
Almost surely constrained convex optimization

Olivier Fercoq 1 Ahmet Alacaoglu 2 Ion Necoara 3 Volkan Cevher 2

Abstract
We propose a stochastic gradient framework for
solving stochastic composite convex optimiza-
tion problems with (possibly) infinite number of
linear inclusion constraints that need to be satis-
fied almost surely. We use smoothing and homo-
topy techniques to handle constraints without the
need for matrix-valued projections. We show for
our stochastic gradient algorithm O(log(k)/

√
k)

convergence rate for general convex objectives
and O(log(k)/k) convergence rate for restricted
strongly convex objectives. These rates are known
to be optimal up to logarithmic factor, even with-
out constraints. We conduct numerical experi-
ments on basis pursuit, hard margin support vec-
tor machines and portfolio optimization problems
and show that our algorithm achieves state-of-the-
art practical performance.

1. Introduction
In many machine learning applications, optimization prob-
lems involve stochasticity in objective functions or con-
straint sets. Even though the problems with stochastic ob-
jective functions are well-studied in the literature, investi-
gation of stochastic constraints seems to be rather scarce.
In particular, we focus on the following stochastic convex
optimization template:

min
x∈Rd
{P (x) := F (x) + h(x)} (1)

A(ξ)x ∈ b(ξ) ξ-almost surely,

where F (x) = Eξ [f(x, ξ)], with a convex and smooth
f(·, ξ) : Rd → R such that E [∇f(x, ξ)] = ∇F (x); and
h : Rd → R ∪ {+∞} is a nonsmooth, proximable convex
function. Moreover, b(ξ) are projectable closed convex sets.

1LTCI, Télécom ParisTech, Université Paris-Saclay 2Laboratory
for Information and Inference Systems, École Polytechnique
Fédérale de Lausanne 3Department of Automatic Control and Sys-
tems Engineering, University Politehnica Bucharest. Correspon-
dence to: Olivier Fercoq <olivier.fercoq@telecom-paristech.fr>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

We seek to satisfy the stochastic linear inclusion constraints
in (1) almost surely. Note that this goal is different from
satisfying constraints in expectation, which is studied e.g.
in (Lan and Zhou, 2016). We argue that this change is also
what sets (1) apart from the standard stochastic setting in the
literature. Indeed, we assume thatA(ξ) ∈ Rm×d is a matrix-
valued random variable and b(ξ) ⊆ Rm is a random convex
set. For the special case when A(ξ) is an identity matrix,
(1) recovers optimization problems where the constraint set
is the intersection of a possibly infinite number of sets.

Applications of almost surely constrained problems arise in
many fields, such as machine learning, operations research,
and mathematical finance. Interesting cases include semi-
infinite linear programming, sparse regression, portfolio
optimization, classification, distributed optimization and
streaming settings, and consensus optimization problems
in standard constrained optimization where the access to
full data is not possible (Sonnenburg et al., 2006; Abdelaziz
et al., 2007; Nedić et al., 2018; Towfic and Sayed, 2015).

Particular instances of (1) involve primal support vector ma-
chines (SVM) classification and sparse regression which are
central in machine learning (Shalev-Shwartz et al., 2011;
Garrigues and Ghaoui, 2009). Due to the huge volume of
data that is used for these applications, storing or processing
this data at once is in general not possible. Therefore, using
these data points one by one or in mini batches in learning
algorithms is becoming more important. One direction that
the literature focused so far is solving unconstrained formu-
lations of these problems, successes of which are amenable
to regularization parameters that needs to be tuned. By pre-
senting a method capable of solving (1) directly, we present
a parameter-free approach for solving these problems.

The most popular method for solving constrained stochastic
optimization problems is projected stochastic gradient de-
scent (SGD) (Nemirovski et al., 2009). However, in the case
where we have infinite number of constraints, it is not clear
how to apply the projection step. To remedy this issue, many
methods utilize alternating projections to tackle stochastic
constraints by viewing them as an intersection of possibly
infinite sets (Patrascu and Necoara, 2017) (see Section 5
for a detailed discussion). For the special case when A(ξ)
is a vector-valued random variable, or identity matrix, pro-
jection methods are efficient. However, in the general case,

Almost surely constrained convex optimization

applying projection with matrix-valued A(ξ) may clearly
impose a serious computational burden per iteration.

In this work, we take a radically different approach and
use Nesterov’s smoothing technique (Nesterov, 2005) for
almost sure constraints instead of applying alternating pro-
jections. In doing so, we avoid the need for projections on
the linear constraints. We make use of the stochastic gra-
dients of f(x, ξ), proximal operators of simple nonsmooth
component h(x) and simple projections on the set b(ξ).

In a nutshell, our analysis technique combines ideas of
smoothing and homotopy in the stochastic gradient frame-
work. We extend the previous analysis on smoothing with
homotopy (Tran-Dinh et al., 2018b) to stochastic optimiza-
tion with infinitely many constraints. To our knowledge,
this is the first application of smoothing for stochastic con-
straints. Our contributions can be summarized as follows:

• We provide a simple stochastic gradient type algorithm
which does not involve projections with matrix-valued
random variables or heuristic parameter tuning.

• We prove O(log(k)/
√
k) convergence rate for general

convex objectives.

• We prove O(log(k)/k) convergence rate for restricted
strongly convex objectives.

• We include generalizations of our framework for com-
posite optimization with general nonsmooth Lispchitz
continuous functions in addition to indicator functions.

• We provide numerical evidence and verify our theoret-
ical results in practice.

Roadmap. We recall the basic theoretical tools that we
utilize and lay out the notation in Section 2. The algorithm
and its convergence guarantees are presented in Section 3.
Section 4 shows how our results can be used to recover and
extend previous works. We review the related literature and
compare our method with the existing ones in Section 5.
We conclude by presenting the practical performance of our
method on three different problem instances in Section 6.
Proofs of the theoretical results are deferred to the appendix.

2. Preliminaries
Notation. We use ‖ · ‖ to denote Euclidean norm and
〈·, ·〉 to denote Euclidean inner product. The adjoint of a
continuous linear operator is denoted by >. We will write
a.s. in place of "almost surely" in the sequel.

We define the distance function to quantify the distance be-
tween a point x and set K as dist (x,K) = infz∈K ‖x− z‖.
Given a function φ, we use ∂φ(x) to denote its subdifferen-
tial at x. For a given set K, we denote the indicator function
of the set by δK(x) = 0, if x ∈ K and δK(x) = +∞

otherwise. We define the support function of the set K as
suppK(x) = supy∈K〈x, y〉. The domain of a convex func-
tion f is dom (f) = {x : f(x) < +∞}. We use Õ
notation to suppress the logarithmic terms.

We define the proximal operator of a convex function φ as

proxφ(z) = arg min
x
φ(x) +

1

2
‖x− z‖2.

We say that φ is a proximable function if computing its
proximal operator is efficient.

Given a function f and L > 0, we say that f is L-smooth if
∇f is Lipschitz continuous, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

The function f is µ > 0 strongly convex if it satisfies,

f(x) ≥ f(y)+ 〈∇f(y), x−y〉+ µ

2
‖x−y‖2, ∀x, y ∈ Rd,

and, we say that the function f is µ-restricted strongly con-
vex if there exists x? such that,

f(x) ≥ f(x?) +
µ

2
‖x− x?‖2, ∀x ∈ Rd.

It is known that restricted strong convexity is a weaker
condition than strong convexity since it is implied by strong
convexity along the direction of the solution (Necoara et al.,
2018a; Bolte et al., 2017).

Space of random variables. We will consider in this paper
random variables y(ξ) ∈ Rm belonging to the space

Y = {(y(ξ))ξ : E[‖y(ξ)‖2] < +∞}.

We shall denote by µ the probability measure of the random
variable ξ, and we endow Y with the scalar product

〈y, z〉 = E[y(ξ)>z(ξ)] =

∫
y(ξ)>z(ξ)µ(dξ).

Y is a Hilbert space and the norm is defined as ‖y‖ =√
E[‖y(ξ)‖2].

Smoothing. We are going to utilize Nesterov’s smoothing
framework to process almost sure linear constraints. Due
to (Nesterov, 2005), a smooth approximation of a nons-
mooth convex function g can be obtained as

gβ(z) = max
u
〈u, z〉 − g∗(u)− β

2
‖u‖2, (2)

where g∗(u) = supz〈z, u〉 − g(z) is the Fenchel-conjugate
of g and β > 0 is the smoothness parameter. As shown
in (Nesterov, 2005), gβ(·) is convex and 1/β-smooth.

For the special case of indicator functions, g(x) = δb(x),
where b is a given convex set, g∗(x) = suppb(x) and the

Almost surely constrained convex optimization

smooth approximation is given by gβ(z) = 1
2β dist (z, b)2.

Smoothing the indicator function is studied in (Tran-Dinh
et al., 2018b) for the case of deterministic optimization,
which we extend to the stochastic setting in this work.

Duality. We define the stochastic function

g(A(ξ)x, ξ) = δb(ξ)(A(ξ)x).

