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Abstract
Dropout is a popular technique to train large-scale
deep neural networks to alleviate the overfitting
problem. To disclose the underlying reason for
its gain, numerous works have tried to explain
it from different perspectives. In this paper, un-
like existing works, we explore it from a new
perspective to provide new insight into this line
of research. In detail, we disentangle the forward
and backward pass of dropout. Then, we find that
these two passes need different levels of noise to
improve the generalization performance of deep
neural networks. Based on this observation, we
propose the augmented dropout, which employs
different dropping strategies in the forward and
backward pass, to improve the standard dropout.
Experimental results have verified the effective-
ness of our proposed method.

1. Introduction
In recent years, deep neural networks have demonstrated su-
perior performance on a wide range of tasks, such as image
classification (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; He et al., 2016), object detection (Girshick et al.,
2014; Ren et al., 2015), image generation (Goodfellow et al.,
2014; Brock et al., 2018; Miyato et al., 2018; Gao & Huang,
2018), and machine translation (Vaswani et al., 2017). How-
ever, deep neural networks face with the overfitting issue
since they usually have an extremely large number of pa-
rameters. Then, dropout (Hinton et al., 2012) is proposed
to alleviate this problem. Specifically, dropout randomly
sets some neurons of the network to zero during the training
phase to prevent feature co-adaption. This simple idea has
become a common technique to alleviate overfitting issues
and lift up the generalization performance of deep neural
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networks in various tasks.

Inspired by the good performance of dropout, a number
of variants have been proposed, promoting the generaliza-
tion performance of existing network architectures, such
as DropConnect (Wan et al., 2013), maxout(Goodfellow
et al., 2013), DropPath (Larsson et al., 2016), DropBlock
(Ghiasi et al., 2018). Besides, to disclose the success of
dropout, various works (Hinton et al., 2012; Wager et al.,
2013; Bouthillier et al., 2015; Helmbold & Long, 2017;
Jain et al., 2015) have attempted to analyze it from differ-
ent perspectives. In the seminal paper (Hinton et al., 2012),
dropout is described as an ensemble technique which ensem-
bles many sub-networks with sharing parameters. (Wager
et al., 2013) treats dropout as an adaptive `2 regulariza-
tion and establishes the connection between dropout and
the adaptive optimization algorithm AdaGrad (Duchi et al.,
2011). While, in (Helmbold & Long, 2017), the differ-
ence between weight decay regularization and dropout is
disclosed. Specifically, unlike the traditional weight decay
regularization, dropout is insensitive to the rescaling of in-
put features and the outputs. (Gal & Ghahramani, 2016)
discusses dropout from the Bayesian perspective, treating
it as an approximation to the deep Gaussian process. On
the other hand, some works attempt to theoretically study
the generalization performance for the deep neural network
with dropout. For instance, (Gao & Zhou, 2016) shows
that dropout can help to reduce the Rademacher complexity
of deep neural networks. In particular, dropout pushes the
polynomial reduction for shallow neural networks and the
exponential reduction for deep neural networks. Later, Mou
(Mou et al., 2018) studies the generalization performance
of dropout under the distribution-free setting.

By examining the works above which try to explain dropout,
we find that most of them focus on the forward pass to
attribute the gain of dropout to the model combination or
feature augmentation. For instance, in the original paper
(Hinton et al., 2012), dropout is described to ensemble a
number of sub-networks which are trained on different sub-
sets of features (hidden units). As a result, the authors argue
that dropout can prevent the network from relying on sin-
gle features. Additionally, (Bouthillier et al., 2015) views
dropout as a kind of data augmentation. However, as we
know, deep neural networks include the forward pass and
the backward pass and they share the same neurons. When
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zeroing out some neurons of the deep neural network, the
backward pass will also be affected. As a result, the gradient
will be disturbed by dropout either when using backpropaga-
tion to optimize deep neural networks. As discussed earlier,
most of existing works ignore the effect of dropout on the
backward pass. Thus, it is necessary to explore how dropout
affects the backward pass. On the other hand, the general-
ization performance of deep neural networks is also affected
by optimization algorithms. For instance, (Keskar et al.,
2016) shows that a large batch size for SGD can lead to
degradation in generalization performance. One argument
for this phenomenon is that the noise introduced by SGD
of a small batch size can help to escape from sharp min-
ima. Besides, a number of works (Ge et al., 2015; Jin et al.,
2017; Zhang et al., 2017; Daneshmand et al., 2018) have
theoretically justified that noise does be helpful for SGD to
escape from saddle points. Furthermore, (Neelakantan et al.,
2015) shows that adding noise to the gradient can improve
the performance of deep neural networks practically.

