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Abstract
Increasingly complex datasets pose a number of
challenges for Bayesian inference. Conventional
posterior sampling based on Markov chain Monte
Carlo can be too computationally intensive, is se-
rial in nature and mixes poorly between posterior
modes. Furthermore, all models are misspecified,
which brings into question the validity of the
conventional Bayesian update. We present a scal-
able Bayesian nonparametric learning routine that
enables posterior sampling through the optimiza-
tion of suitably randomized objective functions.
A Dirichlet process prior on the unknown data
distribution accounts for model misspecification,
and admits an embarrassingly parallel posterior
bootstrap algorithm that generates independent
and exact samples from the nonparametric pos-
terior distribution. Our method is particularly
adept at sampling from multimodal posterior
distributions via a random restart mechanism, and
we demonstrate this on Gaussian mixture model
and sparse logistic regression examples.

1. Introduction
As datasets grow in complexity and size, Bayesian infer-
ence becomes increasingly difficult. The posterior is often
intractable, so we resort to simulation methods for infer-
ence via Markov chain Monte Carlo (MCMC), which is
inherently serial and often too computationally expensive
in datasets with a large number of data points (Bardenet
et al., 2017). MCMC further struggles with multimodal
posteriors which arise in many settings including mixture
models (Jasra et al., 2005) or non-convex priors (Seeger
et al., 2007), as the MCMC sampler can become trapped in
local modes (Rudoy & Wolfe, 2006). Current methods to
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sample from multimodal posteriors with MCMC include par-
allel tempering (Neal, 1996) and adaptive MCMC (Pompe
et al., 2018), but the associated computational cost is high.
Posterior approximation with variational Bayes (VB) (Blei
et al., 2017) is a faster alternative, but it is generally difficult
to quantify the quality of the approximation, and is thus
problematic if accurate uncertainty quantification is desired
(Giordano et al., 2015).

A further methodological issue facing Bayesian inference
is the fact that all models are false. The increasing scale of
datasets exacerbates the effects of model misspecification
(Walker, 2013), as the true sampling distribution is meaning-
fully different from the parametric family of distributions
of the model. There is rarely formal acknowledgement of
model misspecification which can lead to inconsistencies
(Watson et al., 2016; Grünwald & Van Ommen, 2017).

Bayesian nonparametric learning (NPL) introduced by Ly-
ddon et al. (2018) allows for the use of statistical models
without assuming the model is true. NPL uses a nonpara-
metric prior centred on a parametric model, and returns a
nonparametric posterior over the parameter of interest. The
method focuses on accounting for model misspecification
and for posterior approximation such as from Variational
Bayes (VB) by placing a mixture of Dirichlet processes
(Antoniak, 1974) prior on the sampling distribution. In
addition to the acknowledgement of model misspecification,
the method admits an embarrassingly parallel Monte Carlo
sampling scheme consisting of randomized maximizations.
However, in most cases this method requires sampling the
Bayesian posterior, which is computationally expensive for
complex models.

1.1. Our Contribution

In this work, we propose a simplified variant of NPL that
utilises a Dirichlet process (DP) prior on F0 instead of a
mixture of Dirichlet processes (MDP) prior. This allows us
to perform inference directly and detaches the nonparamet-
ric prior from the prior of the model parameter of interest.
Instead of centering on a Bayesian posterior, we center the
DP on a sampling distribution which encapsulates our prior
beliefs. This simpler choice of prior also has desirable
theoretical properties and is highly scalable as we no longer



Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap

need to sample from the Bayesian posterior. Our method
can handle a variety of statistical models through the choice
of the loss functions, and can be applied to a wide range
of machine learning settings as we will demonstrate in Sec-
tion 3. Our method implies a natural noninformative prior,
which may be relevant when the number of data points is
substantially larger than the number of parameters.

The posterior bootstrap sampling scheme was introduced
by Lyddon et al. (2018) under the NPL framework, and
we inherit its computational strengths such as parallelism
and exact inference under a Bayesian nonparametric model.
Independent samples from the nonparametric posterior are
obtained through the optimization of randomized objective
functions, and we obtain the weighted likelihood bootstrap
(Newton & Raftery, 1994) as a special case. Furthermore,
sampling from multimodal posteriors now involves a non-
convex optimization at each bootstrap sample that we solve
through local search and random restart. We demonstrate
that our method recovers posterior multimodality on a Gaus-
sian Mixture Model (GMM) problem. We further show that
our method is computationally much faster than conven-
tional Bayesian inference with MCMC, and has superior
predictive performance on real sparse classification prob-
lems. Finally, we utilize the computational speed of NPL
to carry out a Bayesian sparsity-path-analysis for variable
selection on a genetic dataset.