Using basic probability arguments, Problem (1) can be writ-
ten equivalently as:

min
x∈Rd

E[f(x, ξ)] + h(x) + E[g(A(ξ)x, ξ)] =: P (x)+G(Ax)

where P (x) = E[f(x, ξ)] + h(x), A : Rd → Y is the
linear operator such that (Ax)(ξ) = A(ξ)x for all x and
G : Y → R ∪ {+∞} is defined by

G(z) =

∫
δb(ξ)(z(ξ))µ(dξ).

We will assume that

‖A‖2,∞ = sup
ξ
‖A(ξ)‖ < +∞, (3)

so that A is in fact continuous. Note that assuming a uni-
form bound on ‖A(ξ)‖ is not restrictive since, as soon as
‖A(ξ)‖ 6= 0, we can replace A(ξ)x ∈ b(ξ) by

A′(ξ)x =
A(ξ)x

‖A(ξ)‖
∈ b′(ξ) =

b(ξ)

‖A(ξ)‖
,

without changing the set of vectors x satisfying the con-
straint, and projecting onto b′(ξ) is as easy as projecting
onto b(ξ).

For the case of stochastic constraints, we define the La-
grangian L : Rd × Y → R ∪ {+∞} as

L(x, y) = P (x)+

∫
〈A(ξ)x, y(ξ)〉−suppb(ξ)(y(ξ))µ(dξ).

Using the Lagrangian, one can equivalently define primal
and dual problems as

min
x∈Rd

max
y∈Y
L(x, y), and, max

y∈Y
min
x∈Rd

L(x, y).

Strong duality refers to values of these problems being equal.
It is known that Slater’s condition is a sufficient condition
for strong duality to hold (Bauschke et al., 2011). In the
context of duality in Hilbert spaces, Slater’s condition refers
to the following:

0 ∈ sri(dom (G)−A(dom (P)))

where sri(·) refers to the strong relative interior of the
set (Bauschke et al., 2011).

Optimality conditions. We denote by (x?, y?) ∈ Rd×Y a
saddle point ofL(x, y). For the constrained problem, we say
that x is an ε-solution if it satisfies the following objective
suboptimality and feasibility conditions

|P (x)− P (x?)| ≤ ε,
√
E [dist(A(ξ)x, b(ξ))2] ≤ ε. (4)

3. Algorithm & Convergence
We derive the main step of our algorithm from smoothing
framework. The problem in (1) is nonsmooth both due to
h(x) and the constraints encoded in g(A(ξ)x, ξ). We keep
h(x) intact since it is proximable, and smooth g to get

Pβ(x) = E [f(x, ξ)] + h(x) + E [gβ(A(ξ)x, ξ)] , (5)

where gβ(A(ξ)x, b(ξ)) = 1
2β dist(A(ξ)x, b(ξ))2. We note

that E [f(x, ξ)] + E [gβ(A(ξ)x, ξ)] is L(∇F) +
‖A‖22,2
β -

smooth where

‖A‖2,2 = sup
x 6=0

√
E[‖A(ξ)x‖2]

‖x‖
≤ ‖A‖2,∞,

‖A‖2,∞ being defined in (3). Note that (5) can also be
viewed as a quadratic penalty (QP) formulation.

The main idea of our method is to apply stochastic proxi-
mal gradient (SPG) (Rosasco et al., 2014) iterations to (5)
by using homotopy on the smoothness parameter β. Our
algorithm has a double loop structure where for each value
of β, we solve the problem (5) with SPG upto some accu-
racy. This strategy is similar to inexact quadratic penalty
(QP) methods which are studied for deterministic problems
in (Lan and Monteiro, 2013). In stark contrast to inexact QP
methods, Algorithm 1 has explicit number of iterations for
the inner loop which is determined by theoretical analysis,
avoiding difficult-to-check stopping criteria for the inner
loop in standard inexact methods. We decrease β to 0 ac-
cording to update rules from theoretical analysis to ensure
the convergence to the original problem (1) rather than the
smoothed problem (5).

In Algorithm 1, we present our stochastic approximation
method for almost surely constrained problems (SASC, pro-
nounced as "sassy"). We note that Case 1 refers to parame-
ters for general convex case and Case 2 refers to restricted
strongly convex case.

It may look unusual at first glance that in the restricted
strongly convex case, the step size αs is decreasing faster
than in the general convex case. The reason is that restricted
strong convexity allows us to decrease faster the smooth-
ness parameter βs, and that the step size is driven by the
smoothness of the approximation.

We will present a key technical lemma which is instrumen-
tal in our convergence analysis. It will serve as a bridge to
transfer bounds on the smoothness parameter and an aux-
iliary function that we define in (6) to optimality results in
the usual sense for constrained optimization, i.e. (4). This
lemma can be seen as an extension of Lemma 1 from (Tran-
Dinh et al., 2018b) to the case of almost sure constraints.
We first define the auxiliary function that we are going to

Almost surely constrained convex optimization

Algorithm 1 SASC
Input: x0

0 ∈ Rd

Parameters: α0 ≤
3

4L(∇F)
, and ω > 1

Case 1: m0 ∈ N∗.
Case 2: m0 ≥ ω

µα0
.

for s ∈ N do
ms = bm0ω

sc, and βs = 4αs ‖A‖22,∞
Case 1: αs = α0ω

−s/2.
Case 2: αs = α0ω

−s.
for k ∈ {0, . . . ,ms − 1} do

Draw ξ = ξsk+1, and define z = A(ξ)xsk.
D(xsk, ξ) := ∇f(xsk, ξ) +A(ξ)>∇zgβs(A(ξ)x

s
k, ξ)

xsk+1 = proxαsh
(xsk − αsD(xsk, ξ))

end for
x̄s = 1

ms

∑ms

k=1 x
s
k

Case 1: xs+1
0 = xsms

.
Case 2: xs+1

0 = x̄s.
end for
return x̄s

utilize, which we name as the smoothed gap function

Sβ(x) = Pβ(x)− P (x?). (6)

Lemma 3.1. Let (x?, y?) be a saddle point of

min
x∈Rd

max
y∈Y
L(x, y),

and note that Sβ(x) = Pβ(x)−P (x?) = P (x)−P (x?) +
1

2β

∫
dist (A(ξ)x, b(ξ))2µ(dξ). Then, the following hold:

Sβ(x) ≥ −β
2
‖y?‖2,

P (x)− P (x?) ≥ −
1

4β

∫
dist (A(ξ)x, b(ξ))2µ(dξ)− β‖y?‖2,

P (x)− P (x?) ≤ Sβ(x),∫
dist (A(ξ)x, b(ξ))2µ(dξ) ≤ 4β2‖y?‖2 + 4βSβ(x).

The simple message of Lemma 3.1 is that if an algorithm de-
creases Sβ(x) and β simultaneously, then it obtains approx-
imate solutions to (1) in the sense of (4), i.e. it decreases
feasibility and objective suboptimality.

The main technical challenge of applying SPG steps to
problem (5) with homotopy stems from the stochastic
term due to constraints, which is E[gβ(A(ξ)x, ξ)], with
gβ(A(ξ)x, b(ξ)) = 1

2β dist(A(ξ)x, b(ξ))2.

Even though this term is in a suitable form to apply SPG,
its variance bound and Lipschitz constant of its gradient
becomes worse and worse as β → 0. A naive solution for
this problem would be to decrease β slowly, so that these

bounds will increase slowly so that they can be dominated
by the step size. Due to Lemma 3.1 however, the rate of
decrease of β directly determines the convergence rate, so
a slowly decaying β would result in slow convergence for
the method. Our proof technique carefully balances the rate
of βk and the additional error terms due to using stochastic
gradients of E[gβ(A(ξ)x, ξ)], so that the optimal rate of
SPG is retained even with constraints.

We are going to present the main theorems in the follow-
ing two sections for general convex and restricted strongly
convex objectives, respectively. The main proof strategy in
Theorem 3.2 and Theorem 3.3 is to analyze the convergence
of Sβ(x) and β and use Lemma 3.1 to translate the rates to
objective residual and feasibility measures.

3.1. Convergence for General Convex Objectives

In this section, we present the convergence results for solv-
ing (1) where only general convexity is assumed for the
objective P (x).

Theorem 3.2. Assume F is convex andL(∇F) smooth, and
∃σf such that E[‖∇f(x, ξ)−∇F (x)‖2] ≤ σ2

f . Denote
Ms =

∑s
l=0ml. Let us set ω > 1, α0 ≤ 3

4L(∇f) , m0 ∈ N∗,
ms = bm0ω

sc, and βs = 4αs‖A‖22,∞. Then, for all s,

E[P (x̄s)− P (x?)] ≤
C1√
Ms

[
C2 +

log(Ms/m0)

log(ω)
C3

]
E[P (x̄s)− P (x?)] ≥

− 2C4√
Ms

‖y?‖2 −
C1√
Ms

[
C2 +

log(Ms/m0)

log(ω)
C3

]
√
E [dist(A(ξ)x̄s, b(ξ))2] ≤

1√
Ms

[
2C4‖y?‖+ 2

√
C1C4

√
C2 +

log(Ms/m0)

log(ω)
C3

]

where C1 =
√
m0ω

α0(m0−1)
√
ω−1

, C2 =
‖x?−x0

0‖
2

2 + 2α0m0σ
2
f ,

C3 = 2α2
0‖A‖22,∞m0‖y?‖2 + 2α0m0σ

2
f and C4 =

4α0
√
m0‖A‖22,∞

√
ω√
ω−1

.

