then analyze the bias of this attack.

We then analyze the accuracy of an attack that relies on access to data points and is not computationally
efficient. While such an attack might not be feasible in many scenarios (and we do not evaluate it empirically),
it demonstrates the tightness of our upper bound on the optimal bias. This attack is based on exactly
reconstructing part of the test set labels.
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Algorithm 1 The NBπ̄ overfitting attack algorithm.
input Query access to a test set of n points over m labels, query budget k, and priors π̄ = (πi)i∈[n].

Draw k queries Q ∈ [m]n×k uniformly.
Submit queries Q1, . . . , Qk and receive corresponding accuracies ᾱ = (α1, . . . , αk).
For i ∈ [n], compute:

zi ← argmax
`∈[m]

πi(`) ∏
j∈[k],Qi,j=`

αj
∏

j∈[k],Qi,j 6=`

(1− αj)
m− 1

 ,

breaking any ties among maximizers uniformly at random.
output Predictions z̄ = (z1, . . . , zn)

4.1 Point-wise attack

The queries in our attack are chosen randomly and uniformly. A point-wise algorithm can implement
this easily because each coordinate of such a query is independent of all the rest. Hence we only need to
describe how the label of the final classifier on each point is output, given the vector of the point’s k labels
s̄ = (s1, . . . , sk) from each query, and given the corresponding accuracies ᾱ = (α1, . . . , αk). To output the
label our algorithm computes for each of the possible labels the probability of the observed vector of queries
given the observed accuracies. Specifically, if the correct label is ` ∈ [m] then the probability of observing sj
given accuracy αj is αj if sj = ` and (1−αj)

m−1 otherwise. Accordingly, for each label ` the algorithm considers:

conf(`, s̄, ᾱ) =
∏

j∈[k],sj=`

αj ·
∏

j∈[k],sj 6=`

(1− αj)
m− 1

.

It then predicts the label that maximizes conf, and in case of ties it picks one of the maximizers randomly.
This algorithm also naturally incorporates the prior distribution over labels π̄ = (πi)i∈[n]. Specifically,

on point i the algorithm outputs the label that maximizes πi(`) · conf(`, s̄, ᾱ). Note that the version without a
prior is equivalent to one with the uniform prior. We refer to these versions of the attack algorithm as NB and
NBπ̄, respectively. The latter is summarized in Algorithm 1.

We will start by showing that conf(`, s̄, ᾱ) accurately computes the probability of query values.

Lemma 4.1. Let µn×km denote the uniform distribution over k queries. Then for every ȳ ∈ [m]n, accuracy
vector ᾱ, s̄ ∈ [m]k, i ∈ [n] and j ∈ [k],

Pr
Q

[Qi,j = sj | accȳ(Q) = ᾱ] =

{
αj if sj = yi,
1−αj
m−1 otherwise.

Further Qi,j are independent conditioned on accȳ(Q) = ᾱ. That is

Pr
Q

[Qi = s̄ | accȳ(Q) = ᾱ]

=
∏

j∈[k],sj=yi

αj ·
∏

j∈[k],sj 6=yi

(1− αj)
m− 1

= conf(yi, s̄, ᾱ).
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Proof. For every fixed value ȳ, the distribution Q ∼ µn×km conditioned on accȳ(Q) = ᾱ is uniform over all
query matrices that satisfy accȳ(Q) = ᾱ. This implies that for every j the marginal distribution over Qj is
uniform over the set {q̄ | accȳ(q̄) = αj}. We denote this distribution ρȳ,αj . In addition, Q conditioned on
accȳ(Q) = ᾱ is just the product over marginals ρȳ,α1 × · · · × ρȳ,αk . It is easy to see from the definition of
ρȳ,αj , that for every q ∈ [m],

Pr
q̄∼ρȳ,αj

[q̄i = q] =

{
αj if q = yi,
1−αj
m−1 otherwise.

Thus for every s̄,

Pr
Q

[Qi = s̄ | accȳ(Q) = ᾱ]

=
∏

j∈[k],sj=yi

αj ·
∏

j∈[k],sj 6=yi

(1− αj)
m− 1

= conf(`, s̄, ᾱ).

This lemma allows us to conclude that our algorithm is optimal for this setting.

Theorem 4.2. Let π̄ = (π1, . . . , πn) be an arbitrary prior on n labels. Let A be an arbitrary point-wise
attack using k randomly and uniformly chosen queries. Then

acc(A, π̄) ≤ acc(NBπ̄, π̄).

In particular, acc(A) ≤ acc(NB).

