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Abstract

We explore the generalization of scattering trans-
forms from traditional (e.g., image or audio) sig-
nals to graph data, analogous to the generalization
of ConvNets in geometric deep learning, and the
utility of extracted graph features in graph data
analysis. In particular, we focus on the capacity
of these features to retain informative variability
and relations in the data (e.g., between individ-
ual graphs, or in aggregate), while relating our
construction to previous theoretical results that
establish the stability of similar transforms to fam-
ilies of graph deformations. We demonstrate the
application of our geometric scattering features in
graph classification of social network data, and in
data exploration of biochemistry data.

1. Introduction
Over the past decade, numerous examples have established
that deep neural networks (i.e., cascades of linear operations
and simple nonlinearities) typically outperform traditional
“shallow” models in various modern machine learning appli-
cations, especially given the increasing Big Data availability
nowadays. Perhaps the most well known example of the ad-
vantages of deep networks is in computer vision, where the
utilization of 2D convolutions enable network designs that
learn cascades of convolutional filters, which have several
advantages over fully connected network architectures, both
computationally and conceptually. Indeed, in terms of super-
vised learning, convolutional neural networks (ConvNets)
hold the current state of the art in image classification, and
have become the standard machine learning approach to-
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wards processing big structured-signal data, including audio
and video processing. See, e.g., Goodfellow et al. (2016,
Chapter 9) for a detailed discussion.

Beyond their performances when applied to specific tasks,
pretrained ConvNet layers have been explored as image
feature extractors by freezing the first few pretrained convo-
lutional layers and then retraining only the last few layers for
specific datasets or applications (e.g., Yosinski et al., 2014;
Oquab et al., 2014). Such transfer learning approaches pro-
vide evidence that suitably constructed deep filter banks
should be able to extract task-agnostic semantic information
from structured data, and in some sense mimic the opera-
tion of human visual and auditory cortices, thus supporting
the neural terminology in deep learning. An alternative
approach towards such universal feature extraction was pre-
sented in Mallat (2012), where a deep filter bank, known
as the scattering transform, is designed, rather than trained,
based on predetermined families of distruptive patterns that
should be eliminated to extract informative representations.
The scattering transform is constructed as a cascade of linear
wavelet transforms and nonlinear complex modulus opera-
tions that provides features with guaranteed invariance to
a predetermined Lie group of operations such as rotations,
translations, or scaling. Further, it also provides Lipschitz
stability to small diffeomorphisms of the inputted signal.

Following recent interest in geometric deep learning ap-
proaches for processing graph-structured data (see, for ex-
ample, Bronstein et al. (2017) and references therein), sev-
eral attempts have been made to generalize the scattering
transform to graphs (Zou & Lerman, 2018; Gama et al.,
2019) and manifolds (Perlmutter et al., 2018), which we
will generally term “geometric scattering.” These works
mostly focus on following the footsteps of Mallat (2012) in
establishing the stability of their respective constructions to
deformations of input signals or graphs. Their results essen-
tially characterize the type of disruptive information elimi-
nated by geometric scattering, by providing upper bounds
for distances between scattering features, phrased in terms
of a deformation size. Here, we further explore the notion
of geometric scattering features by considering the compli-
mentary question of how much information is retained by
them, since stability alone does not ensure useful features
in practice (e.g., a constant all-zero map would be stable
to any deformation, but would clearly be useless). In other
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words, we examine whether a geometric scattering construc-
tion, defined and discussed in Sec. 3, can be used as an
effective task-independent feature extractor from graphs,
and whether the resulting representations provided by them
are sufficiently rich to enable intelligible data analysis by
applying traditional (Euclidean) methods.

We note that for Euclidean scattering, while stability is
established with rigorous theoretical results, the capacity of
scattering features to form an effective data representation in
practice has mostly been established via extensive empirical
examination. Indeed, scattering features have been shown
effective in several audio (e.g., Bruna & Mallat, 2013a;
Andén & Mallat, 2014; Lostanlen & Mallat, 2015; Andén
et al., 2018) and image (e.g., Bruna & Mallat, 2013b; Sifre
& Mallat, 2014; Oyallon & Mallat, 2015; Angles & Mallat,
2018) processing applications, and their advantages over
learned features are especially relevant in applications with
relatively low data availability, such as quantum chemistry
and materials science (e.g., Hirn et al., 2017; Eickenberg
et al., 2017; 2018; Brumwell et al., 2018).

