
Off-Policy Deep Reinforcement Learning without Exploration:
Supplementary Material

A. Missing Proofs
A.1. Proofs and Details from Section 4.1

Definition 1. We define a coherent batch B as a batch such that if (s, a, s′) ∈ B then s′ ∈ B unless s′ is a terminal state.

Definition 2. We define εMDP(s, a) = Qπ(s, a)−QπB(s, a) as the error between the true value of a policy π in the MDP M
and the value of π when learned with a batch B.

Definition 3. For simplicity in notation, we denote

επMDP =
∑
s

µπ(s)
∑
a

π(a|s)|εMDP(s, a)|. (1)

To evaluate a policy π exactly at relevant state-action pairs, only επMDP = 0 is required.

Definition 4. We define the optimal batch-constrained policy π∗ ∈ ΠB such that Qπ
∗
(s, a) ≥ Qπ(s, a) for all π ∈ ΠB and

(s, a) ∈ B.

Algorithm 1. Batch-Constrained Q-learning (BCQL) maintains a tabular value function Q(s, a) for each possible state-
action pair (s, a). A transition tuple (s, a, r, s′) is sampled from the batch B with uniform probability and the following
update rule is applied, with learning rate α:

Q(s, a)← (1− α)Q(s, a) + α(r + γ max
a′s.t.(s′,a′)∈B

Q(s′, a′)). (2)

Theorem 1. Performing Q-learning by sampling from a batch B converges to the optimal value function under the MDP
MB.

Proof. Again, the MDP MB is defined by the same action and state space as M , with an additional terminal state sinit.
MB has transition probabilities pB(s′|s, a) = N(s,a,s′)∑

s̃N(s,a,s̃) , where N(s, a, s′) is the number of times the tuple (s, a, s′) is
observed in B. If

∑
s̃N(s, a, s̃) = 0, then pB(sinit|s, a) = 1, where r(sinit, s, a) is to the initialized value of Q(s, a).

For any given MDP Q-learning converges to the optimal value function given infinite state-action visitation and some
standard assumptions (see Section A.2). Now note that sampling under a batch B with uniform probability satisfies the
infinite state-action visitation assumptions of the MDP MB, where given (s, a), the probability of sampling (s, a, s′)

corresponds to p(s′|s, a) = N(s,a,s′)∑
s̃N(s,a,s̃) in the limit. We remark that for (s, a) /∈ B, Q(s, a) will never be updated, and will

return the initialized value, which corresponds to the terminal transition sinit. It follows that sampling from B is equivalent
to sampling from the MDP MB, and Q-learning converges to the optimal value function under MB.

Remark 1. For any policy π and state-action pair (s, a), the error term εMDP(s, a) satisfies the following Bellman-like
equation:

εMDP(s, a) =
∑
s′

(pM (s′|s, a)− pB(s′|s, a))

(
r(s, a, s′) + γ

∑
a′

π(a′|s′) (QπB(s′, a′))

)
+ pM (s′|s, a)γ

∑
a′

π(a′|s′)εMDP(s′, a′).

(3)

Off-Policy Deep Reinforcement Learning without Exploration: Supplementary Material

Proof. Proof follows by expanding each Q, rearranging terms and then simplifying the expression.

εMDP(s, a) = Qπ(s, a)−QπB(s, a)

=
∑
s′

pM (s′|s, a)

(
r(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ(s′, a′)

)
−QπB(s, a)

=
∑
s′

pM (s′|s, a)

(
r(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ(s′, a′)

)

−
(∑

s′

pB(s′|s, a)

(
r(s, a, s′) + γ

∑
a′

π(a′|s′)QπB(s′, a′)

))
=
∑
s′

(pM (s′|s, a)− pB(s′|s, a)) r(s, a, s′) + pM (s′|s, a)γ
∑
a′

π(a′|s′) (QπB(s′, a′) + εMDP(s′, a′))

− pB(s′|s, a)γ
∑
a′

π(a′|s′)QπB(s′, a′)