Based on the above discussion, a natural question follows:
Which pass accounts for the gain from dropout? Is it due to
the feature augmentation in the forward pass or the noisy
gradient in the backward pass? To answer this question,
in this paper, we separate the forward pass and backward
pass to disclose the underlying reason for dropout’s success.
Specifically, we propose the forward dropout which con-
ducts dropout only on the forward pass and the backward
dropout which performs dropout only on the backward pass.
In this way, the forward dropout will account for the feature
augmentation while the backward dropout will account for
the noisy gradient. Our empirical result shows that both
the feature augmentation in the forward pass and the noisy
gradient in the backward pass are necessary to the success
of dropout. Either one of them cannot beat the standard
dropout. However, we also find that the dropout ratio has
a different effect on these two passes. Specifically, the for-
ward and backward dropout achieve their best performance
with different dropout ratios. Based on these observations,
we propose a novel augmented dropout, which employs dif-
ferent dropout ratios for the forward and backward pass. In
this way, the augmented dropout can fully utilize the benefit
of these two passes. At last, extensive experimental results
have verified the effectiveness of our proposed methods.

2. Related Works
In this section, we will review related works about dropout
to give the motivation for this paper.

Dropout is first proposed in the seminal work (Hinton et al.,
2012) to alleviate the overfitting problem of deep neural
networks. The basic idea is to randomly set some neurons
of the neural network to zero in the training phase. With this
simple yet effective technique, the performance of numerous

deep neural networks is improved to new state-of-the-art
levels. Recently, many variants have been proposed. For
instance, DropConnect (Wan et al., 2013) proposes to ran-
domly drop the connection between the neurons in two
consecutive layers. DropPath (Larsson et al., 2016) ran-
domly drops layers of the neural network. SpatialDropout
(Tompson et al., 2015) zeros out channels from the feature
map. DropBlock (Ghiasi et al., 2018) drops continuous re-
gions of the feature map. All these variants have achieved
some improvement in practical applications.

The good performance of dropout has attracted researchers
to analyze its underlying reasons. In the original paper (Hin-
ton et al., 2012), the authors attribute the gain from dropout
to the ensemble of many sub-networks. In particular, the
author argues that dropping neurons during training is actu-
ally to train an exponential number of “thinned” networks
and then average the results of these thinned networks in the
testing phase. (Bouthillier et al., 2015) interprets dropout as
a kind of data augmentation approach which augments the
training data to cover more regions of the true data distribu-
tion. In this way, the overfitting problem can be alleviated
by the augmented data. (Wager et al., 2013) demonstrates
that dropout is a kind of adaptive regularization approach
for generalized linear models (GLMs). With this regular-
ization, model parameters will be prevented to overfit data.
In (Helmbold & Long, 2017), dropout is also interpreted
as a regularization method to avoid overfitting. Obviously,
these explanations for dropout, including model combina-
tion, data augmentation, and regularization, only consider
the effect of dropout on the forward pass, ignoring how it
affects the optimization procedure in the backward pass.

As we know, deep neural networks include the forward pass
and the backward pass and they share the same neurons.
When dropping some neurons of deep neural networks, the
gradient from the backpropagation will also be disturbed.
In other words, dropout leads to the noisy gradient. In
recent years, numerous works (Ge et al., 2015; Jin et al.,
2017; Zhang et al., 2017; Daneshmand et al., 2018) have
shown that noisy SGD can help to escape from saddle points.
For instance, (Ge et al., 2015) proves adding noise to SGD
can escape strictly saddle points while (Jin et al., 2017)
justifies that injecting noise to model parameters, leading
to the noisy gradient, can also escape from strictly saddle
points. In practice, (Neelakantan et al., 2015) demonstrates
that injecting noise to the stochastic gradient can improve
the performance of deep neural networks. Furthermore,
SmoothOut (Wen et al., 2018), which injects noise to model
parameters of deep neural networks can improve the gen-
eralization performance either. Thus, to fully understand
the mechanism of dropout, it is necessary and important to
explore how the noisy gradient introduced by dropout affect
the generalization performance of deep neural networks.
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3. Preliminary Knowledge
In this section, we will present some preliminary knowledge
about dropout.

