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A. Detailed graph classification comparison
All results come from the respective papers that introduced the methods, with the exception of: (1) social network results of
WL, from Tixier et al. (2017); (2) biochemistry and social results of DCNN, from Verma & Zhang (2018); (3) biochemistry,
except for D&D, and social result of GK, from Yanardag & Vishwanathan (2015); (4) D&D of GK is from Niepert et al.
(2016); and (5) for Graphlets, biochemistry results from Kriege et al. (2016), social results from Tixier et al. (2017).

B. Detailed tables for scattering feature space analysis from Section 4

Table 2. Classification accuracy with different training/validaion/test splits over scattering features (unnorm. moments)

Dataset SVM accuracy
80%/10%/10% 70%/10%/20% 40%/10%/50% 20%/10%/70%

NCI1 79.80± 2.24 78.13± 2.07 76.37± 0.27 73.60± 0.68
NCI109 77.66± 1.78 77.54± 1.44 74.41± 0.14 72.36± 0.74

D&D 76.57± 3.76 76.74± 2.32 76.32± 0.59 75.58± 0.81
PROTEINS 74.03± 4.20 74.30± 2.49 73.32± 1.68 73.01± 1.94

MUTAG 84.04± 6.71 82.99± 6.97 78.72± 3.19 77.47± 4.41
PTC 66.32± 7.54 64.83± 2.13 61.92± 1.45 56.75± 2.88

ENZYMES 53.83± 6.71 52.50± 5.35 44.50± 3.83 36.38± 1.93
COLLAB 76.88± 1.13 76.98± 0.97 76.42± 0.82 74.63± 1.05
IMDB-B 70.80± 3.54 70.60± 2.85 69.10± 1.90 67.81± 0.98
IMDB-M 48.93± 4.77 49.00± 1.97 47.20± 1.47 44.28± 1.87

REDDIT-B 88.30± 2.08 88.75± 0.96 86.40± 0.40 86.18± 0.32
REDDIT-5K 50.71± 2.27 50.87± 1.37 50.10± 0.41 48.37± 0.76

REDDIT-12K 41.35± 1.05 41.05± 0.70 39.36± 1.30 37.71± 0.42

Table 3. Classification accuracy and dimensionality reduction with PCA over scattering features (unnorm. moments)

Dataset SVM accuracy w.r.t variance covered PCA dimensions w.r.t variance covered
50% 80% 90% 99% 50% 80% 90% 99%

NCI1 72.41± 2.36 73.89± 2.57 73.89± 1.33 78.22± 1.95 18 32 43 117
NCI109 70.85± 2.59 71.84± 2.38 72.33± 2.24 76.69± 1.02 19 32 43 114

D&D 75.21± 3.17 75.13± 3.68 74.87± 3.99 76.92± 3.37 10 35 44 122
PROTEINS 70.80± 3.43 74.20± 3.06 74.67± 3.33 74.57± 3.42 2 5 10 36

MUTAG 77.51± 10.42 80.32± 8.16 82.40± 10.92 84.09± 9.09 4 8 13 34
PTC 58.17± 8.91 60.50± 9.96 58.70± 6.93 63.68± 3.97 7 14 21 62

ENZYMES 29.67± 4.46 45.33± 6.62 50.67± 5.44 52.50± 8.89 3 9 16 44
COLLAB 62.86± 1.36 71.68± 2.06 73.22± 2.29 76.54± 1.41 2 6 9 32
IMDB-B 58.30± 3.44 66.10± 3.14 68.80± 4.31 68.40± 4.31 2 4 8 24
IMDB-M 41.00± 4.86 46.40± 4.48 45.93± 3.86 48.27± 3.23 2 5 8 20

REDDIT-B 71.05± 2.39 78.95± 2.42 83.75± 1.83 86.95± 1.78 2 5 8 24
REDDIT-5K 40.97± 2.06 45.71± 2.21 47.43± 1.90 49.65± 1.86 2 6 10 27

REDDIT-12K 28.22± 1.64 33.36± 0.93 34.71± 1.52 38.39± 1.54 2 5 9 27
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Table 1. Comparison of the proposed graph scattering classifier (GSC) with graph kernel methods and deep learning methods on
biochemistry & social graph datasets. (Remark1: DCNN using different training/test split)