2. Bayesian Nonparametric Learning

Assume that we have observed y1:n
iid∼ F0, where y1:n is

a sequence of n i.i.d. observables and F0 is the unknown
sampling distribution. We may be interested in a param-
eter θ ∈ Θ ⊆ Rp, which indexes a family of probability
densities FΘ = {fθ(y); θ ∈ Θ}. Conventional Bayesian
updating of the prior to the posterior via Bayes’ theorem
formally assumes that F0 belongs to the model FΘ, which is
questionable in the presence of complex and large datasets.
This assumption is not necessary for NPL. We derive the
foundations of NPL by treating parameters as functionals of
F0, with model fitting as a special case.

2.1. The Parameter of Interest

We define our parameter of interest as

θ0(F0) = arg min
θ

∫
l(y, θ)dF0(y) (1)

where l(y, θ) is a loss function, and its form can be used to
target statistics of interest. For example, setting l(y, θ) =
|y − θ| returns the median and (y − θ)2 returns the mean.

The loss function of particular interest is l(y, θ) =
− log fθ(y), where fθ is the density of some parametric
model. The value of θ0 minimises the Kullback-Leibler

divergence KL(f0||fθ), which is the parameter of interest in
conventional Bayesian analysis (Walker, 2013; Bissiri et al.,
2016). We have not assumed that FΘ contains F0, and θ0 in
this case does not have any particular generative meaning
as it is simply the parameter that satisfies (1).

2.2. The Dirichlet Process Prior

As the sampling distribution is unknown, we place a DP
prior on F0

[F |α, Fπ] ∼ DP (α, Fπ) (2)

where Fπ is our prior centering measure, and α is the
strength of our belief.

The base measure Fπ We encode our prior knowledge
about the sampling distribution in the measure Fπ. If we
believe a particular model fθ to be accurate, and have prior
beliefs about θ encoded in π(θ), a sensible choice for the
density of Fπ is fπ(y) =

∫
fθ(y)dπ(θ). Alternatively, we

could directly specify fπ as a density that accurately rep-
resents our beliefs without the burden of defining a joint
distribution on (y, θ). In the presence of historical data
ŷ1:n̂, a suitable choice for Fπ is the empirical distribution
of the historical data, i.e. Fπ(y) = 1

n̂

∑n̂
i=1 δŷi(y) where δ

is the Dirac measure. This is in a similar fashion to power
priors (Ibrahim et al., 2000). Further intuition is provided in
Section A.1 of the Supplementary Material.

It should be noted that we cannot directly include a prior
on the parameter of interest θ0, only implicitly through
(α, Fπ). Our prior is selected independently of the model of
interest, and this is appropriate under a misspecified model
setting since we do not believe there to be a true fθ. As all
parameters of interest are defined as a functional of F0 as in
(1), any informative prior on F0 is thus informative of θ0.

The concentration α The size of α measures the concen-
tration of the DP about Fπ , and a large value corresponds to
a smaller variance in a functional of the DP. We see in (3)
that the DP posterior base measure is a weighted sum of the
prior Fπ and the empirical distribution Fn = 1

n

∑n
i=1 δyi ,

with the weights proportional to α and n respectively. We
can thus interpret α as the effective sample size from the
prior Fπ. One method of selecting α is through simulation
of the prior distribution of θ via (1) and tuning its variance.
Alternatively, we can select α through the a priori variance
of the mean functional (see Section A.2 of the Supplemen-
tary Material). The special case of α = 0 corresponds to
the Bayesian bootstrap (Rubin, 1981), which in our case
corresponds to a natural way to define an noninformative
prior about F0 (see Gelman et al. (2013) for a review on
noninformative priors). For n � p, it may be suitable to
set α = 0 as the prior should have little influence and the
Bayesian bootstrap is more computationally efficient.
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2.3. The NPL Posterior

From the conjugacy of the DP, the posterior of F is

[F |y1:n] ∼ DP (α+ n,Gn) ,

Gn =
α

α+ n
Fπ +

1

α+ n

n∑
i=1

δyi .
(3)

Our NPL posterior π̃(θ|y1:n) is thus

π̃(θ|y1:n) =

∫
π(θ|F )dπ(F |y1:n) (4)

where π(θ|F ) = δθ0(F )(θ); the delta arises as θ is a deter-
ministic functional of F as in (1). Properties of the NPL
posterior follow from properties of the DP, e.g. draws of
F |y1:n are almost surely discrete, so (1) simplifies to

θ(F ) = arg min
θ

∞∑
k=1

wkl(ỹk, θ) (5)

where w1:∞ ∼ GEM(α + n) and ỹ1:∞
iid∼ Gn from the

stick-breaking construction (Sethuraman, 1994). Formally,
the GEM distribution is defined

vk ∼ Beta(1, α+ n), wk = vk

k−1∏
j=1

(1− vj). (6)

We preserve the theoretical advantages from Lyddon et al.
(2018) due to the symmetries in the limits of the DP and
the MDP for α→ 0 and n→∞, where α also denotes the
concentration parameter of the MDP.