Proof. A point-wise attack A that uses a query matrix Q ∼ µn×km is fully specified by some algorithm B that
takes as input the query values for the point s̄ ∈ [m]k and accuracy values ᾱ = (α1, . . . , αk) and outputs a
label. By definition,

acc(A, π̄) = E
ȳ,Q

 1

n

∑
i∈[n]

Ind(yi = B(Qi, accȳ(Q))


=

1

n

∑
i∈[n]

Pr
ȳ,Q

[yi = B(Qi, accȳ(Q))] ,

where ȳ ∼ π̄ and Q ∼ µn×km (and the same in the rest of the proof). Now for every fixed i ∈ [n],

Pr
ȳ,Q

[yi = B(Qi, accȳ(Q))]

=
∑
ᾱ∈V

Pr
ȳ,Q|ᾱ

[yi = B(Qi, ᾱ)] ·Pr
ȳ,Q

[accȳ(Q) = ᾱ],

where by ȳ, Q | ᾱ we denote the distribution of Q and ȳ conditioned on accȳ(Q) = ᾱ and by V we denote
the set of all possible accuracy vectors. For every fixed ᾱ ∈ V ,

Pr
ȳ,Q|ᾱ

[yi = B(Qi, ᾱ)]

=
∑
s̄∈[m]k

Pr
ȳ,Q|ᾱ

[yi = B(s̄, ᾱ) | Qi = s̄] · Pr
ȳ,Q|ᾱ

[Qi = s̄].

11



For every fixed s̄ ∈ [m]k, B(s̄, ᾱ) outputs a random label and the algorithm’s randomness is independent of
Q and ȳ. Hence,

Pr
ȳ,Q|ᾱ

[yi = B(s̄, ᾱ) | Qi = s̄]

=
∑
`∈[m]

Pr
ȳ,Q|ᾱ

[yi = ` | Qi = s̄] · Pr
ȳ,Q|ᾱ

[B(s̄, ᾱ) = `]

≤ max
`∈[m]

Pr
ȳ,Q|ᾱ

[yi = ` | Qi = s̄] .

Moreover, the equality is achieved by the algorithm that outputs any value in

Opt(s̄, ᾱ)
.
= argmax

`∈[m]
Pr
ȳ,Q|ᾱ

[yi = ` | Qi = s̄] .

It remains to verify that NBπ̄ computes a value in Opt(s̄, ᾱ). Applying the Bayes rule we get

Pr
ȳ,Q|ᾱ

[yi = ` | Qi = s̄]

=
Prȳ,Q|ᾱ [Qi = s̄ | yi = `] ·Prȳ,Q|ᾱ[yi = `]

Prȳ,Q|ᾱ[Qi = s̄]
.

Now, the denominator is independent of ` and thus does not affect the definition of Opt(s̄, ᾱ). The
distribution Q is uniform over all possible queries, and thus for every pair of vectors ȳ, ȳ′,

Pr
Q

[accȳ(Q) = ᾱ] = Pr
Q

[accȳ′(Q) = ᾱ].

Therefore the marginal of distribution ȳ ∼ π̄, Q ∼ µn×km | accȳ(Q) = ᾱ over label vectors is not affected by
conditioning. That is, it is equal to π̄. Therefore

Pr
ȳ,Q|ᾱ

[yi = `] = Pr
ȳ,Q|ᾱ

[yi = `] = πi(`).

By Lemma 4.1 we obtain that

Pr
ȳ,Q|ᾱ

[Qi = s̄ | yi = `] = conf(`, s̄, ᾱ).

This implies that maximizing Prȳ,Q|ᾱ [yi = ` | Qi = s̄] is equivalent to maximizing πi(`) · conf(`, s̄, ᾱ).
Hence NBπ̄ achieves the optimal expected accuracy.

To obtain the second part of the claim we note that the expected accuracy of NB does not depend on the
target labels ȳ (the queries and the decision algorithm are invariant to an arbitrary permutation of labels at
any point). That is for any ȳ, ȳ′ ∈ [m]n,

E
r̄=NBO(ȳ)

[accȳ(r̄)] = E
r̄=NBO(ȳ′)

[accȳ′(r̄)].

This means that the worst case accuracy of NB is the same as its average-case accuracy for labels drawn from
the uniform distribution µnm. In addition, NBµnm is equivalent to NB. Therefore,

acc(A) ≤ acc(A, µnm) ≤ acc(NBµnm , µ
n
m) = acc(NB).
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We now provide the analysis of a lower bound on the bias achieved by NB. Our analysis will apply to a
simpler algorithm that effectively computes the plurality label among those for which accuracy is sufficiently
high (larger than the mean plus one standard deviation). Further, to simplify the analysis, we take the number
of queries to be a draw from the Poisson distribution. This Poissonization step ensures that the counts of the
times each label occurs are independent. The optimality of the NB attack implies that the bias achieved by NB

is at least as large as that of this simpler attack.
The key to our proof of Theorem 4.4 is the following lemma about biased and Poissonized multinomial

random variables that we prove in Appendix A.

Lemma 4.3. For γ ≥ 0 let ργ denote the categorical distribution ργ over [m] such that Prs∼ργ [s =
m] = 1

m + γ and for all y 6= m, Prs∼ργ [s = y] = 1
m −

γ
m−1 . For an integer t, let Mnom(t, ργ) be the

multinomial distribution over counts corresponding to t independent draws from ργ . For a vector of counts c̄,
let argmax(c̄) denote the index of the largest value in c̄. If several values achieve the maximum then one of
the indices is picked randomly. Then for λ ≥ 2m ln(4m) and γ ≤ 1

8
√
λm

,

Pr
t∼Pois(λ),c̄∼Mnom(t,ργ)

[argmax(c̄) = m] ≥ 1

m
+ Ω

(
γ
√
λ√
m

)

Given this lemma the rest of the analysis follows quite easily.