Throughout this paper, we use H = {h(l)}L−1l=0 to denote
the deep neural network with L layers where h(l) denotes
the l-th hidden layer. In particular, h(0) denotes the input
layer while h(L−1) denotes the output layer. In addition,
W = {Wl}L−1l=0 denotes model parameters of the deep neu-
ral network. Specifically, Wl denotes the model parameter
in the l-th layer. Furthermore, {ε(l)} denotes the random
variable of dropout. In detail, the entries of ε(l)i are indepen-
dently drawn from the following distribution:{

P (ε
(l)
i = 0) = p(l)

P (ε
(l)
i = 1

1−p(l) ) = 1− p(l)
, (1)

where p(l) ∈ (0, 1) denotes the dropout ratio in the l-th layer.
Based on these terminologies, the deep neural network with
dropout is represented as follows:

z(l+1) = gl(Wl;h
(l) � ε(l)) ,

h(l+1) = fl(z
(l+1)) .

(2)

Here, � denotes the element-wise multiplication, gl repre-
sents the transformation in the l-th layer. In particular, for
the fully connected layer, gl denotes the linear transforma-
tion. For the convolutional layer, gl denotes the convolution
transformation. z(l+1) denotes the value of the hidden layer
before conducting the non-linear activation. fl(·) denotes
the activation function.

Given a dataset {(xi, yi)}ni=1, the goal of dropout training
is to optimize the following objective function:

min
W,b

J(W, b) =
1

n

n∑
i=1

L(W, b;xi, yi) , (3)

where L denotes the loss function to penalize the wrong
prediction. This objective function can be optimized by
stochastic gradient descent (SGD) method, where both data
samples xi and hidden features h(l) are sampled randomly.

4. Demystify Dropout
Unlike existing works which focus on the forward pass, such
as model combination and data augmentation, ignoring how
dropout affects the backward pass, in this section, we will
disclose how dropout affects both the forward and backward
pass of deep neural networks respectively.

In this section, we assume the transformation gl in each
layer is a linear operation. Then, each layer is defined as
follows:

z(l+1) =Wl(h
(l) � ε(l)) + b(l) ,

h(l+1) = fl(z
(l+1)) .

(4)

4.1. Back Propagation with Dropout

To employ SGD to train deep neural networks, at first, we
need to compute the gradient in the backward pass. Here,
we only focus on the gradient of hidden layers since that of
the output layer is easy to obtain.

For the fully connected layer defined in Eq. (4), the gradient
with respect to model parameters in the l-th layer is shown
as follows:

∂J

∂W (l)
= δ(l+1)(h(l) � ε(l))T , (5)

where

δ(l) ,
∂J

∂z(l)
= ((W (l)T δ(l+1))� f ′l (z(l)))� ε(l) .

(6)
Note that we ignore the gradient of the bias in that it is
easy to get. From Eq. (5) and Eq. (6), we can find that
dropout happens not only in the forward pass but also in the
backward pass. Specifically, in the backward pass, dropout
disturbs the gradient by dropping features as Eq. (5) and the
backpropagated error as Eq. (6). As a result, some entries of
the gradient will be zeroed out, leading to the noisy gradient.
Existing literature shows that noisy gradient is helpful to
escape saddle points to converge to the solution which has
good generalization performance. Hence, a natural question
follows: Does the gain of dropout come from the forward
pass, such as model combination and data augmentation, or
the noisy gradient in the backward pass? In the following
subsection, we will propose a novel method to investigate it.

4.2. Forward and Backward Dropout

To disclose the effect of dropout on the forward pass and
the backward pass, we disentangle dropout: proposing the
forward dropout and backward dropout as follows.

Definition 1. (Forward Dropout) As the standard dropout,
forward dropout randomly drops features in the forward
pass but it does not drop features and backpropagated errors
in the backward pass.

Definition 2. (Backward Dropout) Backward dropout keeps
all features in the forward pass while drops features and
back propagated errors as the standard dropout in the back-
ward pass.