Note that the O(1/
√
k) rate is known to be optimal for

solving (1) with SGD (Polyak and Juditsky, 1992; Agarwal
et al., 2009). In Theorem 3.2, we show that by handling
infinite number of constraints without projections, we only
lose a logarithmic factor from this rate.

3.2. Convergence for Restricted Strongly Convex
Objectives

In this section, we assume P (x) in (1) to be restricted
strongly convex in addition to F being L(∇F) smooth.
Note that requiring restricted strong convexity of P (x) is
substantially weaker than requiring strong convexity of com-

Almost surely constrained convex optimization

ponent functions f(x, ξ) or h(x), see (Necoara et al., 2018a)
for more details. In this setting, we have:

Theorem 3.3. Assume F is convex and L(∇F) smooth,
P is µ-restricted strongly convex and ∃σf such that
E[‖∇f(x, ξ)−∇F (x)‖2] ≤ σ2

f . Denote Ms =
∑s
l=0ml.

Let us set ω > 1, α0 ≤ 3
4L(∇f) , m0 ≥ ω

µα0
, ms = bm0ω

sc,
and βs = 4αs‖A‖22,∞. Then, for all s,

E[P (x̄s)− P (x?)] ≤
1

Ms

[
D1 +

log(Ms/m0)

log(ω)
D2

]
E[P (x̄s)− P (x?)] ≥

− 2D3

Ms
‖y?‖2 −

1

Ms

[
D1 +

log(Ms/m0)

log(ω)
D2

]
√
E [dist(A(ξ)x̄s, b(ξ))2] ≤

1

Ms

[
2D3‖y?‖+ 2

√
D3

√
D1 +

log(Ms/m0)

log(ω)
D2

]

where D1 = ω
ω−1

m0

α0(m0−1)
1
2

∥∥x0
0 − x?

∥∥2
+ 2α0m0

ω
ω−1σ

2
f ,

D2 =
2m2

0α0ω
(m0−1)(ω−1)

(
‖A‖22,∞‖y?‖2 + σ2

f

)
, D3 =

4α0m0‖A‖22,∞ ω
ω−1 .

Similar comments to Theorem 3.2 can be made for Theo-
rem 3.3.

4. Extensions
In this section, we present a basic extension of our frame-
work to illustrate its flexibility. We extend our method for
solving problems considered in (Ouyang and Gray, 2012):

min
x∈Rd

Pu(x) := E [f(x, ξ) + g(A(ξ)x, ξ)] + h(x), (7)

where the assumptions for f and h are the same as (1) and g
is not an indicator function, but is Lipschitz continuous, i.e.,

|g(x, ξ)− g(y, ξ)| ≤ Lg‖x− y‖,∀x, y ∈ Rd,∀ξ.

This assumption is equivalent to dom(g∗) being
bounded (Bauschke et al., 2011), where g∗ is the
Fenchel-conjugate function of g(·, ξ). This special case
with h(x) = 0 is studied in (Ouyang and Gray, 2012)
with the specific assumptions in this section. Inspired
by (Nesterov, 2005), it has been shown in (Ouyang and
Gray, 2012), that one has the following bound for the
smooth approximation of g(·, ξ) in the sense of (2)

E[g(A(ξ)x, ξ)] ≤ E[gβ(A(ξ)x, ξ)] +
β

2
L2
g. (8)

We illustrate that we can couple our main results with (8)
to recover similar guarantees as (Ouyang and Gray, 2012)
with the addition of the nonsmooth proximable term h(x).

Corollary 4.1. Denote by x? a solution of (7).
(a) Under the same assumptions as Theorem 3.2, and Lips-
chitz continuous g(·, ξ), one has

E[Pu(x̄s)− Pu(x?)] ≤
C1√
Ms

[
C2 +

log(Ms/m0)

log(ω)
C3

]
+

C4√
Ms

L2
g,

where the constants C1, C2, C3, C4 are defined in Theo-
rem 3.2.
(b) Under the same assumptions as Theorem 3.3, and Lips-
chitz continuous g(·, ξ), one has

E[Pu(x̄s)− Pu(x?)] ≤
1

Ms

[
D1 +

log(Ms/m0)

log(ω)
D2

]
+
D3

Ms
L2
g,

where the constants D1, D2, D3 are defined in Theorem 3.3.

Lastly, we can combine the problem template in (1) with (7)
to arrive at the problem

min
x∈Rd

E [f(x, ξ) + g1(A1(ξ)x, ξ)] + h(x),

A2(ξ)x ∈ b(ξ), ξ-almost surely,

where g1(·, ξ) is Lipschitz continuous and we have the same
assumptions as (1) for almost sure constraints. Arguments
in Corollary 4.1 can be combined in a straightforward way
with our results from Section 3 for solving this template.

5. Related Works
The most prominent work for stochastic optimization prob-
lems is stochastic gradient descent (SGD) (Robbins and
Monro, 1951; Nemirovski et al., 2009; Moulines and Bach,
2011; Polyak and Juditsky, 1992). Even though SGD is
very well studied, it only applies when there does not ex-
ist any constraints in the problem template (1). For the
case of simple constraints, i.e. h(x) = δK(x) in (1) and
almost sure constraints are not present, projected SGD can
be used (Nemirovski et al., 2009). However, it requires K to
be a projectable set, which does not apply to the general tem-
plate of (1). In the case where h(x) in (1) is a nonsmooth
proximable function (Rosasco et al., 2014) studied the con-
vergence of stochastic proximal gradient (SPG) method
which utilizes stochastic gradients of f(x, ξ) in addition to
the proximal operator of h(x). This method generalizes
projected SGD, however, they cannot handle infinitely many
constraints that we consider in (1) since it is not possible to
project onto their intersection in general.

A line of work that is known as alternating projections, fo-
cuses on applying random projections for solving problems

Almost surely constrained convex optimization

that are involving the intersection of infinite number of sets.
In particular, these methods focus on the following template

min
x∈Rd

E [f(x, ξ)] : x ∈ B(:= ∩ξ∈ΩB(ξ)). (9)

Here, the feasible set B consists of the intersection of a
possibly infinite number of convex sets. The case when
f(x, ξ) = 0 which corresponds to the convex feasibility
problem is studied in (Necoara et al., 2018b). For this partic-
ular setting, the authors combine the smoothing technique
with minibatch SGD, leading to a stochastic alternating
projection algorithm having linear convergence.

The most related to our work is (Patrascu and Necoara, 2017)
where the authors apply a proximal point type algorithm
with alternating projections. The main idea behind (Patrascu
and Necoara, 2017) is to apply smoothing to f(x, ξ) and
apply stochastic gradient steps to the smoothed function,
which results in a stochastic proximal point type of update,
combined with alternating projection steps. The authors
show O(1/

√
k) rate for general convex, and O(1/k) rate

for smooth and strongly convex objectives. For strongly
convex objectives, (Patrascu and Necoara, 2017) requires
smoothness of the objective which renders their results not
applicable to our composite objective function in (1). In
addition, they require strong convexity of the objective func-
tion while our results are valid for a more relaxed strong
convexity assumption. Lastly, (Patrascu and Necoara, 2017)
assumes the projectability of individual sets, whereas in our
case, the constraints A(ξ)x ∈ b(ξ) might not be projectable
unless A(ξ) and b(ξ) are of very small dimension since the
projection involves solving a linear system at each iteration.

Stochastic forward-backward algorithms can also be applied
to solve (1). However, the papers introducing those very
general algorithms focused on proving convergence and did
not present convergence rates (Bianchi, 2015; Bianchi et al.,
2017; Salim, 2018). There are some other works that focus
on (9) (Wang et al., 2015; Mahdavi et al., 2013; Yu et al.,
2017) where the authors assume the number of constraints
is finite, which is more restricted than our setting. Other
related works are (Xu, 2018; Mishchenko and Richtárik,
2018) where the number of constraints are finite in (1).

Semi-infinite linear programming (Reemtsen and Rück-
mann, 1998) also deals with problems with infinitely many
constraints with a different approach. The classical approach
is to select finitely many constraints, for instance by column
generation, and to solve a sequence of problems with this
selection of constraints. The works (Lin et al., 2017; Wei
et al., 2018) focus on inexact primal dual algorithms for
semi-infinite programs. The methods in these papers require
bounded primal domain, continuously varying constraints
and the knowledge of parameters such as the upper bound
on the norm of dual variables which is not known in general.
Lastly, they do not have fast rates for strongly convex case.

In the case where the number of constraints in (1) is fi-
nite and the objective function is deterministic, Nesterov’s
smoothing framework is studied in (Tran-Dinh et al., 2018b;
Van Nguyen et al., 2017; Tran-Dinh et al., 2018a) in the
setting of accelerated proximal gradient methods. These
methods obtainO(1/k) (O(1/k2)) rate when the number of
constraints is finite and F (x) is a (strongly) convex function
whose gradient∇F can be computed.