Theorem 4.4. For any m ≥ 2, n ≥ k ≥ kmin = O(lnn+m lnm), we have that

acc(NB) =
1

m
+ Ω

( √
k

m
√
n

)
.

Proof. Let γ =

√
1−1/m

3
√
mn

and we consider a point-wise attack algorithm B that given a vector s̄ ∈ [m]k of

query values at a point and a vector ᾱ of accuracies computes the set of indices J ⊆ [k], where αj ≥ 1
m + γ.

We denote t = |J |. The algorithm then samples v from Pois(λ) for λ = k/8. If v ≤ t then let J ′ denote the
first v elements in J , otherwise we let J ′ = J . B outputs the plurality label of labels in s̄J ′ = (sj)j∈J ′ .

To analyze the algorithm, we denote the distribution over s̄, conditioned on the accuracy vector being ᾱ
and correct label of the point being y by ρ(ᾱ, y). Our goal is to lower bound the success probability of B

Pr
s̄∼ρ(ᾱ,y)

[B(s̄, ᾱ) = y].

Lemma 4.1 implies that elements of s̄ are independent and for every j ∈ [k], sj is equal to y with
probability αj and 1−αj

m−1 , otherwise. Therefore for every j ∈ J , sj is biased by at least γ towards the correct
label y. We will further assume that sj is biased by exactly γ since larger bias can only increase the success
probability of B.

Now let δ = Pr[v > t]. The distribution of |J ′| is δ close in total variation distance to Pois(λ). By
Lemma 4.3, this means that

Pr[plu(s̄J ′) = y] ≥ 1

m
+ Ω

(√
kγ√
m

)
− δ =

1

m
+ Ω

( √
k

m
√
n

)
− δ, (2)

where we used the assumptions k ≥ kmin and n ≥ k to ensure that the conditions λ ≥ 2m ln(4m) and
γ ≤ 1

8
√
λm

hold.
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Hence to obtain our result it remains to estimate δ. We view t as jointly distributed with ᾱ. Let φ denote
the distribution of ᾱ for Q ∼ µn×kn and any vector ȳ. For every j ∈ [k], αj is distributed according to the
binomial distribution Bin(n, 1/m). By using the Berry-Esseen theorem (Lemma 2.2), we obtain that

Pr

[
αj ≥

1

m
+
σ

3

]
≥ Pr

[
ζ ≥ σ

3

]
−O

(√
m

n

)
,

where σ2 = 1−1/m
mn and ζ is normally distributed with mean 0 and variance σ2. In particular, for sufficiently

large n,

Pr

[
αj ≥

1

m
+ γ

]
≥ 1/3.

Now by Chernoff bound (Lemma 2.1), we obtain that for sufficiently large k,

Pr

[
t ≤ k

4

]
≤ e−k/96.

In addition, by the concentration of Pois(k/8) (Lemma A.2) we obtain that

Pr

[
v ≥ k

4

]
≤ e−k/32.

Therefore, by the union bound, δ ≤ e−k/96 + e−k/32 and thus for k ≥ kmin we will have that δ =
o(1/n) = o(

√
k/(m

√
n)). Plugging this into eq. (2) we obtain the claim.

4.2 Reconstruction-based attack

Our second attack relies on a probabilistic argument, showing that any dataset’s label vector is, with high
probability, uniquely identified by the accuracies of O

(
max

{
n lnm

ln(n/m) ,m ln(nm)
})

uniformly random
queries. This argument was first used for the binary label case by Erdos and Rényi [ER63] and generalized to
arbitrary m by Chvátal [Chv83]. We further generalize it to allow identification when the accuracy values are
known only up to a fixed shift. This is needed as we apply this algorithm to a subset of labels such that the
accuracy on the remaining labels is unknown. Formally, the unique identification property follows.

Theorem 4.5. Say that a query matrix Q ∈ [m]n×k recovers any label vector from shifted accuracies if there
do not exist distinct ȳ, ȳ′ ∈ [m]n and shift β ∈ R such that

accȳ(Q) = accȳ′(Q) + β · (1, 1, . . . , 1).

For m ≥ 3 and k = max
{

5n lnm
ln(n/4m) , 20m ln(nm)

}
, with probability at least 1/2 over the choice of random

Q ∼ µn×km , Q recovers any label vector from shifted accuracies.