From the definition, we can know that the forward dropout
only disturbs the forward pass while the backward dropout
only disturbs the backward pass. Therefore, with them, we
can investigate the effect of dropout on the forward pass by
the forward dropout and that on the backward pass by the
backward dropout. To this end, we conduct experiments
on two networks, including ConvNet-Quick and ResNet-20,
for CIFAR10 to demonstrate the effect of these two dropout
methods.
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Table 1. The test accuracy of ConvNet-Quick for CIFAR10
Dropout Ratio 0.3 0.2 0.1 0.05 0.01 0.005
Plain 0.7579
Standard Dropout 0.7523 0.7617 0.7657 0.7647 0.7626 0.7608
Forward Dropout 0.6908 0.7211 0.7482 0.7627 0.7612 0.7578
Backward Dropout 0.7433 0.7557 0.7585 0.7593 0.7583 0.7599

(a) p=0.2 (b) p=0.2 (c) p=0.05

(d) p=0.05 (e) p=0.005 (f) p=0.005

Figure 1. The training and testing loss of ConvNet-Quick for CIFAR10

Table 2. The test accuracy of ResNet-20 for CIFAR10
Dropout Ratio 0.3 0.2 0.1 0.05 0.01 0.005
Plain 0.9143
Standard Dropout 0.9163 0.9176 0.9193 0.9174 0.9141 0.9154
Forward Dropout 0.9007 0.9093 0.9169 0.9171 0.9141 0.9142
Backward Dropout 0.9109 0.9130 0.9140 0.9142 0.9147 0.9146

ConvNet-Quick ConvNet is the network that employed in
the original dropout paper (Hinton et al., 2012). It has three
convolutional layers and two fully connected layers. We
use ConvNet-Quick that is the implementation of ConvNet
provided by the official Caffe toolbox (Jia et al., 2014). In
this experiment, we conduct dropout on the two fully con-
nected layers. The batch size is set to 100. We employ SGD
with the momentum of 0.9 as the optimizer. The training
procedure starts with a learning rate of 0.001 which is di-
vided by 10 at 4,000 iterations. We terminate the training

procedure at 9,000 iterations. Here, we did not perform any
data augmentation. The only preprocessing for input images
is to subtract the mean value.

ResNet-20 ResNet-20 (He et al., 2016) is a widely used
state-of-the-art method for CIFAR10 dataset. There are
three building groups, each of which consists of a few con-
volution blocks Conv-BN-ReLU. The original ResNet-20
has no dropout. Here, following Wide-ResNet (Zagoruyko
& Komodakis, 2016), we insert dropout between two convo-
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(a) p=0.2 (b) p=0.2 (c) p=0.05

(d) p=0.05 (e) p=0.005 (f) p=0.005

Figure 2. The training and testing loss of ResNet-20 for CIFAR10

lution blocks as Conv-BN-ReLU-Dropout-Conv-BN-ReLU.
In our experiment, the batch size is set to 128. The number
of iterations is set to 640,000. In addition, we employ the
Nesterov with the momentum of 0.9 as the optimizer. The
initial learning rate is set to 0.1 and multiplied by 0.1 at
320,000 and 480,000 iterations. Furthermore, a simple data
augmentation is used in this experiment. Specifically, each
image is padded by 4 pixels on each side. Then, a 32× 32
patch is randomly cropped from the augmented image or
its corresponding horizontal flip. At last, the weight decay
parameter is set to 0.001.

In Table 1 and Table 2, we report the classification accuracy
which is the mean of four runs. Here, the network without
dropout is denoted by Plain. In addition, to comprehensively
evaluate the performance of dropout, we employ different
dropout ratios. From these two tables, we have the following
observations:

• Comparing with the plain network, the standard
dropout does improve the performance of deep neu-
ral networks for almost all cases, which verifies the
effectiveness of dropout.

• As for the forward dropout, its performance is heavily
affected by the dropout ratio. When the dropout ratio
is large, the performance of the forward dropout is

degraded significantly.

• Comparing with the forward dropout, the backward
one is less affected by the dropout ratio. When decreas-
ing the dropout ratio, the generalization performance
of the deep neural network is improved gradually.

• When the dropout ratio is large, such as p = 0.3, both
the forward and backward dropout degrade the per-
formance of the plain deep neural networks. When
decreasing the dropout ratio to a moderately small
value, such as p = 0.05, both of them show some
improvement. When the dropout ratio is very small,
such as p = 0.005, the forward dropout has very few
effects on the performance of deep neural networks,
but the backward dropout can improve the plain neural
network.

• Both the forward and backward dropout are inferior to
the standard dropout for almost all cases.