Similarly, our examination of geometric scattering capacity
focuses on empirical results on several data analysis tasks,
and on two commonly used graph data types. Our results in
Sec. 4.1 show that on social network data, geometric scat-
tering features enable classic RBF-kernel SVM to match,
if not outperform, leading graph kernel methods as well
as most geometric deep learning ones. These experiments
are augmented by additional results in Sec. 4.2 that show
the geometric scattering SVM classification rate degrades
only slightly when trained on far fewer graphs than is tradi-
tionally used in graph classification tasks. On biochemistry
data, where graphs represent molecular structures of com-
pounds (e.g., Enzymes or proteins), we show in Sec. 4.3
that scattering features enable significant dimensionality
reduction. Finally, to establish their descriptive qualities,
in Sec. 4.4 we use geometric scattering features extracted
from enzyme data (Borgwardt et al., 2005) to infer emergent
patterns of enzyme commission (EC) exchange preferences
in enzyme evolution, validated with established knowledge
from Cuesta et al. (2015). Taken together, these results illus-
trate the power of the geometric scattering approach as both
a relevant mathematical model for geometric deep learning,
and as a suitable tool for modern graph data analysis.

2. Graph Random Walks and Graph Wavelets
The Euclidean scattering transform is constructed using
wavelets defined on Rd. In order to extend this construction
to graphs, we define graph wavelets as the difference be-
tween lazy random walks that have propagated at different
time scales, which mimics classical wavelet constructions
found in Meyer (1993) and more recent constructions found
in Coifman & Maggioni (2006). The underpinnings for this

construction arise out of graph signal processing, and in
particular the properties of the graph Laplacian.

Let G = (V,E,W ) be a weighted graph, consisting of
n vertices V = {v1, . . . , vn}, edges E ⊆ {(v`, vm) : 1 ≤
`,m ≤ n}, and weightsW = {w(v`, vm) > 0 : (v`, vm) ∈
E}. Note that unweighted graphs are considered as a spe-
cial case, by setting w(v`, vm) = 1 for each (v`, vm) ∈ E.
Define the n × n (weighted) adjacency matrix AG = A
of G by A(v`, vm) = w(v`, vm) if (v`, vm) ∈ E and
zero otherwise, where we use the notation A(v`, vm) to
denote the (`,m) entry of the matrix A so as to empha-
size the correspondence with the vertices in the graph and
to reserve sub-indices for enumerating objects. Define the
(weighted) degree of vertex v` as deg(v`) =

∑
m A(v`, vm)

and the corresponding diagonal n × n degree matrix D
given by D(v`, v`) = deg(v`), D(v`, vm) = 0, ` 6= m.
Finally, the n × n graph Laplacian matrix LG = L on G
is defined as L = D − A, and its normalized version is
N = D−1/2LD−1/2 = I−D−1/2AD−1/2. We focus on the
latter due to its close relationship with graph random walks.

The normalized graph Laplacian is a symmetric, real valued
positive semi-definite matrix, and thus has n non-negative
eigenvalues. Furthermore, if we set 0 = (0, . . . , 0)T to be
the n × 1 vector of all zeroes, and d(v`) = deg(v`) to be
the n× 1 degree vector, then one has Nd1/2 = 0 (where the
square root is understood to be taken entrywise). Therefore
0 is an eigenvalue of N and we write the n eigenvalues of
N as 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 with corresponding
n × 1 orthonormal eigenvectors ϕ0,ϕ1, . . . ,ϕn−1. If the
graph G is connected, then λ1 > 0. In order to simplify
the following discussion we assume that this is the case,
although the discussion below can be amended to include
disconnected graphs as well.

One can show ϕ0 = d1/2/‖d1/2‖, meaning ϕ0 is non-
negative. Since every other eigenvector is orthogonal to
ϕ0 (and thus must take positive and negative values), it is
natural to view the eigenvectors ϕk as the Fourier modes of
the graph G, with a frequency magnitude proportional to λk.
The fact that ϕ0 is in general non-constant, as opposed to
the zero frequency mode on the torus or real line, reflects the
non-uniform distribution of vertices in non-regular graphs.
Let x : V → R be a signal defined on the vertices of the
graph G, which we will consider as an n × 1 vector with
entries x(v`). It follows that the Fourier transform of x
can be defined as x̂(k) = x · ϕk, where x · y is the stan-
dard dot product. This analogy is one of the foundations
of graph signal processing and indeed we could use this
correspondence to define wavelet operators on the graph G,
as in Hammond et al. (2011). Rather than follow this path,
though, we instead take a related path similar to Coifman
& Maggioni (2006) and Gama et al. (2019) by defining the
graph wavelet operators in terms of random walks defined
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on G, which will avoid diagonalizing N and will allow us
to control the “spatial” graph support of the filters directly.

Define the n × n lazy random walk matrix as P =
1
2

(
I + AD−1

)
. Note that the column sums of P are all

one. It follows that P acts as a Markov operator, mapping
probability distributions to probability distribution. We refer
to P as a lazy random walk matrix since Pt governs the
probability distribution of a lazy random walk after t steps.
A single realization of a random walk is a walk (in the graph
theoretic sense) v`0 , v`1 , v`2 , . . . in which the steps are cho-
sen randomly; lazy random walks allow for v`i = v`i+1 .
More precisely, suppose that µ0(v`) ≥ 0 for each vertex
v` and ‖µ0‖1 = 1, so that µ0 is a probability distribution
on G. We take µ0(v`) as the probability of a random walk
starting at vertex v`0 = v`. One can verify that µ1 = Pµ0

is also a probability distribution; each entry µ1(v`) gives
the probability of the random walk being located at v`1 = v`
after one step. The probability distribution for the location
of the random walk after t steps is µt = Ptµ0.