Proof. Let ȳ 6= ȳ′ ∈ [m]n be an arbitrary pair of indices. We describe the difference between ȳ and ȳ′

using the set of indices where they differ I = ∆(ȳ, ȳ′) = {i | yi 6= y′i} and the vectors restricted to this set
ȳI = (yi)i∈I and ȳ′I = (y′i)i∈I . It is easy to see from the definition that for any query q̄,

accȳ(q̄)− accȳ′(q̄) =
1

n

∑
i∈I

(
Ind(yi = qi)− Ind(y′i = qi)

)
.
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In particular, the difference is fully determined by I = ∆(ȳ, ȳ′), ȳI and ȳ′I .
This implies that for a randomly chosen q̄ ∼ µnm, accȳ(q̄)− accȳ′(q̄) is distributed as a sum of w = |I|

independent random variables from distribution that is equal 1/nwith probability 1/m,−1/nwith probability
1/m and 0 otherwise. Equivalently, this distribution can be seen as a sum

1

n

∑
i∈[w]

biσi,

where each bi is independent Bernoulli random variable with bias 2/m and each σi is an independent
Rademacher random variable. We use v to denote the random variable

v =
∑
i∈[w]

biσi

and let b denote the jointly distributed value

b =
∑
i∈[w]

bi.

We first deal with shift β = 0. For this we will first need to upper-bound the probability pw
.
= Pr[v = 0].

Note that conditioned on b = j, v is distributed as sum of j Rademacher random variables. Standard bounds
on the central binomial coefficient imply that for even j ≥ 2,

Pr[v = 0 | b = j] ≤ 1√
j

and for odd j, Pr[v = 0 | b = j] = 0. In particular, for all j ≥ 1, Pr[v = 0 | b = j] ≤ 1/2.
This gives us that

Pr[v = 0] ≤ Pr[b = 0] +
1

2
Pr[b > 1]

=
1

2
+

1

2

(
1− 2

m

)w
≤ 1

2
+

1

2
e−

2w
m . (3)

Now using the multiplicative Chernoff bound we get that

Pr
[
b ≤ w

m

]
≤ e−

w
6m .

This implies that

Pr[v = 0] ≤ Pr
[
b <

w

m

]
+

√
m

w
Pr
[
b ≥ w

m

]
= e−

w
6m +

√
m

w
. (4)

Given a matrix Q of k randomly and independently chosen queries we have

Pr
Q∼µn×km

[
accȳ(Q) = accȳ′(Q)

]
≤ pkw.
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There are at most
(
n
w

)
m2w possible differences between a pair of vectors ȳ, ȳ′. Therefore, by the union bound

for every w, probability that there exists a pair of vectors ȳ, ȳ′ that differ in w positions and for which the
accuracies on all k queries are identical is at most(

n

w

)
m2w · pkw.

If 1 ≤ w < 2m then eq. (3) implies that

pw ≤
1

2
+

1

2
e−

2w
m ≤ 1

2
+

1

2

(
1− w

m

)
≤ e−

w
2m

and our union bound is (
n

w

)
m2w · e−

kw
2m

≤
(
nem2

w

)w
· e−

kw
2m

≤ ew ln(enm2)− kw
2m

≤
(

1

4n2

)w
≤ 1

2n2
,

where we used the condition that

k ≥ 20m ln(nm) ≥ 2m ln(2en3m2).

If 2m ≤ w < 6m then eq. (3) implies that

pw ≤
1

2
+

1

2
e−

2w
m ≤ 1

2
+

1

2
e−1 ≤ e−1/3

and our union bound is (
n

w

)
m2w · e−

k
3

≤ ew ln(enm/2)− k
3 .

This bound is maximized for w = 6m giving e6m ln(nm)− k
3 . Using the condition

k ≥ 20m ln(nm) ≥ 18m ln(enm/2) + 3 ln(2n2)

we get an upper bound of 1
2n2 .

If w ≥ 6m then eq. (4) implies that pw ≤
√

m
4w and our union bound is(

n

w

)
m2w ·

(√
m

4w

)k
.

This bound is maximized for w = n, which gives an upper bound of

m2w ·
( n

4m

)k/2
≤ 1

2n2
,
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Algorithm 2 The reconstruction-based overfitting attack algorithm.
input Query access to a test set of n points over m labels, example budget t ≤ n.

Draw k queries R ∈ [m]t×k uniformly over [m]t×k.
Let Q ∈ [m]n×k be the matrix that extends R by appending n− t rows of ones.
Submit queries Q1, . . . , Qk and receive corresponding accuracies ᾱ = (α1, . . . , αk)
Compute z̄ = (z1, . . . , zn) ∈ [m]n as any vector satisfying accz̄(Q) = ᾱ.
Draw random predictions z′1, . . . , z

′
n−t uniformly over [m]n−t.

output Predictions (z1, . . . , zt, z
′
1, . . . , z

′
n−t)

where we used the condition that

k ≥ 5n lnm

ln(n/4m)
≥ 2

2n ln(m) + ln(2n2)

ln(n/4m)
.

Now by using a union bound over all values of w ∈ [n] we get that probability that there exist distinct
ȳ, ȳ′ ∈ [m]n such that accȳ(Q) = accȳ′(Q) is at most 1/(2n). Now to deal with any other β ∈ {1/n, . . . , 1}
(we only need to treat positive βs since the definition is symmetric) we observe that for m ≥ 3 and any w,

Pr[v = nβ] ≤ Pr[v = 0] = pw.