Consistency Under regularity conditions, the NPL poste-
rior is consistent at θ0 as defined in (1), from the properties
of the DP (see van der Vaart (1998); Ghosal (2010); Ghosal
& van der Vaart (2017) for details). Interestingly, this is
true regardless of the choice of Fπ and its support. This
is not the case in conventional Bayesian inference through
Bayes’ rule where the support of the prior must contain θ0

for posterior consistency. This is particularly reassuring in
our misspecified model setting, as inferences about θ0 are
robust to choices of Fπ .

Asymptotic dominance The NPL posterior predictive
π̃(·|y1:n) for α = 0 asymptotically dominates the conven-
tional Bayesian posterior predictive π(·|y1:n) up to o(n−1)
under regularity conditions, i.e.

Ey1:n∼q [KL(q(·)||π(·|y1:n))− KL(q(·)||π̃(·|y1:n))]

= K(q(·)) + o(n−1)
(7)

for all distributions q, where K is a non-negative and pos-
sibly positive real-valued functional. This states that com-
pared to the Bayesian posterior predictive, the NPL posterior
predictive is closer in expected KL divergence to the true
F0 up to o(n−1). The proof for the MDP case is given in
Theorem 1 of Lyddon et al. (2018), and the above follows
from the equivalence of the MDP and the DP for α = 0.

2.4. Sampling from the NPL Posterior

In almost all cases, π̃(θ|y1:n) is not tractable, but lends itself
to a parallelizable Monte Carlo sampling scheme. It may be
more intuitive to think of sampling F from the posterior DP,
then calculating (1) to generate the sample from π̃(θ|y1:n),
as shown in Algorithm 1.

Algorithm 1 NPL Posterior Sampling
for i = 1 to B do

Draw F (i) ∼ DP(α+ n,Gn)
θ(i) = arg minθ

∫
l(y, θ)dF (i)(y)

end for

Here B is the number of posterior bootstrap samples. One
advantage of this sampling scheme is that it is embarrass-
ingly parallel as each of the B samples can be drawn inde-
pendently. We can thus take advantage of increasingly avail-
able multi-core computing, unlike in conventional Bayesian
inference as MCMC is inherently sequential.

2.4.1. THE POSTERIOR BOOTSTRAP

Sampling from the DP exactly requires infinite computa-
tion time if Fπ is continuous, but approximate samples
can be generated by truncation of the sum in (5). For ex-
ample, we could truncate the stick-breaking and set the
remaining weights to 0. Alternatively, we could approxi-
mate w1:T ∼ Dir(α/T, . . . , α/T ) with the finite Dirichlet
distribution for large T . For further details, see Muliere &
Secchi (1996); Ishwaran & Zarepour (2002). We opt for
the latter suggestion as Dirichlet weights can be generated
efficiently, which leads to a simpler variant of the posterior
bootstrap algorithm as shown in Algorithm 2.

Algorithm 2 Posterior Bootstrap Sampling
Define T as truncation limit
Observed samples are y1:n

for i = 1 to B do
Draw prior pseudo-samples ỹ(i)

1:T
iid∼ Fπ

Draw (w
(i)
1:n, w̃

(i)
1:T ) ∼ Dir (1, . . . , 1, α/T, . . . , α/T )

θ(i) = arg minθ

{∑n
j=1 w

(i)
j l(yj , θ)

+
∑T
k=1 w̃

(i)
k l(ỹ

(i)
k , θ)

}
end for

For α = 0, we simply draw w
(i)
1:n ∼ Dir (1, . . . , 1), which

is no longer an approximation and is equivalent to the
Bayesian bootstrap. For α > 0, the sampling scheme is
asymptotically exact for T → ∞, but this is computation-
ally infeasible. We could fix T to a moderate value, or
select it adaptively via adaptive NPL, where we use the
stick-breaking construction until the remaining probability
is less than ε.
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2.5. Tackling Multimodal Posteriors with Initialization

Multimodal posteriors can arise in Bayesian inference if
the likelihood function is non-log-concave like in GMMs
(Jin et al., 2016; Stephens, 1999), or if the prior is non-
log-concave which can arise when selecting sparse priors
(Seeger et al., 2007; Park & Casella, 2008; Lee et al., 2010).
Unlike the method by Lyddon et al. (2018) with the MDP,
our NPL posterior with the DP is now decoupled from the
Bayesian posterior. There is thus no reliance on an accu-
rate representation of the Bayesian posterior with potential
multimodality, which MCMC and VB can often struggle
to capture. If our loss function in (1) is non-convex (e.g.
− log fθ(y) of a GMM), our NPL posterior may also be mul-
timodal. This now presents an optimization issue: solving
(1) requires non-convex optimization. In general, optimizing
non-convex objectives is difficult (see Jain & Kar (2017)),
but under smoothness assumption of the loss, we can apply
convex optimization methods to find local minima.