The operator P can be considered a low pass operator, mean-
ing that Px replaces x(v`) with localized averages of x(v`)
for any x. Indeed, expanding out Px(v`) one observes
that Px(v`) is the weighted average of x(v`) and the val-
ues x(vm) for the neighbors vm of v`. Similarly, the value
Ptx(v`) is the weighted average of x(v`) with all values
x(vm) such that vm is within t steps of v`.

Low pass operators defined on Euclidean space retain the
low frequencies of a function while suppressing the high
frequencies. The random walk matrix P behaves simi-
larly. Indeed, P is diagonalizable with n eigenvectors
φk = D1/2ϕk and eigenvalues ωk = 1 − λk/2. Let
yx = D−1/2x be a density normalized version of x and
set xt = Ptx; then one can show

yxt
= ŷx(0)ϕ0 +

n−1∑
k=1

ωtkŷx(k)ϕk . (1)

Thus, since 0 ≤ ωk < 1 for k ≥ 1, the operator Pt pre-
serves the zero frequency of x while suppressing the high
frequencies, up to a density normalization.

High frequency responses of x can be recovered in mul-
tiple different fashions, but we utilize multiscale wavelet
transforms that group the non-zero frequencies of G into
approximately dyadic bands. As shown in Mallat (2012,
Lemma 2.12), wavelet transforms are provably stable op-
erators in the Euclidean domain, and the proof of Zou &
Lerman (2018, Theorem 5.1) indicates that similar results
on graphs may be possible. Furthermore, the multiscale
nature of wavelet transforms will allow the resulting geo-
metric scattering transform (Sec. 3) to traverse the entire
graph G in one layer, which is valuable for obtaining global
descriptions of G. Following Coifman & Maggioni (2006),

j

(a) Sample graph of the bunny
manifold

j

(b) Minnesota road network
graph

Figure 1. Wavelets Ψj for increasing scale 2j left to right, applied
to Diracs centered at two different locations (marked by red circles)
in two different graphs. Vertex colors indicate wavelet values (cor-
responding to colorbars for each plot), ranging from yellow/green
indicating positive values to blue indicating negative values. Both
graphs are freely available from PyGSP (2018).

define the n× n wavelet matrix at the scale 2j as

Ψj = P2j−1

−P2j = P2j−1

(I−P2j−1

) . (2)

A similar calculation as the one required for (1) shows that
Ψjx partially recovers ŷx(k) for k ≥ 1. The value Ψjx(v`)
aggregates the signal information x(vm) from the vertices
vm that are within 2j steps of v`, but does not average the
information like the operator P2j . Instead, it responds to
sharp transitions or oscillations of the signal x within the
neighborhood of v` with radius 2j (in terms of the graph
path distance). The smaller the wavelet scale 2j , the higher
the frequencies Ψjx recovers in x. The wavelet coefficients
up to the scale 2J are:

Ψ(J)x(v`) = [Ψjx(v`) : 1 ≤ j ≤ J ] . (3)

Figure 1 plots the wavelets on two different graphs.

3. Geometric Scattering on Graphs
A geometric wavelet scattering transform follows a similar
construction as the (Euclidean) wavelet scattering transform
of Mallat (2012), but leverages a graph wavelet transform.
In this paper we utilize the wavelet transform defined in
(3) of the previous section, but remark that in principle any
graph wavelet transform could be used (see, e.g., Zou &
Lerman, 2018). In Sec. 3.1 we define the graph scattering
transform, in Sec. 3.2 we discuss its relation to other recently
proposed graph scattering constructions (Gama et al., 2019;
Zou & Lerman, 2018), and in Sec. 3.3 we describe several
of its desirable properties as compared to other geometric
deep learning algorithms on graphs.

3.1. Geometric scattering definitions

Machine learning algorithms that compare and classify
graphs must be invariant to graph isomorphism, i.e., re-
indexations of the vertices and corresponding edges. A
common way to obtain invariant graph features is via sum-
mation operators, which act on a signal x = xG that can
be defined on any graph G, e.g., x(v`) = deg(v`). The
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geometric scattering transform, which is described in the
remainder of this section, follows such an approach.

The simplest summation operator computes the sum of the
responses of the signal x. As described in Verma & Zhang
(2018), this invariant can be complemented by higher order
summary statistics of x, the collection of which are statis-
tical moments, and which are also referred to as “capsules”
in that work. For example, the unnormalized qth moments
of x yield the following “zero” order scattering moments:

Sx(q) =

n∑
`=1

x(v`)
q, 1 ≤ q ≤ Q (4)

We can also replace (4) with normalized (i.e., standardized)
moments of x, in which case we store its mean (q = 1),
variance (q = 2), skew (q = 3), kurtosis (q = 4), and so on.
In what follows we discuss the unnormalized moments since
their presentation is simpler. The invariants Sx(q) do not
capture the full variability of x and hence the graph G upon
which the signal x is defined. We thus complement these
moments with summary statistics derived from the wavelet
coefficients of x, which will lead naturally to the graph
ConvNet structure of the geometric scattering transform.