N
C

I1
N

C
I1

09
D

&
D

PR
O

T
E

IN
S

M
U

TA
G

PT
C

E
N

Z
Y

M
E

S
W

L
84
.4
6
±

0.
45

85
.1
2
±
0.
29

7
8
.3
4
±
0
.6
2

72
.9
2
±

0.
5
6

84
.1
1
±

1.
9
1

59
.9
7
±
1
.6
0

5
5
.2
2
±

1.
2
6

Graph kernel︷ ︸︸ ︷
PK

82
.5
4
±

0.
47

N
/A

7
8
.2
5
±
0
.5
1

73
.6
8
±

0.
6
8

76
.0
0
±

2.
6
9

59
.5
0
±
2
.4
4

N
/A

G
ra

ph
le

t
70

.5
±

0.
2

6
9
.3
±

0.
2

79
.7

±
0
.7

72
.7
±

0.
6

85
.2
±

0.
9

5
4
.7

±
2
.0

3
0.
6
±

1.
2

W
L

-O
A

86
.1
±

0.
2

8
6
.3
±

0.
2

79
.2

±
0
.4

76
.4
±

0.
4

84
.5
±

1.
7

6
3
.6

±
1
.5

5
9.
9
±

1.
1

G
K

62
.2
8
±

0.
29

62
.6
0
±
0.
19

7
8
.4
5
±
0
.2
6

71
.6
7
±

0.
5
5

81
.3
9
±

1.
7
4

57
.2
6
±
1
.4
1

2
6
.6
1
±

0.
9
9

D
G

K
80

.3
±

0.
4

8
0
.3
±

0.
3

7
3
.0
9
±
0
.2
5

75
.7
±

0.
50

87
.4
±

2.
7

6
0
.1

±
2
.5

5
3.
4
±

0.
9

D
G

C
N

N
74
.4
4
±

0.
47

N
/A

7
9
.3
7
±
0
.9
4

75
.5
4
±

0.
9
4

85
.8
3
±

1.
6
6

58
.5
9
±
2
.4
7

5
1
.0
0
±

7.
2
9

Deep learning︷ ︸︸ ︷

gr
ap

h2
ve

c
73
.2
2
±

1.
81

74
.2
6
±
1.
47

N
/A

73
.3
0
±

2.
0
5

83
.1
5
±

9.
2
5

60
.1
7
±
6
.8
6

N
/A

2D
C

N
N

N
/A

N
/A

N
/A

77
.1
2
±

2.
7
9

N
/A

N
/A

N
/A

C
C

N
76
.2
7
±

4.
13

75
.5
4
±
3.
36

N
/A

N
/A

91
.6
4
±

7.
2
4

70
.6
2
±
7
.0
4

N
/A

PS
C

N
(k

=
10

)
76
.3
4
±

1.
68

N
/A

7
6
.2
7
±
2
.1
5

75
.0
0
±

2.
5
1

88
.9
5
±

4.
3
7

62
.2
9
±
5
.6
8

N
/A

D
C

N
N

56
.6
1
±

1.
04

57
.4
7
±
1.
22

5
8
.0
9
±
0
.5
3

61
.2
9
±

1.
6
0

56
.6
0
±

2.
8
9

56
1

4
2
.4
4
±

1.
7
6

G
C

A
PS

-C
N

N
82
.7
2
±

2.
38

81
.1
2
±
1.
28

7
7
.6
2
±
4
.9
9

76
.4
0
±

4.
1
7

N
/A

66
.0
1
±
5
.9
1

6
1
.8
3
±

5.
3
9

S2
S-

P2
P-

N
N

83
.7
2
±
0
.4

83
.6
4
±

0.
3

N
/A

76
.6
1
±
0
.5

8
9
.8
6
±

1.
1

64
.5
4
±

1.
1

63
.9
6
±
0
.6

G
IN

-0
(M

L
P-

SU
M

)
82
.7
0
±

1.
60

N
/A

N
/A

76
.2
0
±

2.
8
0

89
.4
0
±

5.
6
0

64
.6
0
±
7
.0
0

N
/A

G
S-

SV
M

79
.1
4
±

1.
28

77
.9
5
±
1.
25

7
5
.0
4
±
3
.6
4

74
.1
1
±

4.
0
2

83
.5
7
±

6.
7
5

63
.9
4
±
7
.3
8

5
6
.8
3
±

4.
9
7

C
O

L
L

A
B

IM
D

B
-B

IM