2.5.1. RANDOM RESTART FOR MULTIPLE MODES

Random restart (see G. E. Boender & H. G. Rinnooy Kan
(1987)) can be utilized with convex optimization methods
to generate a list of potential global minima then selecting
the one with the lowest objective. This involves R random
initializations of θinit ∼ π0 for each local optimization, and
it was shown by Hu et al. (1994) that the uniform measure
for π0 has good properties for convergence. If the number
of modes is finite, then the global minimum will be achieved
asymptotically in the limit of the R→∞. The probability
of obtaining the correct global minimum for finite R is
related to the size of its basin of attraction. Random restart
NPL (RR-NPL) is shown in Algorithm 3.

Algorithm 3 RR-NPL Posterior Sampling
for i = 1 to B do

Draw F (i) ∼ DP(α+ n,Gn)
for r = 1 to R do

Draw θinit
r ∼ π0

θ
(i)
r = local arg minθ

(∫
l(y, θ)dF (i)(y), θinit

r

)
end for
θ(i) = arg minr

∫
l(y, θ

(i)
r )dF (i)(y)

end for

This is particularly suited to NPL with non-convex loss
functions for the following reasons. Firstly, random restart
can utilize efficient convex optimization techniques such
as quasi-Newton methods, and the restarts can be easily
implemented in parallel which is coherent with our paral-
lelizable sampling scheme. Secondly, we can compromise
between accuracy and computational cost by selecting R, as
computational cost scales linearly with R (though we can
parallelize). The repercussions of an insufficiently large R
are not severe: our NPL posterior will incorrectly allocate
more density to local modes/saddles but all modes will

likely still be present for a sufficiently large B. This is
demonstrated in Section E.2.2 of the Supplementary Ma-
terial. Finally, the uniform initialization can sample from
nonidentifiable posteriors with symmetric modes as their
basins of attraction are selected with equal probability.

Practically, uniform initialization may not be possible if the
support of the parameter is infinite, e.g. the variance σ2. In
this case, we can pick another π0 (e.g. Gamma for a positive
parameter), or sample uniformly from a truncated support.
For adaptively setting R, we can utilize stopping rules as
discussed in Section B of the Supplementary Material.

2.5.2. FIXED INITIALIZATION FOR LOCAL MODES

We may be interested in targeting local modes of the pos-
terior when we value interpretability of posterior quanti-
ties over exact posterior representation. For example in
K-component mixture models, there will be K! symmetri-
cal modes (or sets of modes), and label-switching occurs if
the sampler travels between these (Jasra et al., 2005) which
impedes useful inference in terms of clustering.

We can target one NPL posterior mode through a fixed
initialization scheme by taking advantage of the fact that
local optimization methods like expectation-maximization
(EM) or gradient ascent are hill-climbers. We initialize
each maximization step with the same θinit, causing the
sampler to stay within the basin of attraction of the local
posterior mode with high probability. We can utilize VB’s
mode-selection to select θinit, assuming the Bayesian and
NPL posterior modes are close. Mean-field VB also tends
to underestimate posterior variance (Blei et al., 2017), so we
are able to obtain accurate local uncertainty quantification
of the mode through this scheme. Fixed initialization NPL
(FI-NPL) is shown in Algorithm 4.

Algorithm 4 FI-NPL Posterior Sampling
Select θinit from mode of interest
for i = 1 to B do

Draw F (i) ∼ DP(α+ n,Gn)
θ(i) = local arg minθ

(∫
l(y, θ)dF (i)(y), θinit

)
end for

2.6. Loss-NPL

As we cannot define priors on θ0 directly, we can instead
penalize undesirable properties in the loss

l(y, θ) = − log fθ(y) + γg(θ). (8)

For example, g(θ) = |θ| obtains the Bayesian NPL-Lasso,
or we can set g(θ) = − log π(θ) if we have some prior
preference. We recommend γ = 1

n if we desire roughly the
same prior regularization as in Bayesian inference, where
n is the size of the training set. The reasoning is outlined
in Section D of the Supplementary Material. We could also
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tune γ through desired predictive performance or properties
of θ. Note that we are no longer encoding prior beliefs, and
are instead expressing an alternative parameter of interest
that minimizes the expectation of (8).