Observe, analogously to the Euclidean setting, that in com-
puting Sx(1), which is the summation of x(v`) over V , we
have captured the zero frequency of yx = D−1/2x since∑n
`=1 x(v`) = x · 1 = yx · d1/2 = ‖d1/2‖ŷx(0). Higher

order moments of x can incorporate the full range of fre-
quencies in x, e.g. Sx(2) =

∑n
`=1 x(v`)

2 =
∑n
k=1 x̂(k)2,

but they are mixed into one invariant coefficient. We can
separate and recapture the high frequencies of x by com-
puting its wavelet coefficients Ψ(J)x, which were defined
in (3). However, Ψ(J)x is not invariant to permutations of
the vertex indices; in fact, it is equivariant. Before summing
the individual wavelet coefficient vectors Ψjx, though, we
must first apply a pointwise nonlinearity. Indeed, define
1 = (1, . . . , 1)T to be the n × 1 vector of all ones, and
note that PT1 = 1, meaning that 1 is a left eigenvector of
P with eigenvalue 1. It follows that ΨT

j 1 = 0 and thus∑n
`=1 Ψjx(v`) = Ψjx · 1 = 1TΨjx = 0.

We thus apply the absolute value nonlinearity, to obtain
nonlinear equivariant coefficients |Ψ(J)x| = {|Ψjx| : 1 ≤
j ≤ J}. We use absolute value because it is equivariant to
vertex permutations, non-expansive, and when combined
with traditional wavelet transforms on Euclidean domains,
yields a provably stable scattering transform for q = 1.
Furthermore, initial theoretical results in Zou & Lerman
(2018) and Gama et al. (2019) indicate that similar graph
based scattering transforms possess certain types of stability
properties as well. As in (4), we extract invariant coefficients
from |Ψjx| by computing its moments, which define the

first order geometric scattering moments:

Sx(j, q) =

n∑
`=1

|Ψjx(v`)|q, 1 ≤ j ≤ J, 1 ≤ q ≤ Q (5)

These first order scattering moments aggregate complimen-
tary multiscale geometric descriptions of G into a collection
of invariant multiscale statistics. These invariants give a
finer partition of the frequency responses of x. For exam-
ple, whereas Sx(2) mixed all frequencies of x, we see that
Sx(j, 2) only mixes the frequencies of x captured by Ψj .

First order geometric scattering moments can be augmented
with second order geometric scattering moments by iterating
the graph wavelet and absolute value transforms. These
moments are defined as:

Sx(j, j′, q) =

n∑
`=1

|Ψj′ |Ψjx(v`)||q,
1 ≤ j < j′ ≤ J
1 ≤ q ≤ Q ,

(6)
which consists of reapplying the wavelet transform operator
Ψ(J) to each |Ψjx| and computing the summary statistics
of the magnitudes of the resulting coefficients. The inter-
mediate equivariant coefficients |Ψj′ |Ψjx|| and resulting
invariant statistics Sx(j, j′, q) couple two scales 2j and 2j

′

within the graph G, creating features that bind patterns of
smaller subgraphs within G with patterns of larger sub-
graphs (e.g., circles of friends of individual people with
larger community structures in social network graphs). The
transform can be iterated additional times, leading to third
order features and beyond, and thus has the general structure
of a graph ConvNet.

The collection of graph scattering moments Sx =
{Sx(q), Sx(j, q), Sx(j, j′, q)} (illustrated in Fig. 2(a))
provides a rich set of multiscale invariants of the graph G.
These can be used in supervised settings as input to graph
classification or regression models, or in unsupervised set-
tings to embed graphs into a Euclidean feature space for
further exploration, as demonstrated in Sec. 4.

3.2. Stability and capacity of geometric scattering

In order to assess the utility of scattering features for repre-
senting graphs, two properties have to be considered: stabil-
ity and capacity. First, the stability property aims to provide
an upper bound on distances between similar graphs that
only differ by types of deformations that can be treated as
noise. This property has been the focus of both Zou & Ler-
man (2018) and Gama et al. (2019), and in particular the
latter shows that a diffusion scattering transform yields fea-
tures that are stable to graph structure deformations whose
size can be computed via the diffusion framework (Coifman
& Maggioni, 2006) that forms the basis for their construc-
tion. While there are some technical differences between
the geometric scattering here and the diffusion scattering



Geometric Scattering for Graph Data Analysis

x

‖ . . . ‖qq

P2j−1
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︸ ︷︷ ︸
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︸ ︷︷ ︸
Ψj′

︸ ︷︷ ︸
1≤q≤Q

(a) Representative zeroth-, first-, and second-order cascades of the
geometric scattering transform for an input graph signal x.