By the same argument this implies that probability that there exist distinct ȳ, ȳ′ ∈ [m]n such that

accȳ(Q) = accȳ′(Q) + β · (1, 1, . . . , 1)

is at most 1/(2n). Taking the union bound over all values of β we obtain the claim.

Naturally, if for all distinct labeling ȳ, ȳ′, accȳ(Q) 6= accȳ′(Q) then we can recover the unknown labeling
ȳ simply by trying out all possible labeling ȳ′ and picking the one for which the accȳ(Q) = acc′ȳ(Q). Thus

an immediate implication of Thm. 4.5 is that there exists a fixed set of k = O
(

max
{

n lnm
ln(n/m) ,m ln(nm)

})
queries that can be used to reconstruct the labels. In particular, this gives an attack algorithm with accuracy
1. If k is not sufficiently large for reconstructing the entire set of labels then it can be used to reconstruct a
sufficiently small subset of the labels (and predict the rest randomly). Hence we obtain the following bound
on achievable bias.

Corollary 4.6. For any k ≥ 40m ln(m), there exists an attack A with access to points such that

acc(A) = min

{
1,

1

m
+ Ω

(
k ln(k/m)

n lnm

)}
.

Proof. We first let t be the largest value for which Thm. 4.5 guarantees existence of a set of queries of size
k that allows to fully recover t labels from shifted accuracies. Using the bound from Thm. 4.5 we get that
t = Ω

(
k ln(k/m)

lnm

)
. If t ≥ n then we recover the labels and output them. Otherwise, let R ∈ [m]t×k be the

set of queries that recovers t labels and let ȳ[t] be the first t values of ȳ. We extend R to a set Q of queries
over n labels by appending a fixed query (1, 1, . . . , 1) over the remaining n− t coordinates.

Now to recover ȳ[t] we need to observe that, if there exists a vector z̄ ∈ [m]t such that

t · accz̄(R) = n · accȳ(Q)− (n− t)β(1, 1, . . . , 1)
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Figure 1: Average accuracy (with standard deviation bars), over 10 attack trials, of the NBπ̄ attack against
the ImageNet test set. The attacker’s gains improve when the effective class count, as indicated by rank (the
value R used in the top-R heuristic) is reduced, illustrating the increasing vulnerability of the test set when
classes are removed.

for some fixed value β, then ȳ[t] = z̄. This follows from the fact that

t · accȳ[t]
(R) = n · accȳ(Q)− (n− t)β′(1, 1, . . . , 1),

where β′ is the accuracy of all 1 labels on the last n− t coordinates of ȳ. This implies that

accz̄(R) = accȳ[t]
(R) +

(
n− t
t

)
(β′ − β)(1, 1, . . . , 1).

By the property of R this implies that z̄ = ȳ[t]. Having found z̄ = ȳ[t] we output a labeling that is equal to z̄
on the first t labels and is random and uniform over the rest. The expected accuracy of this labeling is

t

n
+

1

m

(
1− t

n

)
=

1

m
+
t

n

m− 1

m
=

1

m
+ Ω

(
k ln(k/m)

n lnm

)
.

The resulting reconstruction-based attack is summarized as Algorithm 2.

5 Experimental evaluation

This section presents a variety of experiments intended (i) to corroborate formal bounds, (ii) to provide a
comparison to previous attack in the binary classification setting, and (iii) to explore the practical application
of the NB attack from Section 4.1.

To visualize the attack’s performance, we first simply simulate our attack directly on a test set of labels
generated uniformly at random from m classes. The attack assumes the uniform prior over the same labels.
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Figure 2: The average accuracies depicted in Figure 1 in comparison with an analytical baseline: the expected
performance of the linear scan attack at the same number of queries.

Figure 3 shows the observed advantage of the attack over the population error rate of 1/m, across a range of
query budgets, on test sets of size 10,000 and 50,000 respectively.1

Figure 4 shows the number of queries at which a fixed advantage over 1/m is first attained, while the
number of class labels m varies, on a test set of size 100,000. To maintain a fixed value of the bound in
Theorem 4.4, an increase in the number of classes m requires a quadratic increase in the number of queries k.
The endpoints of the curves in Figure 4, on a log-log scale, form lines of slope greater than 1, supporting the
conjecture that, to attain a fixed bias, the number of queries k grows superlinearly with m.

In the binary classification setting, we compare to the majority-based attack proposed by Blum and Hardt
[BH15], under the same synthetic dataset. Recall that the NB attack is based on a majority (more generally,
plurality) weighted by the per-query accuracies. The majority function is weighted only by ±1 values, as a
means of ensuring non-negative correlation of each query with the test set labels. It does not consider low-
and high-accuracy queries differently, where NB does. Figure 5 shows the observed relative advantage of
the NB attack. Note that simulating uniformly random binary labels places both attacks on similar starting
grounds: the attacks otherwise differ in that NBπ̄ can incorporate a prior distribution π̄ over class labels to its
advantage.