To further disclose the underlying reason for these observa-
tions, we demonstrate the loss function value at different
iterations in Figure 1 and Figure 2. Combined with these
figures, we have the following conclusions:

• When the dropout ratio is large (p = 0.2), the training
loss of the forward dropout are much larger than those
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of other methods. In other words, when p is large, due
to interrupting features heavily, the forward dropout
can increase the model bias and cause underfitting. As
a result, it degrades the performance of the plain net-
work. As for the standard dropout, although it employs
the same dropout ratio with the forward dropout, yet its
loss and accuracy are better than those of the forward
dropout. The possible reason is the implicit regulariza-
tion of the noisy gradient in the backward pass, which
is helpful to escape local minima. When it comes to the
backward dropout, although it can arrive at a smaller
training loss compared with the standard dropout, it
cannot outperform the standard one. The possible rea-
son is that there is no data augmentation in the forward
pass as the standard dropout. Hence, its generalization
performance is worse than the standard dropout.

• When the dropout ratio becomes moderately small
(p = 0.05), the training loss of the forward and back-
ward dropout approach to that of the standard dropout,
and their accuracy is a little better than that of the plain
network. Thus, the data augmentation in the forward
and the noisy gradient in the backward pass caused by
the mild noise are helpful to improve the generaliza-
tion performance. Additionally, the forward dropout
outperforms the backward one. In other words, mild
noise is more helpful in the forward pass.

• When the dropout ratio is very small (p = 0.005), it
is intuitive that the forward dropout has little effect
on the performance of the plain deep neural networks.
Surprisingly, the backward dropout has better perfor-
mance than the plain network, which means that the
noisy gradient caused by the small noise in the back-
ward pass contributes to improving the generalization
performance.

In summary, the moderately small noise in the forward
pass can augment the data to improve the generalization
performance. In other words, to augment data solely, we
should use moderately small noise. As for the noise in the
backward pass, it can regularize the bias introduced from
the forward pass. In addition, the very small noise in the
backward pass is helpful to the optimization of deep neural
networks, which consequently improves the generalization
performance.

5. Augmented Dropout
In this section, we will propose the augmented dropout
based on the observations in the last section.

The observations in the last section can be summarized as
follows:

• Both the forward and backward dropout are inferior

to the standard dropout when they act on the plain
network solely.

• The forward and backward dropout achieve their best
performance with different dropout ratio.

Based on these observations, we propose the augmented
dropout. In detail, due to the first observation, we keep
both the forward and backward dropout in our augmented
dropout. Inspired by the second observation, we conduct
dropout on the forward pass and backward pass separately
with their own dropout ratio. Specifically, in the forward
pass, we have the following procedure:

ĥ
(l)
forward = h(l) � ε(l)foward ,

z(l+1) =Wlĥ
(l)
forward + b(l) ,

h(l+1) = fl(z
(l+1)) ,

(7)

where ε(l)foward is drawn from the following distribution in

terms of the forward dropout ratio p(l)forward:P (ε
(l)
i = 0) = p

(l)
forward

P (ε
(l)
i = 1

1−p(l)
forward

) = 1− p(l)forward
. (8)

As for the backward pass, we have:

ĥ
(l)
backward = h(l) � ε(l)backward ,

∂J

∂W (l)
= δ(l+1)ĥ

(l)T
backward ,

δ(l) ,
∂J

∂z(l)
= (W (l)T δ(l+1))� (f ′l (z

(l))� ε(l)backward) ,

(9)
where ε(l)backward is drawn from the following distribution in
terms of the backward dropout ratio p(l)backward:{

P (ε
(l)
i = 0) = p

(l)
backward

P (ε
(l)
i = 1

1−p(l)
backward

) = 1− p(l)backward

, (10)

Compared with the standard dropout, we employ different
dropout ratio in the forward and backward pass. In this way,
the augmented dropout can extensively utilize the benefit
of the data augmentation from the forward pass and the
noisy gradient in the backward pass. At last, we summarize
our proposed augmented dropout in Algorithm 1. In our
implementation, the backward random variable is obtained
from the forward one as ε(l)backward = ε

(l)
forward� ε(l) where

ε(l) is another random variable drawn according to a small
dropout ratio p(l). In the following experiments, we will
call p(l)forward as the forward dropout ratio and p(l) as the
backward dropout ratio.
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Algorithm 1 Augmented Dropout
Forward Pass:
Get input features h(l) from the l layer
Draw forward random variables to corrupt features:

ĥ
(l)
forward = h(l) � ε(l)forward

Compute output features:

h(l+1) = fl(Wlĥ
(l)
forward + b(l))

Backward Pass:
Get the backpropagated error δ(l+1) from the l + 1 layer
Draw backward random variables to corrupt hidden fea-
tures:

ĥ
(l)
backward = h(l) � ε(l)backward

Compute the gradient:

∂J

∂W (l)
= δ(l+1)ĥ

(l)T
backward

Compute the backpropagated error:

δ(l) = (W (l)T δ(l+1))� (f ′l (z
(l))� ε(l)backward)

6. Experiments
In this section, we will conduct extensive experiments to
verify the performance of our proposed augmented dropout.

6.1. Datasets

Throughout our experiments, we employ four widely used
datasets: MNIST (LeCun et al., 1998), SVHN (Netzer
et al., 2011), CIFAR10 (Krizhevsky, 2009), and CIFAR100
(Krizhevsky, 2009). In particular, MNIST contains 70,000
handwritten digits images of size 28×28. 60,000 images are
used for the training set and the rest 10,000 images are used
for the testing set. SVHN is also a digits images dataset. Its
training set has 73,257 images and the testing set contains
26,032 images. CIFAR10 has 60,000 color images of size
32× 32 from 10 classes. The training set contains 50,000
images while the testing set includes the rest 10,000 images.
CIFAR100 also has 60,000 color images of size 32 × 32.
But the number of classes is 100. The size of the training
and testing set is same as CIFAR10.

6.2. Results

To verify the performance of the augmented dropout, we
evaluate it on different neural networks, including LeNet
(LeCun et al., 1998), ConvNet-Quick (Hinton et al., 2012),
ALL-Conv (Springenberg et al., 2014), and Network in
Network (NiN) (Lin et al., 2013). In addition, we use Caffe

Table 3. The test accuracy of LeNet for MNIST
Standard Augmented

Dropout Ratio Acc Acc Dropout Ratio
0.1 0.9916 0.9918 0.1/0.0001
0.2 0.9922 0.9923 0.2/0.0001
0.3 0.9918 0.9925 0.3/0.0001
0.4 0.9917 0.9920 0.4/0.0001
0.5 0.9922 0.9925 0.5/0.0001

(Jia et al., 2014) to implement these networks and all the
classification accuracy is the mean value of four runs.

LeNet: As for MNIST dataset, we employ the widely used
5-layer LeNet (LeCun et al., 1998). Here, dropout is per-
formed on the input of the last fully connected layer. We
adopt the implementation from the Caffe library1. In addi-
tion, we train it with the stochastic gradient descent method
with the momentum of 0.9 and batch size of 100. The weight
decay hyperparameter is set to 0.0005. The learning rate
starts from 0.01 and is divided by 10 at 6,000 iterations.
The optimization procedure is terminated at 12,000 itera-
tions. The classification result with different dropout ratio
is reported in Table 3, which is the mean value of four runs.
Here, we set the forward dropout ratio as the standard one
while the backward dropout ratio is fixed to 0.0001. It can
be seen that the augmented dropout outperforms the stan-
dard dropout consistently for all cases, which verifies the
effectiveness of our proposed method.

ConvNet-Quick2: This is the Caffe implementation of Con-
vNet (Hinton et al., 2012). Here, dropout is conducted on
the input of two fully connected layers. For this simple
network, we use two datasets: SVHN and CIFAR10. In this
experiment, we did not use the data augmentation technique.
The only preprocessing step is to subtract the mean value.
The training setting is exactly same as that in Section 4.
In Table 4, we report the classification result of ConvNet-
Quick running on SVHN and CIFAR10 respectively. Here,
different dropout ratios are used to extensively evaluate the
performance of our proposed method. Same with LeNet,
we set the forward dropout ratio as the standard one and
vary the backward dropout ratio to improve the performance
of the standard dropout. From this table, we can also find
that our proposed method outperforms the standard dropout
method consistently, which verifies the effectiveness of our
proposed method.

ResNet-20 (He et al., 2016): To further verify the perfor-
mance of the proposed method, we evaluate it on ResNet-20.