G = (V,E,W )
x : V → R

Adjacency matrix
:

A
(vi

, vj
)

Signal vector:
x(vi )

Diffusion wavelets:

Ψj = P2j−1
− P2j

P = 1
2
(I + AD−1)

Ψj

Scattering
(a)

x 7→ Sx

Traditional
Euclidean
algorithms

(e.g., SVM/PCA)

(b) Architecture for using geometric scattering of graph G and
signal x in graph data analysis, as demonstrated in Sec. 4.

Figure 2. Illustration of (a) the proposed scattering feature extraction (see eqs. 4, 5, and 6), and (b) its application for graph data analysis.

in Gama et al. (2019), these constructions are sufficiently
similar that we can expect both of them to have analogous
stability properties. Therefore, we mainly focus here on the
complementary property of the scattering transform capac-
ity to provide a rich feature space for representing graph
data without eliminating informative variance in them.

We note that even in the classical Euclidean case, while
the stability of scattering transforms to deformations can
be established analytically (Mallat, 2012), their capacity is
typically examined by empirical evidence when applied to
machine learning tasks (e.g., Bruna & Mallat, 2011; Sifre
& Mallat, 2012; Andén & Mallat, 2014). Similarly, in the
graph processing settings, we examine the capacity of our
proposed geometric scattering features via their discrimina-
tive power in graph data analysis tasks, which are described
in detail in Sec. 4. We show that geometric scattering en-
ables graph embedding in a relatively low dimensional Eu-
clidean space, while preserving insightful properties in the
data. Beyond establishing the capacity of our specific con-
struction, these results also indicate the viability of graph
scattering transforms as universal feature extractors on graph
data, and complement the stability results established in Zou
& Lerman (2018) and Gama et al. (2019).

3.3. Geometric scattering compared to other feed
forward graph ConvNets

We give a brief comparison of geometric scattering with
other graph ConvNets, with particular interest in isolating
the key principles for building accurate graph ConvNet clas-
sifiers. Like several other successful graph neural networks,
the graph scattering transform is equivariant to vertex per-
mutations (i.e., commutes with them) until the final features
are extracted. This idea has been discussed in depth in var-
ious articles, including Kondor et al. (2018), so we limit
the discussion to observing that the geometric scattering
transform thus propagates nearly all of the information in
x through the multiple wavelet and absolute value layers,
since only the absolute value operation removes information
on x. As in Verma & Zhang (2018), we aggregate covariant
responses via multiple summary statistics (i.e., moments),
which are referred to there as a capsule. In the scattering
context, at least, this idea is in fact not new and has been

previously used in the Euclidean setting for the regression
of quantum mechanical energies in Eickenberg et al. (2018;
2017) and texture synthesis in Bruna & Mallat (2018). How-
ever, unlike many deep learning classifiers (graph included),
a graph scattering transform extracts invariant statistics at
each layer/order. These intermediate layer statistics, while
necessarily losing some information in x (and hence G),
provide important coarse geometric invariants that eliminate
needless complexity in subsequent classification or regres-
sion. Furthermore, such layer by layer statistics have proven
useful in characterizing signals of other types (e.g., texture
synthesis in Gatys et al., 2015).

A graph wavelet transform Ψ(J)x decomposes the geom-
etry of G through the lens of x, along different scales.
Graph ConvNet algorithms also obtain multiscale repre-
sentations of G, but several works, including Atwood &
Towsley (2016) and Zhang et al. (2018), propagate infor-
mation via a random walk. While random walk operators
like Pt act at different scales on the graph G, per the anal-
ysis in Sec. 2 we see that Pt for any t will be dominated
by the low frequency responses of x. While subsequent
nonlinearities may be able to recover this high frequency
information, the resulting transform will most likely be un-
stable due to the suppression and then attempted recovery of
the high frequency content of x. Alternatively, features de-
rived from Ptx may lose the high frequency responses of x,
which are useful in distinguishing similar graphs. The graph
wavelet coefficients Ψ(J)x, on the other hand, respond most
strongly within bands of nearly non-overlapping frequen-
cies, each with a center frequency kj that depends on Ψj .

Finally, graph labels are often complex functions of both
local and global subgraph structure within G. While graph
ConvNets are adept at learning local structure within G, as
detailed in Verma & Zhang (2018) they require many layers
to obtain features that aggregate macroscopic patterns in the
graph. This is due to the use of fixed size filters, which often
only incorporate information from the neighbors of a vertex.
The training of such networks is difficult due to the limited
size of many graph classification databases (see the sup-
plementary information). Geometric scattering transforms
have two advantages in this regard: (a) the wavelet filters
are designed; and (b) they are multiscale, thus incorporating
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macroscopic graph patterns in every layer/order.