2.7. Related Work

We build on the work of Lyddon et al. (2018) which specifies
an MDP prior on F0, and recovers conventional Bayesian
inference in the limit of α→∞. Although the foundations
of nonparametric learning are unchanged, our NPL posterior
is decoupled from the Bayesian model, offering flexibility
in prior measure selection, computational scalability and
full multimodal exploration.

NPL unsurprisingly overlaps with other nonparametric ap-
proaches to inference. We recover the Bayesian boot-
strap (Rubin, 1981) if we set α = 0, and further setting
l(y, θ) = − log fθ(y) gives the weighted likelihood boot-
strap (Newton & Raftery, 1994), as discussed in Lyddon
et al. (2019). Setting the loss to (8) and α = 0 also returns
the fixed prior weighted Bayesian bootstrap (Newton et al.,
2018). However, these methods were posited as approxi-
mations to the true Bayesian posterior, and the Bayesian
bootstrap/weighted likelihood bootstrap are unable to in-
corporate prior information. The NPL posterior on the
other hand is exact and distinct to the conventional Bayesian
posterior with theoretical advantages, and we are able to
incorporate prior information either through Fπ or l(y, θ).

Treating parameters as functionals of the sampling distribu-
tion is akin to empirical likelihood methods (Owen, 1988),
in which parameters are defined through estimating equa-
tions of the form

∫
m(y, θ)dF0(y) = 0. The definition

of a parameter of interest through the loss l(y, θ) is also
present in general Bayesian updating introduced by Bissiri
et al. (2016), where a coherent posterior over a parameter
of interest is obtained without the need to specify a joint
generative model. Their target parameter is equivalent to
(1), and their methodology is built on a notion of coherency.

3. Examples
We now demonstrate our method on some examples; the
code is available online 1. We compare NPL to conventional
Bayesian inference with the No-U-Turn Sampler (NUTS)
by Homan & Gelman (2014), and Automatic Differentiation
Variational Inference (ADVI) by Kucukelbir et al. (2017)
in Stan (Carpenter et al., 2017). We select these as base-
lines as they are off-the-shelf algorithms that do not require
tuning. Similarly, NPL only requires a weighted likelihood
optimization procedure. All NPL examples are run on 4
Azure F72s v2 (72 vCPUs) virtual machines, implemented
in Python. The NUTS and ADVI examples cannot be im-

1https://github.com/edfong/npl

plemented in an embarrassingly parallel manner, so they are
run on a single Azure F72s v2. We avoid running multiple
MCMC chains in parallel as the models are multimodal
which may impede mixing, and combining unmixed chains
is unprincipled. For tabulated results, each run was repeated
30 times with different seeds, and we report the mean with 1
standard error. We emphasize again that our NPL posterior
is distinct to the conventional Bayesian posterior, so we are
comparing the two inference schemes and their associated
sampling methods. We include additional empirical compar-
isons to importance sampling and NPL with an MDP prior
in Sections E.2.3, E.2.4 of the Supplementary Material.

3.1. Gaussian Mixture Model

We demonstrate the ability of RR-NPL to accurately sam-
ple from a multimodal posterior in a K-component, d-
dimensional diagonal GMM toy problem, which NUTS and
ADVI fail to do. It should be noted that in addition to theK!
symmetrical modes present from label-switching, further
multimodality is present due to the non-log-concavity of
the likelihood. We further show how FI-NPL can be used
in a clustering example with real data to provide accurate
local uncertainty quantification which ADVI is unable to
do. Our conventional Bayesian model for i ∈ {1, . . . , n},
j ∈ {1, . . . , d} and k ∈ {1, . . . ,K} is

yi|π,µ,σ ∼
K∑
k=1

πkN
(
µk, diag(σ2

k)
)
,

π|a0 ∼ Dir(a0, . . . , a0),

µkj ∼ N (0, 1),

σkj ∼ logNormal(0, 1).

(9)

The posterior is multimodal, and we use ADVI and NUTS
for inference. For NPL, we are interested in model fitting,
so our loss function is simply the negative log-likelihood

l(y,π,µ,σ) = − log

K∑
k=1

πkN
(
y;µk, diag(σ2

k)
)
. (10)

In the case of small n, we may want to include a regulariza-
tion term in the loss to avoid singularities of the likelihood.
We select the DP prior separately for each example.