1 https://github.com/BVLC/caffe/blob/master/examples/mnist/
lenet train test.prototxt

2 https://github.com/BVLC/caffe/blob/master/examples/
cifar10/cifar10 quick train test.prototxt

https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_quick_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_quick_train_test.prototxt
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Table 4. The test accuracy of ConvNet-Quick

Datasets Standard Augmented
Dropout Ratio Acc Acc Dropout Ratio

SVHN
0.1 0.9240 0.9248 0.1/0.0002
0.2 0.9231 0.9258 0.2/0.0002
0.3 0.9249 0.9250 0.3/0.0002

CIFAR10
0.1 0.7657 0.7674 0.1/0.0002
0.2 0.7617 0.7655 0.2/0.0002
0.3 0.7523 0.7606 0.3/0.0002

Table 5. The test accuracy of ResNet-20

Datasets Standard Augmented
Dropout Ratio Acc Acc Dropout Ratio

SVHN
0.1 0.9618 0.9627 0.1/0.0002
0.2 0.9626 0.9648 0.2/0.0002
0.3 0.9655 0.9667 0.3/0.0002

CIFAR10
0.1 0.9193 0.9196 0.1/0.0001
0.2 0.9176 0.9195 0.2/0.0001
0.3 0.9163 0.9177 0.3/0.0001

CIFAR100
0.1 0.6762 0.6786 0.1/0.0001
0.2 0.6748 0.6770 0.2/0.0001
0.3 0.6686 0.6688 0.3/0.0001

Specifically, the dropout is performed between two convolu-
tional blocks as Conv-BN-ReLU-Dropout-Conv-BN-ReLU.
For this complicated network, we evaluate it with three
datasets: SVHN, CIFAR10, and CIFAR100. In this experi-
ment, we did not use the data augmentation technique for
SVHN. For the other two datasets, we employ the simple
data augmentation as Section 4. The training setting is also
exactly same as that in Section 4. The classification result
is reported in Table 5. It can be seen that the proposed
augmented dropout method has better performance than the
standard dropout method. Thus, we can conclude that the
augmentation from the backward pass does help to further
improve the performance of the standard dropout.

ALL-Conv (Springenberg et al., 2014) & NiN (Lin et al.,
2013): We compare the proposed augmented dropout
method with three baseline methods: Monte Carlo dropout
(Bulò et al., 2016), distillation dropout (Bulò et al., 2016),
and expectation-linear (EL) dropout (Ma et al., 2016). For
these two networks, we evaluate them on CIFAR10. Here,
the global contrast normalization and ZCA are employed
to preprocess the input image. In Table 6, we report the
test error of different methods for ALL-Conv and NiN. It
can be seen that the proposed augmented dropout shows
superior performance over these baseline methods, which
further verifies the effectiveness of our proposed method.

At last, to further demonstrate the performance of the pro-
posed method, we show the training and testing loss of the
standard dropout and our proposed augmented dropout. The
result of ConvNet-Quick is shown in Figure 3. Here, we re-
port the result of standard dropout with dropout ratio being

Table 6. The test error of different dropout methods. † denotes the
result is extracted from (Bulò et al., 2016). ‡ denotes the result is
extracted from (Ma et al., 2016).

Method ALL-Conv NiN
Monte Carlo 10.60† 11.04†
Distillation 10.80† 11.14†

EL 10.86‡ -
Augmented 10.04 10.28

0.2 and augmented result with forward dropout ratio being
0.2 and backward dropout ratio being 0.0002. It can be
seen that these two methods have almost the same training
loss. But the testing loss of our augmented dropout is a little
better than that of the standard one, which verifies the noisy
gradient in the backward pass of the augmented dropout
does help to converge to a better minimum. Thus, it is ben-
eficial to use a different dropout ratio in the forward and
backward pass to improve the generalization performance
of deep neural networks.

(a) Training Loss (b) Testing Loss

Figure 3. The loss function of standard dropout and augmented
dropout for ConvNet-Quick.

7. Conclusion
In this paper, to understand the mechanism of dropout, we
propose the novel forward and backward dropout methods
and show that dropout has a different effect on the forward
and backward pass. Meanwhile, the forward and backward
pass achieves their best performance at different dropout
ratios. Based on these observations, we propose the aug-
mented dropout which employs different dropout ratio for
the two passes to fully utilize their benefit. Extensive exper-
imental results confirmed the effectiveness of our method.
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