4. Application & Results
To establish the geometric scattering features as an effective
graph representation for data analysis, we examine their
performance here in four graph data analysis applications.
Namely, in Sec. 4.1 we consider graph classification on
social networks (from Yanardag & Vishwanathan, 2015),
in Sec. 4.2 we consider the impact of low training data
availability on classification, in Sec. 4.3 we examine di-
mensionality reduction aspects of geometric scattering, and
finally, in Sec. 4.4 we consider data exploration of enzyme
graphs, where geometric scattering enables unsupervised
(descriptive) recovery of EC change preferences in enzyme
evolution. A common theme in all these applications is the
application of geometric scattering as an unsupervised task-
independent feature extraction that embeds input graphs
of varying sizes (with associated graph signals) into a Eu-
clidean space formed by scattering features. Then, the ex-
tracted feature vectors are passed to traditional (Euclidean)
machine learning algorithms, such as SVM for classifica-
tion or PCA for dimensionality reduction, to perform down-
stream analysis. Our results show that our scattering features
provide simplified representation (e.g., in dimensionality
and extrapolation ability) of input graphs, which we conjec-
ture is a result of their stability properties, while also being
sufficiently rich to capture meaningful relations between
graphs for predictive and descriptive purposes.

4.1. Graph classification on social networks

As a first application of geometric scattering, we apply it
to graph classification of social network data taken from
Yanardag & Vishwanathan (2015). In particular, this work
introduced six social network data sets extracted from sci-
entific collaborations (COLLAB), movie collaborations
(IMDB-B & IMDB-M), and Reddit discussion threads
(REDDIT-B, REDDIT-5K, REDDIT-12K). There are also
biochemistry data sets often used in the graph classification
literature; for completeness, we include in the supplemental
materials further results on these data sets. A brief descrip-
tion of each data set can also be found in the supplement.

The social network data provided by Yanardag & Vish-
wanathan (2015) contains graph structures but no associated
graph signals. Therefore we compute the eccentricity (for
connected graphs) and clustering coefficient of each vertex,
and use these as input signals to the geometric scattering
transform. In principle, any general node characteristic
could be used, although we remark that x = d, the ver-
tex degree vector, is not useful in our construction since
Ψjd = 0. After computing the scattering moments1 of

1We use the normalized scattering moments for classification,

these two input signals, they are concatenated to form a
single vector. This scattering feature vector is a consistent
Euclidean representation of the graph, which is indepen-
dent of the original graph sizes (i.e., number of vertices or
edges), and thus we can apply any traditional classifier to
it. In particular, we use here the standard SVM classifier
with an RBF kernel, which is popular and effective in many
applications and also performs well in this case.

We evaluate the classification results of our SVM-based ge-
ometric scattering classification (GS-SVM) using ten-fold
cross validation (explained in the supplement), which is
standard practice in other graph classification works. We
compare our results to 10 prominent methods that report
results for most, if not all, of the considered datasets. Out
of these, four are graph kernel methods: Weisfeiler-Lehman
graph kernels (WL, Shervashidze et al., 2011), Graphlet ker-
nels (Shervashidze et al., 2009), deep graph kernels (DGK,
Yanardag & Vishwanathan, 2015), and Weisfeiler-Lehman
optimal assignment kernels (WL-OA, Kriege et al., 2016).
The other six are recent geometric deep learning algorithms:
deep graph convolutional neural network (DGCNN, Zhang
et al., 2018), 2D convolutional neural networks (2DCNN,
Tixier et al., 2017), Patchy-san (PSCN, Niepert et al., 2016,
with k = 10), graph capsule convolutional neural net-
works (GCAPS-CNN, Verma & Zhang, 2018), recurrent
neural network autoencoders (S2S-N2N-PP, Taheri et al.,
2018), and the graph isomorphism network (GIN, Xu et al.,
2019).

Following the standard format of reported classification per-
formances for these methods (per their respective references,
see also the supplement), our results are reported in the form
of average accuracy ± standard deviation (in percentages)
over the ten cross-validation folds. We note that since some
methods are not reported for all datasets, we mark N/A
when appropriate. Table 1 reports the results.

The geometric scattering transform and related variants pre-
sented in Zou & Lerman (2018) and Gama et al. (2019)
is a mathematical model for graph ConvNets. However,
it is natural to ask if this model accurately reflects what
is done in practice. A useful model may not obtain state
of the art performance, but should be competitive with the
current state of the art, lest the model may not capture the
underlying complexity of the most powerful methods. Ex-
amining Table 1 one can see that the GS-SVM classifier
matches or outperforms all but the two most recent meth-
ods, i.e., S2S-N2N-PP (Taheri et al., 2018) and GIN (Xu
et al., 2019). With regards to these two approaches, the
GS-SVM outperforms S2S-N2N-PP (Taheri et al., 2018) on
3/6 datasets. Finally, while GIN (Xu et al., 2019) outper-
forms geometric scattering on 5/6 datasets, the results on

since they perform slightly better than the un-normalized moments.
Also we use J = 5 and q = 4 for all scattering feature generations.
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Table 1. Comparison of the proposed GS-SVM classifier with leading graph kernel and deep learning methods on social graph datasets.
COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K REDDIT-12K