3.1.1. TOY EXAMPLE: IMPLEMENTATION AND RESULTS

We analyze toy data from a GMM with K = 3, d = 1 and
the following parameters:

π0 = {0.1, 0.3, 0.6}, µ0 = {0, 2, 4}, σ2
0 = {1, 1, 1}.

We generate ntrain = 1000 for model fitting and another
ntest = 250 held-out for model evaluation with different
seeds for each of the 30 runs. For the Bayesian model we set
a0 = 1, and for NPL we set α = 0 as n� p. We optimize

https://github.com/edfong/npl
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Figure 1. Posterior KDE of (µ1, µ2) in K = 3 toy GMM problem

each bootstrap maximization with a weighted EM algorithm
(derived in Section E.2.1 of the Supplementary Material),
and implement this in a modified GaussianMixture
class from sklearn.mixture (Pedregosa et al., 2011).
For RR-NPL, we initialize π ∼ Dir(1, . . . , 1), µkj ∼
unif(−2, 6) and σ2

kj ∼ IG(1, 1) for each restart. For FI-
NPL we initialize with one of the posterior modes from RR-
NPL. We produce 2000 posterior samples for each method.
We evaluate the predictive performance of each method on
held-out test data with the mean log pointwise predictive
density (LPPD) as suggested by Gelman et al. (2013), which
is described in Section E.3.1 of the Supplementary Material.
A larger value is equivalent to a better fit to the test data.

Figure 1 shows the posterior KDEs of (µ1, µ2) for 1 run
of each method. RR-NPL clearly recovers the multi-
modality of the NPL posterior, including the symmetry
about µ1 = µ2 due to the nonidentifiability of the GMM
posterior. NUTS and ADVI remain trapped in one local
mode of the Bayesian posterior as expected. Even if we car-
ried out random initialization of NUTS/ADVI over multiple
runs, each run would only pick out one mode, and there is
no general method to combine the posteriors. ADVI also
clearly underestimates the marginal posterior uncertainty.
FI-NPL remains in a single mode, showing that we can fix
label-switching through this initialization. However, the
FI-NPL mode is not identical to a truncated version of the
RR-NPL mode, as posterior mass is not reallocated sym-
metrically from the other modes. We see in Tables 1, 2 that
RR-NPL has similar mean LPPD on toy test data compared
to NUTS, and is twice as fast as NUTS.

3.1.2. MNIST: IMPLEMENTATION AND RESULTS

We now demonstrate FI-NPL on clustering handwritten dig-
its from MNIST (LeCun & Cortes, 2010), which consists of
28×28 pixel images. In this example ntrain = 10000, ntest =
2500 and d = 784. We normalize all pixel values such that
they lie in the interval [0, 1], and set K = 10. We believe a
priori that many pixels are close to 0, so for ease we elicit a
tight normal centering measure for the DP

fπ(y) =

d∏
j=1

N (yj ; 0, 0.12). (11)

NUTS is prone to the label-switching problem and is too
computationally intensive as ADVI already requires 5 hours,
so we only compare FI-NPL to ADVI. We set a0 = 1000
for ADVI, and α = 1 for FI-NPL with T = 500. We carry
out a single run of ADVI to select a local mode, and set θinit

of FI-NPL to the ADVI-selected mode. We then carry out
30 repeats of FI-NPL with this initialization, and compare
to the original ADVI run. We see in Figure 2 that we ob-
tain larger posterior variances in FI-NPL, as ADVI likely
underestimates the posterior variances due to the mean-field
approximation. Notice the modes are not exactly aligned
as the NPL and Bayesian posterior are distinct, and further-
more ADVI is approximate. We conjecture that ADVI does
not set components exactly to 0 due to the strong Dirichlet
prior. We see in Tables 1, 2 that FI-NPL is predictively
better and runs around 300 times faster than ADVI.

Table 1. Mean LPPD on held-out test data for GMM
RR-NPL FI-NPL NUTS ADVI

TOY -1.909± 0.040 -1.911 ± 0.040 -1.908 ±0.039 -1.912 ± 0.041
MNIST / 2463.4 ±24.1 / 1188.2

Table 2. Run-time for 2000 samples for GMM
RR-NPL FI-NPL NUTS ADVI

TOY 37.2S ± 4.5S 5.5± 2.2S 1M20S ± 16S 0.8S ± 0.1S
MNIST / 57.9S ± 1.0S / 5H6M
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Figure 2. Posterior marginal KDEs of π for K=10 GMM on
MNIST; 5 of the components have been set to 0 for FI-NPL, and
likewise to 0.05 for ADVI

3.2. Logistic Regression with Automatic Relevance
Determination Priors

We now demonstrate the predictive performance and compu-
tational scalability of loss-NPL in a Bayesian sparse logistic
regression example on real datasets. To induce sparsity,



Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap

we place automatic relevance determination (ARD) priors
(MacKay, 1994) on the coefficients with Gamma hyperpri-
ors (Gelman et al., 2008). The conventional Bayesian model
for i ∈ {1, . . . , n} and j ∈ {1, . . . , d} is

yi|xi,β, β0 ∼ Bernoulli(ηi),

ηi = σ(βTxi + β0),

βj |λj ∼ N
(

0,
1

λj

)
,

λj |a, b ∼ Gamma (a, b) .