In (Ouyang and Gray, 2012), the authors apply Nesterov’s
smoothing to (7). However, this approach does not apply
to (1), due to the Lipschitz continuous assumption on g(·, ξ).
Note that in our main template (1), g(·, ξ) = δb(ξ)(·), which
is not Lipschitz continuous on Rd.

6. Numerical Experiments
We present numerical experiments on a basis pursuit prob-
lem on synthetic data, a hard margin SVM problem on
the kdd2010, rcv1, news20 datasets from (Chang
and Lin, 2011) and a portfolio optimization problem on
NYSE, DJIA, SP500, TSE datasets from (Borodin
et al., 2004).

6.1. Sparse regression with basis pursuit on synthetic
data

In this section, we consider the basis pursuit problem which
is widely used in machine learning and signal processing
applications (Donoho, 2006; Arora et al., 2018):

min
x∈Rd

‖x‖1 (10)

st: a>x = b, a.s.

where a ∈ Rd, b ∈ R. We consider the setting where
the measurements a arrive in a streaming fashion, similar
to (Garrigues and Ghaoui, 2009). For generating the data,
we defined Σ as the matrix such that Σi,j = ρ|i−j| with
ρ = 0.9. We generated a random vector x∗ ∈ Rd, d = 100
with 10 nonzero coefficients and independent N (0,Σ) ran-
dom variables ai which are then centered and normalized.
We also define bi = a>i x

∗. Because of the centering, there
are multiple solutions to the infinite system a>x = b a.s.,
and we wish to recover x∗ as the solution of the basis pursuit
problem (10). We compare SASC (Algorithm 1), SGD (Ne-
mirovski et al., 2009) and SPP (Patrascu and Necoara, 2017).
We manually tuned the step sizes for the methods and in-
cluded the best obtained results. Since the basis pursuit
problem does not possess (restricted) strong convexity, we
use the parameters from Case 1 in SASC and a fixed step
size µ for SPP which is used for the analysis in Corollary 6
in (Patrascu and Necoara, 2017). We used the parameters
µ = 10−5 for SPP, m0 = 2, ω = 2, α0 = 10−2‖a1b1‖∞,
where a1 is the first measurement and b1 is the correspond-
ing result. We take n = 105 and make two passes over the

Almost surely constrained convex optimization

10
0

10
1

10
2

10
3

10
4

10
5

iteration

10
-2

10
0

10
2

|f
(x

)
-

f(
x
*)

|

SASC

SPP

SGD

10
0

10
1

10
2

10
3

10
4

10
5

iteration

10
-1

10
0

10
1

10
2

||
A

x
-b

||

SASC

SPP

SGD

Figure 1. Performance of SGD, SPP and SASC on synthetic basis pursuit problem.

data. Figure 1 illustrates the behaviour of the algorithms for
the synthetic basis pursuit problem. We can observe that
SASC does exhibit a Õ(1/

√
k) convergence in feasibility

and objective suboptimality. The stair case shape of the
curves comes from the double-loop nature of the method.
SPP can also solve this problem since the projection onto a
hyperplane is easy to do when the constraints are processed
one by one. As observed in Figure 1, SPP reaches to that
accuracy almost as fast as SASC, however, it stagnates once
it reaches the pre-determined accuracy since the fixed step
size µ determines the accuracy that the algorithm will reach.
We also tried running SGD on minx

1
2E(
∥∥a>x− b∥∥2

2
) but

this leads to non-sparse solutions, therefore SGD converges
to another solution than SASC and SPP.

A common technique that is used in stochastic optimization
is to use mini-batches to parallelize and speed up compu-
tations. Since SPP utilizes projections at each iteration, it
needs to project onto linear constraints each iteration. When
the data is processed in mini-batches, this will require ma-
trix inversions of sizes equal to mini-batches. On the other
hand, SASC can handle mini-batches without any overhead.

6.2. Portfolio optimization

In this section, we consider Markowitz portfolio optimiza-
tion with the task of maximizing the expected return given
a maximum bound on the variance (Abdelaziz et al., 2007).
The precise formulation we consider is the following:

min
x∈Rd

−〈aavg, x〉 :

d∑
i=1

xi = 1 (11)

|〈ai − aavg, x〉| ≤ ε,∀i ∈ [1, n],

where short positions are allowed and aavg = E[ai] is as-
sumed to be known.

This problem fits to our template (1), with a deterministic
objective function, 2n linear constraints and one indicator
function for enforcing

∑d
i=1 xi = 1 constraint.

We implement SASC and SPP from (Patrascu and Necoara,

2017). Since the structure of (11) does not have any re-
stricted strong convexity due to linear objective function,
we are applying the general convex version of SPP, which
suggests setting a smoothness parameter µ depending on
the final accuracy we would like to get as also discussed
in basis pursuit problem. We run SPP with two different µ
values 10−1 and 10−2. We run SASC with the parameters
α0 = 1, ω = 1.2, m0 = 2 and Case 1 in Algorithm 1. We
use NYSE (d = 36, n = 5651), DJIA (d = 30, n = 507),
SP500 (d = 25, n = 1276) and TSE (d = 88, n = 1258)
where d is the number of stocks and n is the number of days
for which the data is collected and we set ε in (11) to be 0.2.
These datasets are also used in (Borodin et al., 2004).

We compute the ground truth using cvx (Grant et al., 2008)
and plotted the distance of the iterates of the algorithms to
the solution ‖x−x?‖. We include the plots for convergence
in terms of objective value and feasibility in supplementary
material, Section 7.3. We compile the results in Figure 4.

We can observe the behaviour of SPP from Figure 4 for
different step size values µ. Larger µ causes a fast decrease
in the beginning, however, it also affects the accuracy that
the algorithm is going to reach. Therefore, large µ has the
problem of stagnating at a low accuracy. Smaller µ causes
SPP to reach to higher accuracies at the expense of slower
initial behaviour. SASC has a steady behaviour since it does
not have a parameter depending on the final accuracy. It
removes the necessity of tuning µ in SPP, as we can observe
the steady decrease of SASC throughout, beginning from
the initial stage of the algorithm.

6.3. Primal support vector machines without
regularization parameter

In this section, we consider the classical setting of bi-
nary classification, with a small twist. For the standard
setting, given a training set {a1, a2, . . . , an} and labels
{b1, b2, . . . , bn}, where ai ∈ Rp,∀i and bi ∈ [−1,+1] the
aim is to train a model that will classify the correct labels
for the unseen examples.

Almost surely constrained convex optimization

10
0

10
1

10
2

epoch

0.1

0.2

0.3

0.4

0.5

||
x
 -

 x
*|

|

NYSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-1

10
0

||
x
 -

 x
*|

|

DJIA

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

0.15

0.2

0.25

0.3

||
x
 -

 x
*|

|

SP500

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

0.5

1

1.5

2

||
x
 -

 x
*|

|

TSE

SASC

SPP- =0.1

SPP- =0.01

Figure 2. Performance of SASC and SPP on portfolio optimization for four different datasets. Objective value and feasibility plots are
illustrated in Section 7.3 of the supplementary material.

10
0

10
1

10
2

saved points in one epoch

0.1

0.12

0.14
0.16

0.2

0.3

0.4

0.5

te
s
t

e
rr

o
r

kdd2010

SASC

Pegasos-
1

Pegasos-
2

Pegasos-
3

10
0

10
1

10
2

saved points in one epoch

0.05
0.06

0.09
0.1te

s
t

e
rr

o
r

news20

SASC

Pegasos-
1

Pegasos-
2

Pegasos-
3

10
0

10
1

10
2

saved points in one epoch

0.05
0.06

0.08

0.1te
s
t

e
rr

o
r

rcv1

SASC

Pegasos-
1

Pegasos-
2

Pegasos-
3

Figure 3. Performance of SASC and Pegasos on SVM for three different datasets.

Primal hard margin SVM problem is

min
x∈Rd

1

2
‖x‖2 : bi〈ai, x〉 ≥ 1,∀i. (12)

Since this problem does not have a solution unless the data
is linearly separable, the standard way is to relax the con-
straints, and solve the soft margin SVM problem with hinge
loss instead:

min
x∈Rd

1

2
‖x‖2 + C

n∑
i=1

max {0, 1− bi〈ai, x〉}, (13)

where C has the role of a regularization parameter to be
tuned. The choice for C has a drastic effect on the perfor-
mance of the classifier as also been studied in the litera-
ture (Hastie et al., 2004). It is known that poor choices of C
may lead to poor classification models.

We are going to have a radically different approach for the
SVM problem. Since the original formulation (12) fits to
our template (1), we can directly apply SASC to this formu-
lation. Even though the hard margin SVM problem does
not necessarily have solution, applying SASC to (12) corre-
sponds to solving a sequence of soft margin SVM problems
with squared hinge loss, with changing regularization pa-
rameters. The advantage of such an approach will be that
there will be no necessity for a regularization parameter
C since this parameter will correspond to 1

β in our case
where β is the smoothness parameter, for which we have
theoretical guideline from our analysis.