D

B
-M

R
E

D
D

IT
-B

R
E

D
D

IT
-5

K
R

E
D

D
IT

-1
2K

W
L

7
7.
8
2
±

1.
4
5

71
.6
0
±
5
.1
6

N
/A

7
8.
5
2
±

2.
01

5
0
.7
7
±
2
.0
2

3
4.
5
7
±

1.
32

Graph kernel︷ ︸︸ ︷

PK
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
G

ra
ph

le
t

7
3.
4
2
±

2.
4
3

6
5.
4
±

5.
9
5

N
/A

7
7.
2
6
±

2.
34

3
9
.7
5
±
1
.3
6

2
5.
9
8
±

1.
29

W
L

-O
A

8
0
.7
±

0.
1

N
/A

N
/A

8
9
.3
±

0.
3

N
/A

N
/A

G
K

7
2.
8
4
±

0.
2
8

65
.8
7
±
0
.9
8

43
.8
9
±

0.
3
8

7
7.
3
4
±

0.
18

4
1
.0
1
±
0
.1
7

N
/A

D
G

K
7
3
.0
±

0.
2

66
.9

±
0
.5

4
4.
5
±

0.
5

7
8
.0
±

0.
3

4
1
.2

±
0
.1

3
2
.2
±

0.
1

D
G

C
N

N
7
3.
7
6
±

0.
4
9

70
.0
3
±
0
.8
6

47
.8
3
±

0.
8
5

N
/A

4
8
.7
0
±
4
.5
4

N
/A

Deep learning︷ ︸︸ ︷

gr
ap

h2
ve

c
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
2D

C
N

N
7
1.
3
3
±

1.
9
6

70
.4
0
±
3
.8
5

N
/A

89
.1
2
±

1.
7

5
2
.2
1
±
2
.4
4

4
8.
1
3
±

1.
47

C
C

N
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
PS

C
N

(k
=

1
0)

7
2.
6
0
±

2.
1
5

71
.0
0
±
2
.2
9

45
.2
3
±

2.
8
4

8
6.
3
0
±

1.
58

4
9.
1
0
±

0.
7

4
1.
3
2
±

0.
42

D
C

N
N

5
2.
1
1
±

0.
7
1

49
.0
6
±
1
.3
7

33
.4
9
±

1.
4
2

N
/A

N
/A

N
/A

G
C

A
PS

-C
N

N
7
7.
7
1
±

2.
5
1

71
.6
9
±
3
.4
0

4
8
.5
0
±
4
.1

8
7.
6
1
±

2.
51

5
0
.1
0
±
1
.7
2

N
/A

S2
S-

P2
P-

N
N

8
1
.7
5
±

0.
8

73
.8

±
0
.7

5
1
.1
9
±
0
.5

86
.5
0
±

0.
8

5
2.
2
8
±

0.
5

42
.4
7
±

0.
1

G
IN

-0
(M

L
P-

SU
M

)
8
0.
2
0
±

1.
9
0

75
.1
0
±
5
.1
0

52
.3
0
±

2.
8
0

9
2.
4
0
±

2.
50

5
7
.5
0
±
1
.5
0

N
/A

G
S-

SV
M

7
9.
9
4
±

1.
6
1

71
.2
0
±
3
.2
5

48
.7
3
±

2.
3
2

8
9.
6
5
±

1.
94

5
3
.3
3
±
1
.3
7

4
5.
2
3
±

1.
25

Table 4. Dimensionality reduction with PCA over scattering features (unnorm. moments)

Dataset SVM accuracy PCA dimensions (> 90% variance)
PCA Full All classes Per class

ENZYMES 50.67± 5.44 53.83± 6.71 16 9 8 8 9 10 6
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Table 5. EC subspace analysis in scattering feature space of ENZYMES (Borgwardt et al., 2005)