WL 77.82± 1.45 71.60± 5.16 N/A 78.52± 2.01 50.77± 2.02 34.57± 1.32

G
raph

kernel
︷︸︸︷

Graphlet 73.42± 2.43 65.40± 5.95 N/A 77.26± 2.34 39.75± 1.36 25.98± 1.29
WL-OA 80.70± 0.10 N/A N/A 89.30± 0.30 N/A N/A

DGK 73.00± 0.20 66.90± 0.50 44.50± 0.50 78.00± 0.30 41.20± 0.10 32.20± 0.10

DGCNN 73.76± 0.49 70.03± 0.86 47.83± 0.85 N/A 48.70± 4.54 N/A D
eep

learning
︷

︸︸
︷

2D CNN 71.33± 1.96 70.40± 3.85 N/A 89.12± 1.70 52.21± 2.44 48.13± 1.47
PSCN (k = 10) 72.60± 2.15 71.00± 2.29 45.23± 2.84 86.30± 1.58 49.10± 0.70 41.32± 0.42

GCAPS-CNN 77.71± 2.51 71.69± 3.40 48.50± 4.10 87.61± 2.51 50.10± 1.72 N/A
S2S-P2P-NN 81.75± 0.80 73.80± 0.70 51.19± 0.50 86.50± 0.80 52.28± 0.50 42.47± 0.10

GIN-0 (MLP-SUM) 80.20± 1.90 75.10± 5.10 52.30± 2.80 92.40± 2.50 57.50± 1.50 N/A
GS-SVM 79.94± 1.61 71.20± 3.25 48.73± 2.32 89.65± 1.94 53.33± 1.37 45.23± 1.25

COLLAB and IMDB-B are not statistically significant, and
on the REDDIT datasets the geometric scattering approach
trails only GIN (Xu et al., 2019). We thus conclude that the
geometric scattering transform yields a rich set of invariant
statistical moments, which have nearly the same capacity as
the current state of the art in graph neural networks.

4.2. Classification with low training-data availability

Many modern deep learning methods require large amounts
of training data to generate representative features. On
the contrary, geometric scattering features are based on
each graph without any training processes. In this section,
we demonstrate the performance of the GS-SVM under
low training-data availability and show that the scattering
features can embed enough graph information that even
under extreme conditions (e.g. only 20% training data), they
can still maintain relatively good classification results.

We performed graph classification under four train-
ing/validation/test splits: 80%/10%/10%, 70%/10%/20%,
40%/10%/50% and 20%/10%/70%. We did 10-fold, 5-fold
and 2-fold cross validation for the first three splits. For
the last split, we randomly formed a 10 folds pool, from
which we randomly selected 3 folds for training/validation
and repeated this process ten times. Detailed classification
results can be found in the supplement. Following Sec. 4.1,

(a) (b)

Figure 3. (a) Box plot showing the drop in SVM classification
accuracy over social graph datasets when reducing training set size
(horizontal axis marks portion of data used for testing); (b) Relation
between explained variance, SVM classification accuracy, and
PCA dimensions over scattering features in ENZYMES dataset.

we discuss the classification accuracy on six social datasets
under these splits. When the training data is reduced from
90% to 80%, the classification accuracy in fact increased
by 0.047%, which shows the GS-SVM classification accu-
racy is not affected by the decrease in training size. Further
reducing the training size to 50% results in an average de-
crease of classification accuracy of 1.40% while from 90%
to 20% causes an average decrease of 3.00%. Fig. 3 gives a
more nuanced statistical description of these results.

4.3. Dimensionality reduction

We now consider the viability of scattering-based embed-
ding for dimensionality reduction of graph data. As a repre-
sentative example, we consider here the ENZYMES dataset
introduced in Borgwardt et al. (2005), which contains 600
enzymes evenly split into six enzyme classes (i.e., 100 en-
zymes from each class). While the Euclidean notion of
dimensionality is not naturally available in graph data, we
note that graphs in this dataset have, on average, 124.2 edges,
29.8 vertices, and 3 features per vertex. Therefore, the data
here can be considered significantly high dimensional in its
original representation, which is not amenable to traditional
dimensionality reduction techniques.

To perform scattering-based dimensionality reduction, we
applied PCA to geometric scattering features extracted from
input enzyme graphs in the data, while choosing the number
of principal components to capture 99%, 90%, 80% and
50% explained variance. For each of these thresholds, we
computed the mean classification accuracy (with ten-fold
cross validation) of SVM applied to the GS-PCA low dimen-
sional space, as well as the dimensionality of this space. The
relation between dimensionality, explained variance, and
SVM accuracy is shown in Fig. 3, where we can observe that
indeed geometric scattering combined with PCA enables
significant dimensionality reduction (e.g., to R16 with 90%
exp. variance) with only a small impact on classification
accuracy. Finally, we also consider the PCA dimension-
ality of each individual enzyme class in the data (in the
scattering feature space), as we expect scattering to reduce
the variability in each class w.r.t. the full feature space. In-
deed, in this case, individual classes have 90% exp. variance
PCA dimensionality ranging between 6 and 10, which is
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significantly lower than the 16 dimensions of the entire PCA
space. We note that similar results can also be observed
for the social network data discussed in previous sections,
where on average 90% explained variances are captured by
nine dimensions, yielding a drop of 3.81% in mean SVM
accuracy; see the supplement for complete results.