We compare SASC with Pegasos algorithm (Shalev-Shwartz
et al., 2011) which solves (13) by applying stochastic
subgradient algorithm. Since the selection of the reg-
ularization parameter C effects the performance of the
model, we use 3 different values for the λ, namely
{λ1, λ2, λ3} = {10−3/n, 1/n, 103/n}. We use the
following datasets from libsvm database (Chang and
Lin, 2011): kdd2010 raw version (bridge to
algebra) with 19, 264, 997 training examples, 748, 401
testing examples and 1, 163, 024 features, rcv1.binary
with 20, 242 training examples, 677, 399 testing ex-
amples and 47, 236 features. For the last dataset,
news20.binary , since there was not a dedicated testing
dataset, we randomly split examples for training and testing
with 17.996 training examples, 2, 000 testing examples and
1, 355, 191 features. For SASC, we use α0 = 1/2, ω = 2
in all experiments and use the parameter choices in Case
2 in Algorithm 1 due to strong convexity in the objective.
We computed the test errors for one pass over the data and
compile the results in Figure 3.

We illustrate the performance of SASC and Pegasos in Fig-
ure 3. SASC seems to be comparable to Pegasos for differ-
ent regularization parameters. As can be seen in Figure 3,
Pegasos performs well for good selection of the regulariza-
tion parameter. However, when the parameter is selected
incorrectly, it might stagnate at a high test error which can
be observed in the plots. On the other hand, SASC gets
comparable, if not better, performance without the need to
tune regularization parameter.

Almost surely constrained convex optimization

Acknowledgements
The work of A. Alacaoglu and V. Cevher was supported by
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no 725594 - time-data) and by the Swiss
National Science Foundation (SNSF) under grant number
200021_178865/1. The work of I. Necoara was supported
by UEFISCDI, Romania, PNIII-P4-PCE-2016-0731, project
ScaleFreeNet, no. 39/2017.

References
F. B. Abdelaziz, B. Aouni, and R. El Fayedh. Multi-

objective stochastic programming for portfolio selection.
European Journal of Operational Research, 177(3):1811–
1823, 2007.

A. Agarwal, M. J. Wainwright, P. L. Bartlett, and P. K.
Ravikumar. Information-theoretic lower bounds on the
oracle complexity of convex optimization. In Advances
in Neural Information Processing Systems, pages 1–9,
2009.

S. Arora, M. Khodak, N. Saunshi, and K. Vodrahalli. A
compressed sensing view of unsupervised text embed-
dings, bag-of-n-grams, and lstms. In Proc. of the 6th
International Conference on Learning Representations,
2018.

H. H. Bauschke, P. L. Combettes, et al. Convex analysis
and monotone operator theory in Hilbert spaces, volume
408. Springer, 2011.

P. Bianchi. A stochastic proximal point algorithm: conver-
gence and application to convex optimization. In Compu-
tational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2015 IEEE 6th International Workshop on,
pages 1–4. IEEE, 2015.

P. Bianchi, W. Hachem, and A. Salim. A constant step
forward-backward algorithm involving random maximal
monotone operators. arXiv preprint arXiv:1702.04144,
2017.

J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From
error bounds to the complexity of first-order descent meth-
ods for convex functions. Mathematical Programming,
165(2):471–507, 2017.

A. Borodin, R. El-Yaniv, and V. Gogan. Can we learn to
beat the best stock. In Advances in Neural Information
Processing Systems, pages 345–352, 2004.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27, 2011.

Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

D. L. Donoho. Compressed sensing. IEEE Transactions on
information theory, 52(4):1289–1306, 2006.

P. Garrigues and L. E. Ghaoui. An homotopy algorithm for
the lasso with online observations. In Advances in neural
information processing systems, pages 489–496, 2009.

M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for
disciplined convex programming, 2008.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire
regularization path for the support vector machine. Jour-
nal of Machine Learning Research, 5(Oct):1391–1415,
2004.

G. Lan and R. D. Monteiro. Iteration-complexity of first-
order penalty methods for convex programming. Mathe-
matical Programming, 138(1-2):115–139, 2013.

G. Lan and Z. Zhou. Algorithms for stochastic opti-
mization with expectation constraints. arXiv preprint
arXiv:1604.03887, 2016.

Q. Lin, S. Nadarajah, and N. Soheili. Revisiting ap-
proximate linear programming using a saddle point
based reformulation and root finding solution approach.
optimization-online preprint, 2017.

M. Mahdavi, T. Yang, and R. Jin. Stochastic convex opti-
mization with multiple objectives. In Advances in Neural
Information Processing Systems, pages 1115–1123, 2013.

K. Mishchenko and P. Richtárik. A stochastic penalty model
for convex and nonconvex optimization with big con-
straints. arXiv preprint arXiv:1810.13387, 2018.

E. Moulines and F. R. Bach. Non-asymptotic analysis of
stochastic approximation algorithms for machine learning.
In Advances in Neural Information Processing Systems,
pages 451–459, 2011.

I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence
of first order methods for non-strongly convex optimiza-
tion. Mathematical Programming, doi: 10.1007/s10107-
018-1232-1, 2018a.

I. Necoara, P. Richtarik, and A. Patrascu. Random-
ized projection methods for convex feasibility problems:
conditioning and convergence rates. arXiv preprint
arXiv:1801.04873, 2018b.

A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topol-
ogy and communication-computation tradeoffs in decen-
tralized optimization. Proceedings of the IEEE, 106(5):
953–976, 2018.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Almost surely constrained convex optimization

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic program-
ming. SIAM Journal on optimization, 19(4):1574–1609,
2009.

Y. Nesterov. Smooth minimization of non-smooth functions.
Mathematical programming, 103(1):127–152, 2005.

H. Ouyang and A. Gray. Stochastic smoothing for nons-
mooth minimizations: Accelerating SGD by exploiting
structure. In Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), pages 33–40,
2012.

A. Patrascu and I. Necoara. Nonasymptotic convergence of
stochastic proximal point methods for constrained convex
optimization. The Journal of Machine Learning Research,
18(1):7204–7245, 2017.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30(4):838–855, 1992.

R. Reemtsen and J.-J. Rückmann. Semi-infinite program-
ming, volume 25. Springer Science & Business Media,
1998.

H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, pages
400–407, 1951.

L. Rosasco, S. Villa, and B. C. Vũ. Convergence of
stochastic proximal gradient algorithm. arXiv preprint
arXiv:1403.5074, 2014.

A. Salim. Random monotone operators and application
to stochastic optimization. PhD thesis, Université Paris-
Saclay, 2018.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter.
Pegasos: Primal estimated sub-gradient solver for svm.
Mathematical programming, 127(1):3–30, 2011.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf.
Large scale multiple kernel learning. Journal of Machine
Learning Research, 7(Jul):1531–1565, 2006.

Z. J. Towfic and A. H. Sayed. Stability and performance lim-
its of adaptive primal-dual networks. IEEE Transactions
on Signal Processing, 63(11):2888–2903, 2015.

Q. Tran-Dinh, A. Alacaoglu, O. Fercoq, and V. Cevher. An
adaptive primal-dual framework for nonsmooth convex
minimization. arXiv preprint arXiv:1808.04648, 2018a.

Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-
dual optimization framework for nonsmooth composite
convex minimization. SIAM Journal on Optimization, 28
(1):96–134, 2018b.

P. Tseng. On accelerated proximal gradient methods for
convex-concave optimization. 2008. submitted to SIAM
J. Optim.

Q. Van Nguyen, O. Fercoq, and V. Cevher. Smoothing
technique for nonsmooth composite minimization with
linear operator. arXiv preprint arXiv:1706.05837, 2017.

M. Wang, Y. Chen, J. Liu, and Y. Gu. Random multi-
constraint projection: Stochastic gradient methods for
convex optimization with many constraints. arXiv
preprint arXiv:1511.03760, 2015.

B. Wei, W. B. Haskell, and S. Zhao. An inexact primal-dual
algorithm for semi-infinite programming. arXiv preprint
arXiv:1803.10898, 2018.

Y. Xu. Primal-dual stochastic gradient method for con-
vex programs with many functional constraints. arXiv
preprint arXiv:1802.02724, 2018.

H. Yu, M. Neely, and X. Wei. Online convex optimiza-
tion with stochastic constraints. In Advances in Neural
Information Processing Systems, pages 1428–1438, 2017.

Almost surely constrained convex optimization

7. Supplementary Material
We wish to solve the following problem:

min
x∈Rd
{P (x) := E [f(x, ξ)] + h(x)}

A(ξ)x ∈ b(ξ) ξ-almost surely

where F (x) = E [f(x, ξ)] has L(∇F) Lipschitz gradient and h(x) is nonsmooth but proximable. Let us define the following
quantities which we will use in the sequel:

Pβ(x) = F (x) +Gβ(Ax) + h(x) = Eξ [f(x, ξ) + gβ(A(ξ)x, b(ξ))] + h(x), (14)

where gβ(A(ξ)x, b(ξ)) = 1
2β dist (A(ξ)x, b(ξ))

2. We also define Sβ(x) = Pβ(x) − P (x?) which we refer to as the
smoothed gap function. We first prove a lemma to relate the decrease of smoothed gap function to the objective suboptimality
and primal feasibility.