Enzyme
Class:

Mean distance to subspace of class True class as
EC-1 EC-2 EC-3 EC-4 EC-5 EC-6 1st 2nd 3rd-6th

measured via PCA projection/reconstruction distance nearest subspace
EC-1 18.15 98.44 75.47 62.87 53.07 84.86 45% 28% 27%
EC-2 22.65 9.43 30.14 22.66 18.45 22.75 53% 24% 23%
EC-3 107.23 252.31 30.4 144.08 117.24 168.56 32% 7% 61%
EC-4 117.68 127.27 122.3 29.59 94.3 49.14 24% 12% 64%
EC-5 45.46 66.57 60 50.07 15.09 58.22 67% 21% 12%
EC-6 62.38 58.88 73.96 51.94 59.23 13.56 67% 21% 12%

C. Detailed Dataset Descriptions
The details of the datasets used in this work are as follows:

NCI1 (Wale et al., 2008) contains 4,110 chemical compounds as graphs, with 37 node features. Each compound is labeled
according to is activity against non-small cell lung cancer and ovarian cancer cell lines, and these labels serve as
classification goal on this data.

NCI109 (Wale et al., 2008) is similar to NCI1, but with 4,127 chemical compounds and 38 node features.

MUTAG (Debnath et al., 1991) consists of 188 mutagenic aromatic and heteroaromatic nitro compounds (as graphs) with 7
node features. The classification here is binary (i.e., two classes), based on whether or not a compound has a mutagenic
effect on bacterium.

PTC (Toivonen et al., 2003) is a dataset of 344 chemical compounds (as graphs) with nineteen node features that are
divided into two classes depending on whether they are carcinogenic in rats.

PROTEINS (Borgwardt et al., 2005) dataset contains 1,113 proteins (as graphs) with three node features, where the goal of
the classification is to predict whether the protein is enzyme or not.

D&D (Dobson & Doig, 2003) dataset contains 1,178 protein structures (as graphs) that, similar to the previous one, are
classified as enzymes or non-enzymes.

ENZYMES (Borgwardt et al., 2005) is a dataset of 600 protein structures (as graphs) with three node features. These
proteins are divided into six classes of enzymes (labelled by enzyme commission numbers) for classification.

COLLAB (Yanardag & Vishwanathan, 2015) is a scientific collaboration dataset contains 5K graphs. The classification
goal here is to predict whether the graph belongs to a subfield of Physics.

IMDB-B (Yanardag & Vishwanathan, 2015) is a movie collaboration dataset with contains 1K graphs. The graphs are
generated on two genres: Action and Romance, the classification goal is to predict the correct genre for each graph.

IMDB-M (Yanardag & Vishwanathan, 2015) is similar to IMDB-B, but with 1.5K graphs & 3 genres: Comedy, Romance,
and Sci-Fi.

REDDIT-B (Yanardag & Vishwanathan, 2015) is a dataset with 2K graphs, where each graph corresponds to an online
discussion thread. The classification goal is to predict whether the graph belongs to a Q&A-based community or
discussion-based community.

REDDIT-5K (Yanardag & Vishwanathan, 2015) consists of 5K threads (as graphs) from five different subreddits. The
classification goal is to predict the corresponding subreddit for each thread.

REDDIT-12K (Yanardag & Vishwanathan, 2015) is similar to REDDIT-5k, but with 11,929 graphs from 12 different
subreddits.

Table 6 summarizes the size of available graph data (i.e., number of graphs, and both max & mean number of vertices within
graphs) in these datasets, as previously reported in the literature.
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Table 6. Basic statistics of the graph classification databases
NCI1 NCI109 MUTAG D&D PTC PROTEINS

# of graphs in data: 4110 4127 188 1178 344 1113
Max # of vertices: 111 111 28 5748 109 620
Mean # of vertices: 29.8 29.6 17.93 284.32 25.56 39.0
# of features per vertex: 37 38 7 89 22 3
Mean # of edges: 64.6 62.2 39.50 1431.3 51.90 72.82
# of classes: 2 2 2 2 2 2