=
∑
s′

(pM (s′|s, a)− pB(s′|s, a)) r(s, a, s′) + pM (s′|s, a)γ
∑
a′

π(a′|s′) (QπB(s′, a′) + εMDP(s′, a′))

+ pM (s′|s, a)γ
∑
a′

π(a′|s′) (εMDP(s′, a′)− εMDP(s′, a′))− pB(s′|s, a)γ
∑
a′

π(a′|s′)QπB(s′, a′)

=
∑
s′

(pM (s′|s, a)− pB(s′|s, a))

(
r(s, a, s′) + γ

∑
a′

π(a′|s′)QπB(s′, a′)

)
+ pM (s′|s, a)γ

∑
a′

π(a′|s′)εMDP(s′, a′)

(4)

Lemma 1. For all reward functions, επMDP = 0 if and only if pB(s′|s, a) = pM (s′|s, a) for all s′ ∈ S and (s, a) such that
µπ(s) > 0 and π(a|s) > 0.

Proof. From Remark 1, we note that the form of εMDP(s, a), since no assumptions can be made on the reward function and
therefore the expression r(s, a, s′) + γ

∑
a′ π(a′|s′)QπB(s′, a′), we have that εMDP(s, a) = 0 if and only if pB(s′|s, a) =

pM (s′|s, a) for all s′ ∈ S and pM (s′|s, a)γ
∑
a′ π(a′|s′)εMDP(s′, a′) = 0.

(⇒) Now we note that if εMDP(s, a) = 0 then pM (s′|s, a)γ
∑
a′ π(a′|s′)εMDP(s′, a′) = 0 by the relationship defined by

Remark 1 and the condition on the reward function. It follows that we must have pB(s′|s, a) = pM (s′|s, a) for all s′ ∈ S.

(⇐) If we have
∑
s′ |pM (s′|s, a)− pB(s′|s, a)| = 0 for all (s, a) such that µπ(s) > 0 and π(a|s) > 0, then for any (s, a)

under the given conditions, we have ε(s, a) =
∑
s′ pM (s′|s, a)γ

∑
a′ π(a′|s′)ε(s′, a′). Recursively expanding the ε term,

we arrive at ε(s, a) = 0 + γ0 + γ20 + ... = 0.

Theorem 2. For a deterministic MDP and all reward functions, επMDP = 0 if and only if the policy π is batch-constrained.
Furthermore, if B is coherent, then such a policy must exist if the start state s0 ∈ B.

Proof. The first part of the Theorem follows from Lemma 1, noting that for a deterministic policy π, if (s, a) ∈ B then we
must have pB(s′|s, a) = pM (s′|s, a) for all s′ ∈ S.

We can construct the batch-constrained policy by selecting a in the state s ∈ B, such that (s, a) ∈ B. Since the MDP
is deterministic and the batch is coherent, when starting from s0, we must be able to follow at least one trajectory until
termination.

Theorem 3. Given the Robbins-Monro stochastic convergence conditions on the learning rate α, and standard sampling
requirements from the environment, BCQL converges to the optimal value function Q∗.

Proof. Follows from proof of convergence of Q-learning (see Section A.2), noting the batch-constraint is non-restrictive
with a batch which contains all possible transitions.

Off-Policy Deep Reinforcement Learning without Exploration: Supplementary Material

Theorem 4. Given a deterministic MDP and coherent batch B, along with the Robbins-Monro stochastic convergence
conditions on the learning rate α and standard sampling requirements on the batch B, BCQL converges to QπB(s, a) where
π∗(s) = argmaxa s.t.(s,a)∈BQ

π
B(s, a) is the optimal batch-constrained policy.

Proof. Results follows from Theorem 1, which states Q-learning learns the optimal value for the MDP MB for state-action
pairs in (s, a). However, for a deterministic MDP MB corresponds to the true MDP in all seen state-action pairs. Noting
that batch-constrained policies operate only on state-action pairs where MB corresponds to the true MDP, it follows that π∗

will be the optimal batch-constrained policy from the optimality of Q-learning.

