
SUPPLEMENTARY MATERIAL

Optimal Mini-Batch and Step Sizes for SAGA

A. Proofs of the Upper Bounds of L
A.1. Master lemma

Proof of Lemma 1. Since the fi’s are convex, each realization of fv is convex, and it follows from equation 2.1.7 in (Nesterov,

2014) that

‖∇fv(x)−∇fv(y)‖22 ≤ 2Lv (fv(x)− fv(y)− 〈∇fv(y), x− y〉) . (24)

Taking expectation over the sampling gives

E[‖∇fv(x)−∇fv(x
∗)‖22] ≤ 2E [Lv (fv(x)− fv(x

∗)− 〈∇fv(x
∗), x− x∗〉)]

(24)
=

2

n
E

[

n
∑

i=1

Lvvi (fi(x)− fi(x
∗)− 〈∇fi(x

∗), x− x∗〉)
]

=
2

n

n
∑

i=1

E [Lvvi] (fi(x)− fi(y)− 〈∇fi(x
∗), x− x∗〉)

≤ 2 max
i=1,...,n

E [Lvvi] (f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉)

= 2 max
i=1,...,n

E [Lvvi] (f(x)− f(x∗)) .

where in the last equality the full gradient vanishes because it is computed at optimality. The result now follows by

comparing the above with the definition of expected smoothness in (7).

A.2. Proof of the simple bound

Proof of Theorem 2. To derive this bound on L we use that

LB ≤ 1

b

∑

j∈B

Lj , (25)

which follows from repeatedly applying Lemma 8. For b ≥ 2, it follows from Equation (17) and Equation (25) that

L ≤ 1

b
(

n−1
b−1

) max
i=1,...,n

{

∑

B⊆[n] :
|B|=b∧i∈B

∑

j∈B

Lj

}

. (26)

Using a double counting argument we can show that

∑

B⊆[n] :
|B|=b∧i∈B

∑

j∈B

Lj =

n
∑

j=1

∑

B⊆[n] :
|B|=b∧i,j∈B

Lj

=
∑

j 6=i

∑

B⊆[n] :
|B|=b∧i,j∈B

Lj +
∑

B⊆[n] :
|B|=b∧i∈B

Li

=
∑

j 6=i

(

n− 2

b− 2

)

Lj +

(

n− 1

b− 1

)

Li

=

(

n− 2

b− 2

)

(nL̄− Li) +

(

n− 1

b− 1

)

Li . (27)

Optimal Mini-Batch and Step Sizes for SAGA

Inserting this into Equation (26) gives

L ≤ 1

b
(

n−1
b−1

) max
i=1,...,n

{(

n− 2

b− 2

)

nL̄+

((

n− 1

b− 1

)

−
(

n− 2

b− 2

))

Lmax

}

=
n
(

n−2
b−2

)

b
(

n−1
b−1

) L̄+

(

n−1
b−1

)

−
(

n−2
b−2

)

b
(

n−1
b−1

) Lmax

=
n

b

b− 1

n− 1
L̄+

1

b

n− b

n− 1
Lmax . (28)

We also verify that this bound is valid for 1-nice sampling. Indeed, we already have that in this case L = Lmax.

A.3. Proof of the Bernstein bound

To start the proof of Theorem 3, we re-write the expected smoothness constant as the maximum over an expectation. Let Si

be a (b− 1)-nice sampling over [n] \ {i}. We can write

L =
1

(

n−1
b−1

) max
i=1,...,n

{

∑

B⊆[n] :
|B|=b∧i∈B

LB

}

= max
i=1,...,n

E
[

LSi∪{i}

]

Lemma 2
= max

i=1,...,n
UE

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j

 . (29)

One can come back to the definition of the subsample smoothness constant Equation (12) and interpret previous expression

as an expectation of the largest eigenvalue of a sum of matrices. This insight allows us to apply a matrix Bernstein inequality,

see Theorem 7, to bound L.

For the proof of Theorem 3, we first need the two following results.