4.4. Data exploration: Enzyme class exchange
preferences

Geometric scattering essentially provides a task independent
representation of graphs in a Euclidean feature space. There-
fore, it is not limited to supervised learning applications,
and can be also utilized for exploratory graph-data analysis,
as we demonstrate in this section. We focus our discussion
in particular on the ENZYMES dataset described in the pre-
vious section. Here, geometric scattering features can be
considered as providing “signature” vectors for individual
enzymes, which can be used to explore interactions between
the six top level enzyme classes, labeled by their Enzyme
Commission (EC) numbers (Borgwardt et al., 2005). In or-
der to emphasize the properties of scattering-based feature
extraction, rather than downstream processing, we mostly
limit our analysis of the scattering feature space to linear
operations such as principal component analysis (PCA).

To explore the scattering feature space, and the richness of
information captured by it, we use it to infer relations be-
tween EC classes. First, for each enzyme e, with scattering
feature vector ve (i.e., with Sx for all vertex features x),
we compute its distance from class EC-j, with PCA sub-
space Cj , as the projection distance: dist(e,EC-j) = ‖ve −
projSjve‖. Then, for each enzyme class EC-i, we compute
the mean distance of enzymes in it from the subspace of each
EC-j class as D(i, j) = mean{dist(e,EC-j) : e ∈ EC-i}.

(a) Observed (b) Inferred

Figure 4. Comparison of EC exchange preferences in enzyme
evolution: (a) observed in Cuesta et al. (2015), and (b) in-
ferred from scattering features via pref(EC-i,EC-j) := wj ·[
min

{
D(i,j)
D(i,i)

, D(j,i)
D(j,j)

}]−1

; wj = portion of enzymes in EC-j

that choose another EC as their nearest subspace; D(i, j)=mean
dist. of enzymes in EC-i from PCA (90% exp. var.) subspace of
EC-j . Our inference (b) mainly recovers (a).

These distances are summarized in the supplement, as well
as the proportion of points from each class that have their
true EC as their nearest (or second nearest) subspace in the
scattering feature space. In general, 48% of enzymes select
their true EC as the nearest subspace (with additional 19%
as second nearest), but these proportions vary between in-
dividual EC classes. Finally, we use these scattering-based
distances to infer EC exchange preferences during enzyme
evolution, which are presented in Fig. 4 and validated with
respect to established preferences observed and reported
in Cuesta et al. (2015). We note that the result there is
observed independently from the ENZYMES dataset. In
particular, the portion of enzymes considered from each EC
is different between these data, since Borgwardt et al. (2005)
took special care to ensure each EC class in ENZYMES has
exactly 100 enzymes in it. However, we notice that in fact
the portion of enzymes (in each EC) that choose the wrong
EC as their nearest subspace, which can be considered as EC
“incoherence” in the scattering feature space, correlates well
with the proportion of evolutionary exchanges generally ob-
served for each EC in Cuesta et al. (2015), and therefore we
use these as EC weights (see Fig. 4). Our results in Fig. 4
demonstrate that scattering features are sufficiently rich to
capture relations between enzyme classes, and indicate that
geometric scattering has the capacity to uncover descriptive
and exploratory insights in graph data analysis.

5. Conclusion
We presented the geometric scattering transform as a deep
filter bank for feature extraction on graphs, which gener-
alizes the Euclidean scattering transform. A reasonable
criticism of the scattering theory approach to understanding
geometric deep learning is that it is not clear if the scatter-
ing model is a suitable facsimile for powerful graph neural
networks that are obtaining impressive results on graph clas-
sification tasks and related graph data analysis problems. In
this paper we showed that in fact, at least empirically, this
line of criticism is unfounded and indeed further theoretical
study of geometric scattering transforms on graphs is war-
ranted. Our evaluation results on graph classification and
data exploration show the potential of the produced scatter-
ing features to serve as universal representations of graphs.
Indeed, classification using these features with relatively
simple classifier models, dimension reduced feature sets,
and small training sets nevertheless reach high accuracy re-
sults on most commonly used graph classification datasets.
Finally, the geometric scattering features provide a new way
for computing and considering global graph representations,
independent of specific learning tasks. They raise the pos-
sibility of embedding entire graphs in Euclidean space and
computing meaningful distances between graphs, which can
be used for both supervised and unsupervised learning, as
well as exploratory analysis of graph-structured data.
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