Lemma 3.1. Let (x?, y?) be a saddle point of

min
x

max
y

P (x) +

∫
〈A(ξ)x, y(ξ)〉 − suppb(ξ)(y(ξ))µ(dξ), (15)

and Sβ(x) = Pβ(x)− P (x?) = P (x)− P (x?) + 1
2β

∫
dist (A(ξ)x, b(ξ))2µ(dξ). Then, the following hold:

Sβ(x) ≥ −β
2
‖y?‖2

P (x)− P (x?) ≥ −
1

4β

∫
dist (A(ξ)x, b(ξ))2µ(dξ)− β‖y?‖2

P (x)− P (x?) ≤ Sβ(x)∫
dist (A(ξ)x, b(ξ))2µ(dξ) ≤ 4β2‖y?‖2 + 4βSβ(x)

Proof. We recall that the optimal Lagrange multiplier y? = (y?(ξ))ξ is a random variable of Y . It is indeed of bounded
variance thanks to the constraint qualification condition we assumed (Bauschke et al., 2011). We start with:

−
∫
〈A(ξ)x, y?(ξ)〉+ suppb(ξ) (y?(ξ))µ(dξ) ≤ P (x)− P (x?) = Sβ(x)− 1

2β

∫
dist (A(ξ)x, b(ξ))2µ(dξ), (16)

where the inequality is due to saddle point definition, and the equality is due to the definition of Sβ .

We continue by bounding the inner product 〈A(ξ)x, y?(ξ)〉. Let z := A(ξ)x, then

〈z, y?(ξ)〉 = 〈z −Πb(ξ)(z), y?(ξ)〉+ 〈Πb(ξ)(z), y?(ξ)〉 ≤ dist(z, b(ξ))‖y?(ξ)‖+ 〈A(ξ)x?, y?(ξ)〉

≤ 1

4β
dist (z, b(ξ))2 + β‖y?(ξ)‖2 + suppb(ξ)(y?(ξ)), (17)

where the first inequality follows from Cauchy-Schwarz inequality, the optimality conditions, and properties of Fenchel’s
transform: A(ξ)x? ∈ ∂ suppb(ξ)(y?(ξ)) ⇐⇒ y?(ξ) ∈ ∂δb(ξ)(A(ξ)x?) ⇐⇒ 〈p− A(ξ)x?, y?(ξ)〉 ≤ 0, for all p ∈ b(ξ).
The second inequality follows from 2ab ≤ a2 + b2 and − suppb(ξ)(y?(ξ)) + 〈A(ξ)x?, y?(ξ)〉 = infq∈b(ξ)〈A(ξ)x? −
q, y?(ξ)〉 ≤ 0, since A(ξ)x? ∈ b(ξ).

We now use
∫
‖y?(ξ)‖2µ(dξ) = ‖y?‖2, integrate (17) and plug in to (16) to obtain last inequality. Second and third

inequalities directly follow from (16) and (17).

Almost surely constrained convex optimization

For the first inequality:

Sβ(x) = P (x) +
1

2β

∫
dist(A(ξ)x, b(ξ))2µ(dξ)− P (x?)

= P (x)− P (x?) +

∫
max
y∈Rd
〈A(ξ)x, y〉 − suppb(ξ)(y)− β

2
‖y‖2 µ(dξ)

≥ P (x)− P (x?) +

∫
〈A(ξ)x, y?(ξ)〉 − suppb(ξ)(y?(ξ))−

β

2
‖y?(ξ)‖2 µ(dξ) ≥ −β

2
‖y?‖2,

where the second equality follows from the definition of smoothing and the inequality is due to (16).

7.1. General Convex Case

Lemma 7.1. Assume that for all s,
L(∇F)+‖A‖22,∞/βs

2αs
≤ 0, 2αs‖A‖22,∞ −

βs

2 ≤ 0 and E
[
‖∇f(x, ξ)−∇F (x)‖2

]
≤ σ2

f .
Let x̄s = 1

ms

∑ms

k=1 x
s
k. Then,

E
[
PβS

(x̄S)− PβS
(x?)

]
≤ 1

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 βsαsms

2αSmS
‖y?‖2 + 2

∑S
s=0 α

2
sms

αSmS
σ2
f . (18)

Proof. Let us define z = Ax ∈ Y . We recall that A : Rd → Y is the linear operator such that (Ax)(ξ) = A(ξ)x for all x.
We start by using Lipschitz gradient property of the function f(x) +Gβs(Ax)

Pβs
(xsk+1) ≤ F (xsk) + h(xsk+1) +Gβs

(Axsk) + 〈∇F (xsk) +A>∇zGβs
(Axsk), xsk+1 − xsk〉

+
L(∇F +∇xGβs

)

2
‖xsk+1 − xsk‖2

≤ F (xsk) + h(xsk+1) +Gβs
(xsk) + 〈∇f(xsk, ξ) +A(ξ)>∇zgβs

(A(ξ)xsk, ξ), x
s
k+1 − xsk〉

+ 〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs
(Axsk)−A(ξ)>∇zgβs

(A(ξ)xsk, ξ), x
s
k+1 − xsk〉

+
L(∇F +∇xGβs

)

2
‖xsk+1 − xsk‖2. (19)

We will bound the linear terms in (19) separately.

First, we use the three-point inequality (Property 1 from (Tseng, 2008)) with x = x? to obtain,

h(xsk+1)+〈∇f(xsk, ξ) +A(ξ)>∇zgβs(A(ξ)xsk, ξ), x
s
k+1 − xsk〉 ≤ h(x?)−

1

2αs
‖xsk+1 − xsk‖2 (20)

+ 〈∇f(xsk, ξ) +A(ξ)>∇zgβs
(A(ξ)xsk, ξ), x? − xsk〉+

1

2αs
‖x? − xsk‖2 −

1

2αs
‖x? − xsk+1‖2

Further, by the fact that gβs
(·, ξ) has 1/βs-Lipschitz gradient,

〈A(ξ)>∇zgβs(A(ξ)xsk, ξ), x? − xsk〉 ≤ gβs(A(ξ)x?, ξ)− gβs(A(ξ)xsk, ξ)−
βs
2
‖∇zgβs(A(ξ)xsk, ξ)−∇zgβs(A(ξ)x?, ξ)‖2

= gβs
(A(ξ)x?, ξ)− gβs

(A(ξ)xsk, ξ)−
βs
2
‖∇zgβs(A(ξ)xsk, ξ)‖2, (21)

where the equality follows from the fact that ∇zgβs(A(ξ)x?, ξ) = 0, due to the definition of gβs(·, ξ) and the fact that
A(ξ)x? ∈ b(ξ).

We now use the convexity, 〈∇f(xsk, ξ), x? − xsk〉 ≤ f(x?, ξ)− f(xsk, ξ) and (21) in (20) to get

h(xsk+1) + 〈∇f(xsk, ξ) +A(ξ)>∇zgβs(A(ξ)xsk, ξ), x
s
k+1 − xsk〉 ≤ h(x?) + f(x?, ξ)− f(xsk, ξ) + gβs(A(ξ)x?, ξ)

− gβs(A(ξ)xsk, ξ)−
βs
2
‖∇zgβs

(A(ξ)xsk, ξ)‖2 +
1

2αs
‖x? − xsk‖2 −

1

2αs
‖x? − xsk+1‖2 −

1

2αs
‖xsk+1 − xsk‖2 (22)

Almost surely constrained convex optimization

We define
Tαsg(x

s
k) = proxαsh

(xsk − αs(∇F (xsk) +A>∇zGβs(Axsk))).

For the second linear term in (19), we apply conditional expectation knowing xsk, with respect to the choice of ξ = ξk+1,

Ek
[
〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs

(Axsk)−A(ξ)>∇zgβs
(A(ξ)xsk, ξ), x

s
k+1 − xsk〉

]
=

Ek
[
〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs(Axsk)−A(ξ)>∇zgβs(A(ξ)xsk, ξ), x

s
k+1 − Tαsg(x

s
k)〉

+ 〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs(Axsk)−A(ξ)>∇zgβs
(A(ξ)xsk, ξ), Tαsg(x

s
k)− xsk〉

]
= Ek

[
〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs

(Axsk)−A(ξ)>∇zgβs
(A(ξ)xsk, ξ), x

s
k+1 − Tαsg(x

s
k)〉
]

≤ Ek
[
‖∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs

(Axsk)−A(ξ)>∇zgβs
(A(ξ)xsk, ξ)‖‖xsk+1 − Tαsg(x

s
k)‖
]

≤ αsEk
[
‖∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs

(Axsk)−A(ξ)>∇zgβs
(A(ξ)xsk, ξ)‖2

]
≤ 2αsEk

[
‖∇F (xsk)−∇f(xsk, ξ)‖2

]
+ 2αsEk

[
‖A>∇zGβs(Axsk)−A(ξ)>∇zgβs(A(ξ)xsk, ξ)‖2

]
≤ 2αsσ

2
f + 2αsEk

[
‖A(ξ)>∇zgβs(A(ξ)xsk, ξ)‖2

]
≤ 2αsσ

2
f + 2αs sup

ξ
‖A(ξ)‖2Ek

[
‖∇zgβs(A(ξ)xsk, ξ)‖2

]
, (23)

where the second inequality is due to the definition of xsk+1, Tαsg(x
s
k) and nonexpansiveness of proximal operator.