Our remaining experiments aim to overfit to the ImageNet test set associated with the 2012 ILSVRC
benchmark. As a form of prior information, we incorporate the availability of a standard and (nearly) state of
the art model. Specifically, we train a ResNet-50v2 model over the ImageNet training set. On the test set,
this model achieves a prediction accuracy of 75.1% and a top-R accuracy of 85.3%, 91.0%, and 95.3% for
R = 2, 4, and 10, respectively.

1The number of points in these synthetic test sets is chosen to mirror the CIFAR-10 and ImageNet test sets.
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Figure 3: Average bias (with negligible standard deviation bars), over 10 attack trials, of the NB attack against
uniformly random test sets comprising different class counts. Note that the maximum achievable bias, which
is 1− 1/m for m classes, differs for each curve.

As is common practice in classification, the ResNet model is trained under the cross-entropy loss (a.k.a.
the multiclass logistic loss). That is, it is trained to output scores (logits) that define a probability distribution
over classes, from which it predicts the maximally-probable class label. We use the model’s logits—a 50,000
by 1000 array—as the sole source of side information for attack. All results are summarized in Figure 1,
several highlights of which follow.

First, we consider plugging the model’s predictive distribution in as the prior π̄ in the NBπ̄ attack, yielding
modest gains, e.g. a 0.42% accuracy boost after 5200 queries (averaged over 10 simulations of the attack).

Next, we observe that the model is highly confident about many of its predictions. Recalling the
dependence on the test set size n in our upper bound, we consider a simple heuristic for culling points.
Namely, we select the 10K points for which the model is least confident of its prediction in order to attack
a test set that is a fifth of the original size. This heuristic presents a trade-off: one reduces n to 10K, but
commits to leaving intact the errors made by the model on the 40K more confident points. Applying this
heuristic improves gains further, e.g. to a 1.44% accuracy boost after 5200 queries.

Finally, we consider another heuristic to reduce m, the effective number of classes in the attack, per this
paper’s focus on the multiple class count. Observing that the model has a high top-R accuracy (i.e. recall at
R) for relatively small values of R, it is straightforward to apply the NBπ̄ attack not to the original classes, but
to selecting (pointwise) which of the model’s top-R predictions to take. This heuristic presents a trade-off as
well: one reduces m down to R, but commits to perform no better than the top-R accuracy of the model, a
quantity that increases with R. Applying this heuristic together with the previous improves the attacker’s
advantage further. For instance, at R = 2, we observe a 3.0% accuracy boost after 5200 queries.

To put these numbers in perspective, we compare to a straightforward analytical baseline in Figure 2: the
expected performance of the “linear scan attack.” Namely, this is an attack that begins with a random query
vector and successively submits queries by modifying the label of one point at a time, discovering the label’s
true value whenever the observed test set accuracy increases.
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Figure 4: The number of queries at which a fixed advantage over 1/m is first attained, while the number of
class labels m varies, on a randomly generated test set of size 100,000. The endpoints of the curves form
slopes (under the log-log axis scaling) of roughly 1.2 (for the 0.002 bias curve) and 1.3 (for the other curves),
suggesting that, to attain a fixed bias, the number of queries k must indeed grow superlinearly with m, as
supported by the bound in Theorem 4.4.
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[ER63] P. Erdos and A. Rényi. “On two problems of information theory”. In: Magyar Tud. Akad. Mat.
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A Proof of Lemma 4.3

We start with some definitions and properties of the Poisson distribution that we will need in the proof.
A Poisson random variable V , with parameter λ, is the random variable that for all non-negative integers

t, satisfies Pr[V = t] = e−λ λ
t

t! . We denote its density by Pois(λ). For U ∼ Pois(λ1) and U ∼ Pois(λ2),
U + V is distributed according to Pois(λ1 + λ2).

We will use the following result referred to as Poissonization of a multinomial random variable.

Fact A.1. Let ρ(p̄) be a categorical distribution over [m] defined by a vector of probabilities p̄ = (p1, . . . , pm)
and let Mnom(k, p̄) be the multinomial distribution over counts corresponding to k independent draws from
ρ(p̄). Then for any λ > 0 and V ∼ Pois(λ) we have that Mnom(V, p̄) is distributed as

Pois(p1λ)× Pois(p2λ)× · · · × Pois(pmλ).

We will need a relatively tight bound on the concentration of a Poisson random variable. Its simple proof
can be found, for example, in a note byCanonne [Can17].

Lemma A.2 ([Can17]). For any λ > 0, x ≥ 0,

Pr
V∼Pois(λ)

[V ≥ λ+ x] ≤ e−(λ+x) ln(1+ x
λ)−x and

Pr
V∼Pois(λ)

[V ≤ λ− x] ≤ e−(λ−x) ln(1− x
λ)−x.

In particular,

Pr
V∼Pois(λ)

[V ≥ λ+ x] ≤ e
−x2

2(λ+x) and

Pr
V∼Pois(λ)

[V ≤ λ− x] ≤ e
−x2

2(λ+x) .