ENZYMES COLLAB IMDB REDDIT
B M B 5K 12K

600 5000 1000 1500 2000 5000 11929
126 492 136 89 3783 3783 3782
32.6 74.49 19.77 13 429.61 508.5 391.4

3 3 3 3 2 2 2
124.2 2457.78 96.53 65.94 497.75 594.87 456.89

6 3 2 3 2 5 11

Graph signals for social network data: None of the social network datasets has ready-to-use node features. Therefore,
in the case of COLLAB, IMDB-B, and IMDB-M, we use the eccentricity and clustering coefficients for each vertex as
characteristic graph signals. In the case of REDDIT-B, REDDIT-5K and REDDIT-12K, on the other hand, we only use the
clustering coefficient, due to the presence of disconnected graphs in these datasets.

D. Technical Details
The computation of the scattering features is based on several design choices, akin to typical architecture choices in neural
networks. Most importantly, it requires a choice of 1. which statistical moments to use (normalized or unnormalized), 2. the
number of wavelet scales to use (given by J), and 3. the number of moments to use (denoted by Q). In general, J can be
automatically tuned by the diameter of the considered graphs (e.g., setting it to the logarithm of the diameter), and the other
choices can be tuned via cross-validation. However, we have found the impact of such tuning to be minor, and thus for
simplicity, we fix our configuration to use normalized moments, J = 5, and Q = 4 throughout this work.

Cross validation procedure: Classification evaluation was done with standard ten-fold cross validation procedure. First,
the entire dataset is randomly split into ten subsets. Then, in each iteration (or “fold”), nine of them are used as training and
validation, and the other one is used for testing classification accuracy. In total, after ten iterations, each of the subsets has
been used once for testing, resulting in ten reported classification accuracy numbers for the examined dataset. Finally, the
mean and standard deviation of these ten accuracies are computed and reported.

It should be noted that during training, each iteration also performs automatic tuning of the trained classifier, as follows.
First, nine iterations are performed, each time using eight subsets (i.e., folds) as training and the remaining one as validation
set, which is used to determine the optimal parameters for SVM. After nine iterations, each of the training/validation subsets
has been used once for validation, and we obtain nine classification models, which in turn produce nine predictions (i.e.,
class assignments) for each data point in the test subset of the main cross validation. To obtain the final predicted class of
this cross validation iteration, we select the class with the most votes (from among the nine models) as our final classification
result. These results are then compared to the true labels (in the test set) on the test subset to obtain classification accuracy
for this fold.

Software & hardware environment: Geometric scattering and related classification code were implemented in Python.
All experiments were performed on HPC environment using an intel16-k80 cluster, with a job requesting one node with four
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processors and two Nvidia Tesla k80 GPUs.

E. Ablation Study
To fully understand the power of our geometric scattering coefficients, we conduct an ablation study using five social
network datasets, namely COLLAB, IMDB-B, IMDB-M, REDDIT-B, REDDIT-5K, as representative examples. Following
the settings in the main paper, here instead of using four normalized moments for each order of scattering moments, we only
use one normalized moment (mean) and two normalized moments (mean and variance) and compare the graph classification
results in Table 7. We show that using only one normalized moment our method can still get relatively good results, and
using higher order moments helps us to match or outperform most state-of-the-art results. Generally, the results degrade by
1-6% on the social network data sets reducing from using four normalized moments to two or one normalized moment.

Table 7. Ablation study on five social network datasets using only one normalized moments and two normalized moments.
COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K

One normalized moment 77.42 69.80 48.47 83.25 50.31
Two normalized moments 78.44 69.3 48.27 85.20 51.49

Finally, we perform graph classification with two different classifiers: linear SVM and fully connected layers (FCLs)1 to
further demonstrate the usefulness of geometric scattering coefficients and show that our scattering coefficients perform well
regardless of the choice of classifiers. Our results in Table 8 show that compared to RBF SVM, FCLs and linear SVM are
worse (1-3%) but not by too much.

Table 8. Graph classfication with FCLs and linear SVM classifiers
COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K

linear SVM 77.40 70.50 47.13 86.45 53.23
FCLs 79.26 69.50 46.40 86.60 50.50
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