Fourth inequality is due to the fact that E
[
‖X − E [X] ‖2

]
= E

[
‖X‖2

]
− (E [X])

2, for any random variable X and
Ek
[
A(ξ)>∇zgβs

(A(ξ)xsk, ξ)
]

= A>∇zGβs
(Axsk).

We take conditional expectation of (19), knowing xsk, and plug in (22), (23) to obtain

Ek
[
Pβs

(xsk+1)
]
≤ Ek

[
F (xsk) + h(xsk+1) +Gβs

(xsk) + 〈∇f(xsk, ξ) +A(ξ)>∇zgβs
(A(ξ)xsk, ξ), x

s
k+1 − xsk〉

+ 〈∇F (xsk)−∇f(xsk, ξ) +A>∇zGβs
(Axsk)−A(ξ)>∇zgβs

(A(ξ)xsk, ξ), x
s
k+1 − xsk〉

+
L(∇F +∇xGβs

)

2
‖xsk+1 − xsk‖2

]
≤ Pβs

(x?) +
1

2αs
‖x? − xsk‖2 −

1

2αs
Ek
[
‖x? − xsk+1‖2

]
+

(
2αs‖A‖22,∞ −

βs
2

)
Ek
[
‖∇zgβs

(A(ξ)xsk, ξ)‖2
]

+

(
L(∇F) + ‖A‖22,∞/βs

2
− 1

2αs

)
Ek
[
‖xsk+1 − xsk‖2

]
+ 2αsEk

[
‖∇f(xsk, ξ)‖2

]
.

We use the assumptions that 2αs‖A‖22,∞ −
βs

2 ≤ 0 and
L(∇F)+‖A‖22,∞/βs

2 − 1
2αs
≤ 0 to get

Ek
[
Pβs

(xsk+1)
]
≤ Pβs

(x?) +
1

2αs
‖x? − xsk‖2 −

1

2αs
Ek
[
‖x? − xsk+1‖2

]
+ 2αsσ

2
f .

We apply total expectation with respect to the history Fk = {ξ0, . . . , ξk} and sum for k ∈ {0, 1, . . . ,ms − 1} to obtain

E

[
Pβs

(
1

ms

ms∑
k=1

xsk

)
− Pβs(x?)

]
≤ 1

2αsms
E
[
‖x? − xs0‖2

]
− 1

2αsms
E
[
‖x? − xsms

‖2
]

+
2αs
ms

ms−1∑
k=0

σ2
f

≤ 1

2αsms
E
[
‖x? − xs0‖2

]
− 1

2αsms
E
[
‖x? − xsms

‖2
]

+ 2αsσ
2
f . (24)

By Lemma 3.1, we know that for all x, we have, using that Pβs
(x?) = P (x?) + 1

2βs
‖Ax? − b‖2 = P (x?):

Pβs(x)− Pβs(x?) ≥ −
βs
2
‖y?‖2. (25)

Almost surely constrained convex optimization

By the restarting rule of the inner loop, one has xsms
= xs+1

0 . Using (25) in (24), we obtain

E
[
‖x? − xs+1

0 ‖2
]
≤ E

[
‖x? − xs0‖2

]
+ βsαsms‖y?‖2 + 4α2

smsσ
2
f (26)

We now sum (26) for s ∈ {0, 1, . . . , S − 1}

E
[
‖x? − xS0 ‖2

]
≤ ‖x? − x0

0‖2 +

S−1∑
s=0

βsαsms‖y?‖2 + 4

S−1∑
s=0

α2
smsσ

2
f (27)

We now use (27) in (24) to obtain

E
[
PβS

(
x̄S
)
− PβS

(x?)
]
≤ 1

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 βsαsms

2αSmS
‖y?‖2 + 4

∑S−1
s=0 α

2
sms

2αSmS
σ2
f + 2αSσ

2
f

In the following lemma, we estimate the rates of the parameters to determine the final convergence rates:

Lemma 7.2. Denote as MS =
∑S
s=0ms the total number of iterations to compute x̄S . Let ω > 1. Let us choose α0 ≤

3
4L(∇f) , m0 ∈ N∗, ms = bm0ω

Sc, αs = α0ω
−s/2 and βs = 4αs‖A‖22,∞. Then, for all s,

L(∇F)+‖A‖22,∞/βs

2 − 1
2αs
≤ 0

and 2αs‖A‖22,∞ −
βs

2 ≤ 0. Moreover,

βs ≤ 4α0
√
m0‖A‖22,∞

√
ω√

ω − 1

1√
Ms

αsms ≥ α0
(m0 − 1)
√
m0

√
ω − 1√
ω

√
Ms

S−1∑
s=0

βsαsms ≤ 4α2
0‖A‖22,∞m0

log(Ms/m0)

log(ω)

S∑
s=0

α2
sms ≤ α0m0

(
log(Ms/m0)

log(ω)
+ 1

)

Proof. By definition of βs, 2αs‖A‖22,∞ −
βs

2 ≤ 0 holds with equality. By using the definition of βs, the fact that αs is a

decreasing sequence and the condition on α0, we have
L(∇F)+‖A‖22,∞/βs

2 − 1
2αs
≤ 0.

We now compute the total number of iterations:

MS =

S∑
s=0

ms =

S∑
s=0

bm0ω
sc ≤

S∑
s=0

m0ω
s = m0

ωS+1 − 1

ω − 1
, (28)

which in turn gives

ωS ≥ ω − 1

ω

MS

m0
+

1

ω
≥ ω − 1

ω

MS

m0
. (29)

We now use this bound to get

βS = 4αS‖A‖22,∞ = 4α0‖A‖22,∞ω−S/2 ≤ 4α0‖A‖22,∞
√
ω√

ω − 1

√
m0√
MS

αSmS = α0ω
−S/2bm0ω

Sc ≥ α0m0ω
S/2 − α0ω

−S/2 ≥ α0
(m0 − 1)
√
m0

√
ω − 1√
ω

√
MS .

We can also lower bound MS as

MS =

S∑
s=0

ms =

S∑
s=0

bm0ω
sc = m0 +

S∑
s=1

bm0ω
sc ≥ m0 +m0ω

S − 1 ≥ m0ω
S ,

Almost surely constrained convex optimization

since m0 ≥ 1. We thus get

S ≤ log (MS/m0)

log(ω)
(30)

Further,
βsαsms = 4α2

0‖A‖22,∞ω−sbm0ω
sc ≤ 4α2

0‖A‖22,∞m0.

Now we use (30) to show that

S−1∑
s=0

βsαsms ≤ S × 4α2
0‖A‖22,∞m0 ≤ 4αs0‖A‖22,∞m0

log(MS/m0)

log(ω)
.

Lastly, we use the relation βs = 4αs‖A‖22,∞ to conclude last bound.

Theorem 3.2. Assume F is convex and L(∇F) smooth, and ∃σf such that E[‖∇f(x, ξ)−∇F (x)‖2] ≤ σ2
f . Denote

MS =
∑S
s=0ms. Let us set ω > 1, α0 ≤ 3

4L(∇f) , m0 ∈ N∗, ms = bm0ω
sc, and βs = 4αs‖A‖22,∞. Then, for all S,

E[P (x̄S)− P (x?)] ≤
C1√
MS

[
C2 +

log(MS/m0)

log(ω)
C3

]
E[P (x̄S)− P (x?)] ≥ −

2C4√
MS

‖y?‖2 −
C1√
MS

[
C2 +

log(MS/m0)

log(ω)
C3

]
√
E [dist(A(ξ)x̄S , b(ξ))2] ≤ 1√

MS

[
2C4‖y?‖+ 2

√
C1C4

√
C2 +

log(MS/m0)

log(ω)
C3

]

where C1 =
√
m0ω

α0(m0−1)
√
ω−1

, C2 =
‖x?−x0

0‖
2

2 + 2α0m0σ
2
f , C3 = 2α2

0‖A‖22,∞m0‖y?‖2 + 2α0m0σ
2
f and C4 =

4α0
√
m0‖A‖22,∞

√
ω√
ω−1

.

Proof. We first combine Lemma 7.1 and Lemma 7.2:

E[SβS
(x̄S)] = E

[
PβS

(x̄S)− PβS
(x?)