Using this concentration inequality we show that the density of the Poisson random variable can be
related in a tight way to the corresponding tail probability.

Lemma A.3. For any λ > 0 and integer t ≥ 0 and x = |t− λ|,

Pr
V∼Pois(λ)

[V = t] ≥ e−t ln( tλ)−x

e
√
t

.

In particular, for t ≥ λ,

Pr
V∼Pois(λ)

[V = t] ≥
PrV∼Pois(λ)[V ≥ t]

e
√
t

and t ≤ λ,

Pr
V∼Pois(λ)

[V = t] ≥
PrV∼Pois(λ)[V ≤ t]

e
√
t

.
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Proof. If t ≥ λ (and x = t− λ) then by definition and using Stirling’s approximation of the factorial we get:

Pr
V∼Pois(λ)

[V = t] = e−λ
λt

t!
≥ e−λ λt

e
√
te−ttt

=
ex

e
√
t

(
λ

λ+ x

)λ+x

=
ex

e
√
t

(
λ+ x

λ

)−(λ+x)

=
1

e
√
t
e−(λ+x) ln(1+ x

λ)−x

≥
PrV∼Pois(λ)[V ≥ λ+ x]

e
√
t

,

where we used Lemma A.2 to obtain the last inequality. The case when t ≤ λ is proved analogously.

We are now ready to prove Lemma 4.3 which we restate here for convenience.

Lemma A.4. For γ ≥ 0 let ργ denote the categorical distribution ργ over [m] such that Prs∼ργ [s =
m] = 1

m + γ and for all y 6= m, Prs∼ργ [s = y] = 1
m −

γ
m−1 . For an integer t, let Mnom(t, ργ) be the

multinomial distribution over counts corresponding to t independent draws from ργ . For a vector of counts c̄,
let argmax(c̄) denote the index of the largest value in c̄. If several values achieve the maximum then one of
the indices is picked randomly. Then for λ ≥ 2m ln(4m) and γ ≤ 1

8
√
λm

,

Pr
t∼Pois(λ),c̄∼Mnom(t,ργ)

[argmax(c̄) = m] ≥ 1

m
+ Ω

(√
λγ√
m

)
.

Proof. Let c̄ = (c1, . . . , cm) denote the vector of label counts sampled from Mnom(t, ργ) for t sampled
randomly from Pois(λ). We first use Fact A.1 to conclude that c̄ is distributed according to

Pois(λ′)× · · · × Pois(λ′)× Pois

(
λ′ +

γλm

m− 1

)

for λ′ =
(

1
m −

γ
m−1

)
λ.

The next step is to reduce the problem to that of analyzing the product distribution of identical Poisson
random variables. Specifically, we view the count of the “true” labelm as the sum of two independent Poisson
random variables c′m ∼ Pois(λ′) and dm ∼ Pois

(
γλm
m−1

)
.We also denote by c̄′ the vector (c1, . . . , cm−1, c

′
m).

Note that c̄′ consists of independent and identically distributed samples from Pois (λ′).
Let z = maxj∈[m−1] cj . By definition, if cm > z then argmax(c̄) = m and if cm = z then

Pr[argmax(c̄) = m] ≤ 1/2, where the probability is taken solely with respect to the random choice
of the index that maximizes the count. This implies that if dm ≥ 1 then

Pr[argmax(c̄) = m] ≥ Pr[argmax(c̄′) = m] +
1

2
Ind(c′m ∈ [z − dm + 1, z]).

Now taking the probability over the random choice of c̄ we get

Pr[argmax(c̄) = m] ≥ Pr[argmax(c̄′) = m] +
1

2
Pr[c′m ∈ [z − dm + 1, z]]. (5)
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By symmetry of the distribution of c̄′ we obtain that Pr[argmax(c̄′) = m] = 1
m . To analyze the second

term, we first consider the case where E[dm] = γλm
m−1 ≤ 1. For this case we simply bound

Pr[c′m ∈ [z − dm + 1, z]] ≥ Pr[c′m = z] ·Pr[dm ≥ 1] (6)

(recall that dm and c′m are independent).
By definition of Pois

(
γλm
m−1

)
we obtain that

Pr[dm ≥ 1] = 1− e−γλm/(m−1) ≥ λγm

2(m− 1)
≥ λγ

2
, (7)

where we used the fact that e−a ≤ 1− a/2 whenever a ≤ 1 and our assumption that γλmm−1 ≤ 1.
Hence it remains to lower bound Pr[c′m = z]. To this end, let u and v be the 1/2 and 1 − 1/(4m)

quantiles of Pois(λ′), respectively. That is, u = max{t | PrV∼Pois(λ′)[V ≥ t] ≥ 1/2} and v =

max{t | PrV∼Pois(λ′)[V ≥ t] ≥ 1 − 1/(4m)}. By the union bound, Pr[z ≥ v + 1] ≤ m−1
4m < 1/4.