A.2. Sketch of the Proof of Convergence of Q-Learning

The proof of convergence of Q-learning relies large on the following lemma (Singh et al., 2000):

Lemma 2. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0 where ζt,∆t, Ft : X → R satisfy the equation:

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt), (5)

where xt ∈ X and t = 0, 1, 2, Let Pt be a sequence of increasing σ-fields such that ζ0 and ∆0 are P0-measurable and
ζt,∆t and Ft−1 are Pt-measurable, t = 1, 2, Assume that the following hold:

1. The set X is finite.

2. ζt(xt) ∈ [0, 1],
∑
t ζt(xt) =∞,∑t(ζt(xt))

2 <∞ with probability 1 and ∀x 6= xt : ζ(x) = 0.

3. ||E [Ft|Pt] || ≤ κ||∆t||+ ct where κ ∈ [0, 1) and ct converges to 0 with probability 1.

4. Var[Ft(xt)|Pt] ≤ K(1 + κ||∆t||)2, where K is some constant

Where || · || denotes the maximum norm. Then ∆t converges to 0 with probability 1.

Sketch of Proof of Convergence of Q-Learning. We set ∆t = Qt(s, a) − Q∗(s, a). Then convergence follows by
satisfying the conditions of Lemma 2. Condition 1 is satisfied by the finite MDP, setting X = S × A. Condition 2 is
satisfied by the assumption of Robbins-Monro stochastic convergence conditions on the learning rate αt, setting ζt = αt.
Condition 4 is satisfied by the bounded reward function, where Ft(s, a) = r(s, a, s′) + γmaxa′ Q(s′, a′)−Q∗(s, a), and
the sequence Pt = {Q0, s0, a0, α0, r1, s1, ...st, at}. Finally, Condition 3 follows from the contraction of the Bellman
Operator T , requiring infinite state-action visitation, infinite updates and γ < 1.

Additional and more complete details can be found in numerous resources (Dayan & Watkins, 1992; Singh et al., 2000;
Melo, 2001).

Off-Policy Deep Reinforcement Learning without Exploration: Supplementary Material

B. Missing Graphs
B.1. Extrapolation Error in Deep Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

2000

4000

6000

8000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

2000

2500

3000

3500
Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

2000

2500

3000
Walker2d-v1

(a) Final buffer performance

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

200

400

600

800

1000

E
st

im
at

ed
Va

lu
e

HalfCheetah-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

−40000

−20000

0

20000

40000

60000

Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

200

400

600

800

1000

1200

1400

Walker2d-v1

(b) Final buffer value estimates

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

2000

4000

6000

8000

10000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

2000

2500

3000

3500
Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

2000

2500

3000
Walker2d-v1

(c) Concurrent performance

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
st

im
at

ed
Va

lu
e

×105 HalfCheetah-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

500

1000

1500

Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

×104 Walker2d-v1

(d) Concurrent value estimates

0.0 0.1 0.2 0.3
Time steps (1e6)

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1

0.0 0.1 0.2 0.3
Time steps (1e6)

0

1000

2000

3000

Hopper-v1

0.0 0.1 0.2 0.3
Time steps (1e6)

0

1000

2000

3000

4000
Walker2d-v1

(e) Imitation performance

0.0 0.1 0.2 0.3
Time steps (1e6)

0

500

1000

1500

2000

E
st

im
at

ed
Va

lu
e

HalfCheetah-v1

0.0 0.1 0.2 0.3
Time steps (1e6)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

×107 Hopper-v1

0.0 0.1 0.2 0.3
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8
×106 Walker2d-v1

(f) Imitation value estimates

Figure 1. We examine the performance of DDPG in three batch tasks. Each individual trial is plotted with a thin line, with the mean in
bold (evaluated without exploration noise). Straight lines represent the average return of episodes contained in the batch (with exploration
noise). An estimate of the true value of the off-policy agent, evaluated by Monte Carlo returns, is marked by a dotted line. In the final
buffer experiment, the off-policy agent learns from a large, diverse dataset, but exhibits poor learning behavior and value estimation. In the
concurrent setting the agent learns alongside a behavioral agent, with access to the same data, but suffers in performance. In the imitation
setting, the agent receives data from an expert policy but is unable to learn, and exhibits highly divergent value estimates.