]
≤ 1

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 βsαsms

2αSmS
‖y?‖2 + 2

∑S
s=0 α

2
sms

αSmS
σ2
f

≤

√
m0

(m0−1)

√
ω√
ω−1

α0

√
Ms

[1

2
‖x? − x0

0‖2 +
4α2

0‖A‖22,∞m0
log(Ms/m0)

log(ω)

2
‖y?‖2 + 2α0m0

(
log(Ms/m0)

log(ω)
+ 1

)
σ2
f

]
=

C1√
MS

[
C2 +

log(MS/m0)

log(ω)
C3

]

We combine the inequality above with the bound βS ≤ 4α0
√
m0‖A‖22,∞

√
ω√
ω−1

1√
Ms

= C4√
MS

and Lemma 3.1:

√
E [dist(A(ξ)x̄s, b(ξ))2] ≤

√
4β2

S ‖y?‖
2

+ 4βSSβS
(x̄S) ≤ 2C4 ‖y?‖√

MS

+
2
√
C1C4√
MS

√
C2 +

log(MS/m0)

log(ω)
C3

The other inequalities follow similarly using

SβS
(x̄S) ≥ P (x̄S)− P (x?) ≥ −

1

4βS

∫
dist (A(ξ)x̄S , b(ξ))2µ(dξ)− βS‖y?‖2 ≥ −2βS‖y?‖2 − SβS

(x̄S)

Almost surely constrained convex optimization

7.2. Restricted Strongly Convex Case

Lemma 7.3. Assume that F is convex and L(∇F)-smooth, P is µ-restricted strongly convex and

E[‖∇f(x, ξ)−∇F (x)‖2] ≤ σ2
f for all x. Assume that for all s,

L(∇F)+‖A‖22,∞/βs

2αs
≤ 0, 2αs‖A‖22,∞ −

βs

2 ≤ 0

and µαsms ≥ 1
c , for c < 1. Let x̄S = 1

mS

∑mS

k=1 x
S
k . Then,

E
[
PβS

(xSk)− PβS
(x?)

]
≤ cS

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 c

S+1−sβsαsms

2αSmS
‖y?‖2 +

∑S−1
s=0 4cS+1−sα2

sms

2αSmS
σ2
f + 2αSσ

2
f .

(31)

Proof. We proceed same as the proof of Lemma 4.1, until (24). In the case where F (x) + h(x) satisfies restricted strong
convexity, instead of (25), we can derive

Pβs
(x)− Pβs

(x?) ≥ −
βs
2
‖y?‖2 +

µ

2
‖x− x?‖2. (32)

We use (32) in (24), along with the restarting rule x̄s = xs+1
0 to get

µαsmsE
[
‖x? − xs+1

0 ‖2
]
≤ E

[
‖x? − xs0‖2

]
+ βsαsms‖y?‖2 + 4α2

smsσ
2
f . (33)

Further, since µαsms ≥ 1
c , for c < 1:

E
[
‖x? − xs+1

0 ‖2
]
≤ cE

[
‖x? − xs0‖2

]
+ cβsαsms‖y?‖2 + 4cα2

smsσ
2
f . (34)

We now get, by recursively applying the inequality for s ∈ {0, 1, . . . , S − 1}

E
[
‖x? − xS0 ‖2

]
≤ cS‖x? − x0

0‖2 +

S−1∑
s=0

cS−sβsαsms‖y?‖2 +

S−1∑
s=0

4cS−sα2
smsσ

2
f . (35)

We plug (35) into (24) to obtain

E
[
PβS

(x̄Sk)− PβS
(x?)

]
≤ cS

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 c

S−sβsαsms

2αSmS
‖y?‖2 +

∑S−1
s=0 4cS−sα2

sms

2αSmS
σ2
f + 2αSσ

2
f . (36)

In the following lemma, we estimate the rates of the parameters:

Lemma 7.4. Denote as MS =
∑S
s=0ms the total number of iterations to compute x̄S . Let ω > 1. Let us choose

α0 ≤ 3
4L(∇f) , m0 ≥ ω

µα0
, ms = bm0ω

Sc, αs = α0ω
−s, βs = 4αs‖A‖22,∞ and c = 1

ω < 1. Then, for all s,
L(∇F)+‖A‖22,∞/βs

2 − 1
2αs
≤ 0 and 2αs‖A‖22,∞ −

βs

2 ≤ 0. Moreover,

βs ≤ 4α0m0‖A‖22,∞
ω

ω − 1

1

Ms

αsms ≥ α0(m0 − 1)

S−1∑
s=0

cS−sβsαsms ≤ 4cSα2
0‖A‖22,∞m0

(
log(Ms/m0)

log(ω)

)
S−1∑
s=0

cS−sα2
sms ≤ cSα2

0m0

(
log(Ms/m0)

log(ω)

)
cS ≤ ω

ω − 1

m0

MS

Almost surely constrained convex optimization

Proof. We skip the proofs for the parts of the lemma that are the same as Lemma 7.2.

We have
βs = 4α0‖A‖22,∞ω−s ≤ 4α0m0‖A‖22,∞

ω

ω − 1

1

Ms
.

In addition,
αsms = α0ω

−sbm0ω
sc ≥ α0ω

−s(m0ω
s − 1) ≥ α0(m0 − 1),

where the last inequality follows since ωs ≥ 1.

We have

S−1∑
s=0

cS−sβsαsms ≤ α0m0

S−1∑
s=0

cS−sβs ≤ 4α2
0‖A‖22,∞m0c

S
S−1∑
s=0

(ωc)−s = S × 4α2
0‖A‖22,∞m0c

S

Next, we have cS = ω−S ≤ ω
ω−1

m0

MS
.

Fourth bound directly follows by combining the third bound with βs = 4αs‖A‖22,∞.

Theorem 3.3. Assume F is convex and L(∇F) smooth, P is µ-restricted strongly convex and ∃σf such that
E[‖∇f(x, ξ)−∇F (x)‖2] ≤ σ2

f . Denote MS =
∑S
s=0ms. Let us set ω > 1, α0 ≤ 3

4L(∇f) , m0 ≥ ω
µα0

, ms = bm0ω
sc,

and βs = 4αs‖A‖22,∞. Then, for all S,

E[P (x̄s)− P (x?)] ≤
1

Ms

[
D1 +

log(Ms/m0)

log(ω)
D2

]
E[P (x̄s)− P (x?)] ≥ −

2D3

Ms
‖y?‖2 −

1

Ms

[
D1 +

log(Ms/m0)

log(ω)
D2

]
√
E [dist(A(ξ)x̄s, b(ξ))2] ≤ 1

Ms

[
2D3‖y?‖+ 2

√
D3

√
D1 +

log(Ms/m0)

log(ω)
D2

]

where D1 = ω
ω−1

m0

α0(m0−1)
1
2

∥∥x0
0 − x?

∥∥2
+ 2α0m0

ω
ω−1σ

2
f , D2 =

2m2
0α0ω

(m0−1)(ω−1)

(
‖A‖22,∞‖y?‖2 + σ2

f

)
, D3 =

4α0m0‖A‖22,∞ ω
ω−1 .

Proof. We first combine Lemma 7.3 and Lemma 7.4:

E
[
SβS

(xSk)
]
≤ cS

2αSmS
‖x? − x0

0‖2 +

∑S−1
s=0 c

S−sβsαsms

2αSmS
‖y?‖2 +

∑S−1
s=0 4cS−sα2

sms

2αSmS
σ2
f + 2αSσ

2
f

≤
ω
ω−1

m0

MS

α0(m0 − 1)

[1

2
‖x? − x0

0‖2 +
4α2

0‖A‖22,∞m0

(
log(Ms/m0)

log(ω)

)
2

‖y?‖2 + 2α2
0m0

(
log(Ms/m0)

log(ω)

)
σ2
f

]
+

βS

2 ‖A‖22,∞
σ2
f

≤ 1

MS

[
D1 +

log(Ms/m0)

log(ω)
D2

]
where βs ≤ 4α0m0‖A‖22,∞ ω

ω−1
1
Ms

= D3

MS
.

We then use Lemma 3.1.

√
E [dist(A(ξ)x̄s, b(ξ))2] ≤

√
4β2

S ‖y?‖
2

+ 4βSSβS
(x̄S) ≤ 2D3 ‖y?‖

MS
+

2
√
D3

MS

√
D1 +

log(MS/m0)

log(ω)
D2 .

The other inequalities follow similarly.

7.3. Further Experimental Results

Below, we include the results for the portfolio optimization example, with objective and feasibility plots:

Almost surely constrained convex optimization

10
0

10
1

10
2

epoch

10
-2

10
-1

10
0

||
x
 -

 x
*|

|
NYSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-8

10
-6

10
-4

10
-2

|f
(x

)
-

f(
x
*)

|

NYSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-4

10
-3

10
-2

10
-1

||
A

x
 -

 b
||

NYSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-2

10
-1

10
0

||
x
 -

 x
*|

|

DJIA

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-6

10
-5

10
-4

10
-3

10
-2

|f
(x

)
-

f(
x
*)

|

DJIA

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-5

10
-4

10
-3

10
-2

10
-1

||
A

x
 -

 b
||

DJIA

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

0.15

0.2

0.25

0.3

||
x
 -

 x
*|

|

SP500

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-7

10
-6

10
-5

10
-4

10
-3

|f
(x

)
-

f(
x
*)

|

SP500

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-3

10
-2

10
-1

||
A

x
 -

 b
||

SP500

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

0.4

0.6

0.8

1

1.2

1.4

||
x
 -

 x
*|

|

TSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-5

10
-4

10
-3

10
-2

|f
(x

)
-

f(
x
*)

|

TSE

SASC

SPP- =0.1

SPP- =0.01

10
0

10
1

10
2

epoch

10
-4

10
-3

10
-2

10
-1

10
0

||
A

x
 -

 b
||

TSE

SASC

SPP- =0.1

SPP- =0.01

Figure 4. Performance of SASC and SPP on portfolio optimization for four different datasets