In addition, by the standard properties of Poisson distribution PrV∼Pois(λ′)[V ≥ bλ′c] ≥ 1/2 which implies
that Pr[z ≥ bλ′c] ≥ 1/2 and thus u ≥ bλ′c.

Thus we have an interval such that
Pr[z ∈ [u, v]] ≥ 1

4
.

By Lemma A.3, we have that for every t ∈ [u, v],

Pr[c′m = t] = Pr
V∼Pois(λ′)

[V = t] ≥
PrV∼Pois(λ′)[V ≥ t]

e
√
t

≥ 1

4e
√
vm

. (8)

Observe that by our assumption, λ ≥ 2 ln(4m) and γ
m−1λ ≤ λ

′/2. Hence λ′ ≥ ln(4m). By Lemma A.2 this
implies that

v ≤ λ′ + 3
√
λ′ ln(4m) ≤ 4λ′.

Using the independence of z and c′m we can conclude that

Pr[c′m = z] ≥ Pr[z ∈ [u, v]] · min
t∈{u,u+1,...,v}

Pr[c′m = t] ≥ 1

4
· 1

4e
√
vm
≥ 1

32e
√
λ′m

.

By combining this bound with eq.(7), plugging it into eq.(6) and recalling that λ′ =
(

1
m −

γ
m−1

)
λ ≥ λ

2m

we obtain that

Pr[argmax(c̄) = m] ≥ 1

m
+

1

2
· λγ

2
· 1

32e
√
λ′m

=
1

m
+ Ω

(√
λγ√
m

)
.

We now consider the other case where E[dm] = γλm
m−1 > 1 which requires a similar but somewhat more

involved treatment. We first note that we can assume that γλmm−1 ≥ 12. For the case when γλm
m−1 ∈ [1, 12] we

note that it holds that
Pr[dm ≥ 1] ≥ 1− e−1 >

1

20
γλ.

Thus we can still use the same analysis as before to obtain our claim. By Lemma A.2, for ν ≥ 12,
PrV∼Pois(ν)[V ∈ [ν/2, 2ν]] ≥ 1/2. In particular, under the assumption that γλmm−1 ≥ 12,

Pr

[
dm ∈

[
γλm

2(m− 1)
,

2γλm

m− 1

]]
≥ 1

2
.
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We also define u and v as before. Using independence of z and dm we obtain that with probability at least
1
4 ·

1
2 , we have that dm ∈

[
γλm

2(m−1) ,
2γλm
m−1

]
and z ∈ [u, v − 1]. In particular, with probability at least 1/8,

dm ≥ γλm
2(m−1) > γλ/2 and [z − dm + 1, z] ⊆ [u′, v′], where u′ = u − 2γλm

m−1 and v′ = v − γλm
2(m−1) . The

interval [z − dm + 1, z] includes dm integer points and therefore

Pr[c′m ∈ [z − dm + 1, z]] ≥ 1

8
· γλ

2
· min
t∈{u′,u′+1,...,v′}

Pr[c′m = t]. (9)

To analyze the lowest value of the probability mass function of Pois(λ′) on the integers in the interval [u′, v′]
we first note that v′ ≤ v and thus for t ∈ [λ′, v′] our bound in eq. (8) applies. For t ∈ [u′, λ′) we will first
prove that under the assumptions of the lemma u′ ≥ λ′ −

√
λ′ and then show that for t ∈ [λ′ −

√
λ′, λ′),

Pr[c′m = t] ≥ 1
e2
√
λ′

. Plugging this lower bound together with the one in eq. (8) into eq. (9) we obtain the
claim:

Pr[c′m ∈ [z − dm + 1, z]] ≥ γλ

16
·min

{
1

8e
√
λ′m

,
1

e2
√
λ′

}
= Ω

(√
λγ√
m

)
.

We now complete these two missing steps. By our definition of u′,

u′ ≥ bλ′c − 2γλm

m− 1
≥ λ′ − 4γλ− 1 ≥ λ′ −

√
λ′

which follows from the assumption that γ ≤ 1
8
√
λm

and assumption λ ≥ 2m ln(4m) implying that λ′ > 5.
Now by Lemma A.3 and, using the monotonicity of the pmf of Pois(λ′) until λ′, we have that for t ∈
[λ′ −

√
λ′, λ′),

Pr[c′m = t] ≥ e
−(λ′−

√
λ′) ln

(
λ′−
√
λ′

λ′

)
−
√
λ′

e
√
λ′ −

√
λ′

≥ e
(λ′−

√
λ′)

(
1√
λ′
− 1

2λ′

)
−
√
λ′

e
√
λ′ −

√
λ′

=
e
− 1

2
+ 1

2
√
λ′

e
√
λ′ −

√
λ′
≥ 1

e2
√
λ′
,

where we used the Taylor series of ln(1− x) = −x− x2/2− x3/3− . . . to obtain the second line.

27


	Introduction
	Our contributions
	Related work

	Preliminaries
	Random variables and concentration

	Upper bound
	Test set overfitting attacks
	Point-wise attack
	Reconstruction-based attack

	Experimental evaluation
	Proof of Lemma 4.3