(12)

Marginally, the prior is the non-standardized t-distribution
with (degrees of freedom, location, squared scale)

βj ∼ Student-t
(

2a, 0,
b

a

)
. (13)

This posterior is intractable and potentially multimodal due
to the non-log-concavity of the prior, and we carry out con-
ventional Bayesian inference via NUTS and ADVI. When
applying loss-NPL to regression, we assume y, x iid∼ F0,
and place a DP prior on the joint distribution F0(y, x). We
target the parameter which satisfies (1) with loss

l(y,x,β, β0) = − (y log η + (1− y) log(1− η))

+γ

(
2a+ 1

2

) d∑
j=1

log

(
1 +

β2
j

2b

)
(14)

which is the negative sum of the log-likelihood and log-
prior, with additional scaling parameter γ. Again our NPL
posterior may be multimodal due to the non-convexity of the
loss, and so we utilize RR-NPL. It should be noted that our
target parameter is now different to conventional Bayesian
inference, but our method achieves the common goal of
variable selection under a Bayesian framework. For the DP
prior, we elicit the centering measure

fπ(y, x) = fπ(y)fπ(x),

fπ(y) = Bernoulli(0.5),

fπ(x) =
1

n

n∑
i=1

δxi
(x).

(15)

The prior assumes y, x are independent which is equivalent
to assuming β = 0 a priori. This is appropriate as we
believe many components of β to be close to 0. The prior
on x is its empirical distribution, which is in an empirical
Bayes manner where the prior is estimated from the data.

3.2.1. IMPLEMENTATION AND RESULTS

We analyze 3 binary classification datasets from the UCI
ML repository (Dheeru & Karra Taniskidou, 2017): ‘Adult’
(Kohavi, 1996), ‘Polish companies bankruptcy 3rd year’,

(Zikeba et al., 2016), and ‘Arcene’ (Guyon et al., 2005)
with details in Table 3. We handle categorical covariates
with dummy variables, and normalize all covariates to have
mean 0 and standard deviation 1. Missing real values were
imputed with the mean, and data with missing categorical
values were dropped. We carry out a random stratified train-
test split for each of the 30 runs, with 80-20 split for ‘Adult’,
‘Polish’ and 50-50 split for ‘Arcene’ due to the smaller
dataset. For both NPL and conventional Bayesian inference,
the hyperparameters were set to a = b = 1, which was
selected by tuning the sparsity of the Bayesian posterior
means to a desired value. For NPL, we set α = 0 for ‘Adult’
and ‘Polish’ as n is sufficiently large, and α = 1 for ‘Arcene’
with T = 100 as n is only 100. We set γ = 1

ntrain
for each

dataset as explained in Section 2.6 for a fair comparison
to the conventional Bayesian model. We initialize each
optimization with β0

j ∼ N (0, 1), and select the number
of restarts to R = 1 for expediency. Optimization was
carried out using the L-BFGS-B algorithm (Zhu et al., 1997)
implemented in scipy.optimize (Jones et al., 2001–).

We can see in Table 4 that loss-NPL is predictively similar or
better than NUTS and ADVI, and from Table 5 we see that
the posterior mean is sparser for loss-NPL. Finally, we see
from Table 6 that the loss-NPL run-times for 2000 posterior
samples are much faster than for NUTS, and comparable
to VB. Further measures of predictive performance are pro-
vided in Section E.3.4 of the Supplementary Material.

Table 3. UCI datasets descriptions for LogReg
DATA SET TYPE d nTRAIN nTEST POSITIVE %

ADULT CAT. 96 36177 9045 24.6
POLISH REAL 64 8402 2101 4.8
ARCENE REAL 10000 100 100 44.0

Table 4. Mean LPPD on held-out test data for LogReg
DATA SET LOSS-NPL NUTS ADVI

ADULT -0.326±0.004 -0.326±0.004 -0.327 ± 0.004
POLISH -0.229± 0.034 -3.336± 4.162 -0.247 ± 0.047
ARCENE -0.449 ± 0.104 -0.464 ± 0.032 -0.445 ±0.068

Table 5. Percentage of posterior mean |βj | < ε for LogReg

DATA SET ε LOSS-NPL NUTS ADVI
ADULT 0.1 17.6 ± 2.8 16.1 ± 2.7 12.1± 3.1
POLISH 0.1 33.5 ± 4.7 15.9 ±3.3 15.8±3.5
ARCENE 0.01 87.4 ± 0.7 4.7 ± 0.3 3.5 ± 0.3

Table 6. Run-time for 2000 samples for LogReg
DATA SET LOSS-NPL NUTS ADVI

ADULT 2M24S ± 8S 2H36M ± 4M 26.9S ± 7.3S
POLISH 19.0S ± 4.0S 1H20M ± 21M 3.3S ± 0.8S
ARCENE 53.5S ± 1.1S 4H31M ± 53M 54.2S ±3.3S

3.3. Bayesian Sparsity-path-analysis

We now utilize loss-NPL to carry out Bayesian sparsity-
path-analysis for logistic regression, which allows us to
visualize how the responsibility of each covariate changes
with the sparsity penalty as discussed by Lee et al. (2012).
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We use the same ARD prior as Section 3.2 with the same
initialization scheme, set γ = 1

n , and elicit a noninformative
DP prior with α = 0. We found empirically that the results
for larger values of R are similar and so the approximation
with R = 1 is sufficient. We fix a and vary the value of b to
favour solutions of different sparsity. This varies the squared
scale c = b/a of the Student-t prior with fixed degrees of
freedom, where a smaller c corresponds to a heavier sparsity
penalty and thus more components are set to 0.

3.3.1. IMPLEMENTATION AND RESULTS

We analyze the genotype/pseudo-phenotype dataset with
n = 500 as described by Lee et al. (2012), containing
patient covariates xi which exhibit strong block-like cor-
relations as shown in Figure 3. We normalize the covari-
ates to have mean 0 and standard deviation 1. The pseudo-
phenotype data is generated by yi ∼ Bernoulli(σ(βTxi)),
where β has 5 randomly selected non-zero components out
of d = 50, with the rest set to 0. Each non-zero component
is sampled from N (0, 0.2), and the exact values of β are
provided in Section E.4.1 of the Supplementary Material.
We set a = 1 and vary bt = 0.98t−1 for t = {1, . . . , 450},
and generate 4000 posterior samples for each setting.
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Figure 3. Correlations of covariates x from genetic dataset

The posterior medians of the non-zero components of β
with 80% central credible interval are shown in Figure 4
for a range of log c values. Both the posterior median and
central credible intervals are estimated through the appropri-
ate order statistics of the posterior samples (Gelman et al.,
2013). We can see that β10, β14 and β24 have early predic-
tive power as their credible intervals remain large despite a
significant sparsity penalty (small log(c)), whilst the other
two coefficients β31, β37 are masked. A plot of the absolute
medians for all components is included in Section E.4.2 of
the Supplementary Material. For β10 and β14, the median is
close to 0 but the credible interval is large which is due to the
multimodality of the marginal posterior. This multimodal-
ity is also responsible for the jitter in the median around
log(c) = −6.5 for β14 in Figure 4 ; the true median likely
lies between the two separated modes but the finite posterior
sample size causes the sample median to jump between the
two. A posterior marginal KDE plot of β14 changing with
log c is shown in Figure 5, allowing us to visualize how
the importance of the covariate changes with the sparsity

penalty. We observe the bimodality in the marginal posterior
for log(c) < −4 as expected from the above discussion.

Loss-NPL required 5 minutes 24 seconds to generate all
450× 4000 posterior samples. The computational speed of
NPL enables fast Bayesian analysis of large datasets with
different hyperparameter settings, allowing for Bayesian
variable selection analysis.
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Figure 4. Lasso-type plot for posterior medians of non-zero β with
80% credible intervals against log(c) from genetic dataset
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Figure 5. Posterior marginal KDE of β14 against log(c) from ge-
netic dataset

4. Discussion
We have introduced a variant of Bayesian nonparametric
learning (NPL) with a Dirichlet process (DP) prior on the
sampling distribution F0, which leads to highly scalable ex-
act inference under model misspecification, detached from
the conventional Bayesian posterior. This method admits
a sampling scheme for multimodal posteriors that allows
for full mode exploration, which involves a non-convex
optimization that we solve through random restart. We
demonstrated that NPL can perform predictively better than
conventional Bayesian inference, while providing exact un-
certainty quantification.

For future work, the small sample performance of NPL
could be further explored and compared to conventional
Bayesian inference; we currently recommend NPL for mod-
erate to large values of n. The scaling of the number of
repeats R with increasing dimension for full mode explo-
ration would also be a future avenue of research.
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