Lemma 4. Let aj ∈ R
d, i ∈ {1, . . . , n} and let Si be a (b− 1)-nice sampling over the set [n] \ {i}. It follows that

E

∑

j∈Si∪{i}

aja
⊤
j

 = aia
⊤
i +

b− 1

n− 1

n
∑

j=1,j 6=i

aja
⊤
j . (30)

Optimal Mini-Batch and Step Sizes for SAGA

Proof of Lemma 4. This results follows using a double-counting argument at the fourth line of the computation.

E

∑

j∈Si∪{i}

aja
⊤
j

 =
1

(

n−1
b−1

)

∑

B⊆[n]\{i}:
|B|=b−1

∑

j∈B∪{i}

aja
⊤
j

=
1

(

n−1
b−1

)

(

n− 1

b− 1

)

aia
⊤
i +

∑

B⊆[n]\{i}:
|B|=b−1

∑

j∈B

aja
⊤
j

= aia
⊤
i +

1
(

n−1
b−1

)

∑

B⊆[n]\{i}:
|B|=b−1

∑

j∈B

aja
⊤
j

= aia
⊤
i +

1
(

n−1
b−1

)

n
∑

j=1,j 6=i

∑

B⊆[n]\{i}:
|B|=b−1∧j∈B

aja
⊤
j

= aia
⊤
i +

(

n−2
b−2

)

(

n−1
b−1

)

n
∑

j=1,j 6=i

aja
⊤
j

= aia
⊤
i +

b− 1

n− 1

n
∑

j=1,j 6=i

aja
⊤
j .

We then introduce another two lemmas which give a first intermediate bound.

Lemma 5. Let aj ∈ R
d for j ∈ [n], let i ∈ [n] and let Si be a (b− 1)-nice sampling over [n] \ {i}. We have

UE

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j

 ≤ 1

b(n− 1)
((n− b)Li + n(b− 1)L)

+ UE

λmax

1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

 . (31)

Proof of Lemma 5. Expanding the expectation we have

E

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j

≤ λmax

E

1

b

∑

j∈Si∪{i}

aja
⊤
j

+ E

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j − E

∑

j∈Si∪{i}

aja
⊤
j

=
1

b
λmax

aia
⊤
i +

b− 1

n− 1

n
∑

j=1, j 6=i

aja
⊤
j

+ E

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j − 1

b

aia
⊤
i +

b− 1

n− 1

n
∑

j=1, j 6=i

aja
⊤
j

=
1

b
λmax

1

n− 1

(n− b)aia
⊤
i + (b− 1)

n
∑

j=1

aja
⊤
j

+ E

λmax

1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

≤ 1

b(n− 1)

(

(n− b)
Li

U
+ n(b− 1)

L

U

)

+ E

λmax

1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

 ,

Optimal Mini-Batch and Step Sizes for SAGA

where in the first inequality we add and remove the mean and then apply Lemma 8. In the second equality we explicit the

mean with Lemma 4 and in the last inequality we use again Lemma 8 for the left-hand side term. Finally, we multiply by U
on both sides of the inequality.

We recall the following lemma used to introduced the practical estimate given by

Lpractical(b)
Definition 5

:=
n

b

b− 1

n− 1
L+

1

b

n− b

n− 1
Lmax .

Lemma 3. Let aj ∈ R
d for j ∈ [n] and let Si be a (b− 1)-nice sampling over [n] \ {i}, for every i ∈ [n]. It follows that

L ≤ Lpractical(b) + U max
i∈[n]

E [λmax (Ni)] , (21)

with Ni :=
1
b

∑

j∈Si aja
⊤
j − 1

b
b−1
n−1

∑

j∈[n]\{i} aja
⊤
j .

Proof of Lemma 3. The result comes from applying re-writing L as an expectation of the largest eigenvalue of a sum of

matrices. Then we apply Lemma 5 and then taking the maximum over all i ∈ [n]. Thus, we have

L (29)
= max

i=1,...,n
UE

λmax

1

b

∑

j∈Si∪{i}

aja
⊤
j

Lemma 5

≤ 1

b(n− 1)
((n− b)Li + n(b− 1)L) + UE

λmax

1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

≤ n

b

b− 1

n− 1
L+

1

b

n− b

n− 1
Lmax + max

i=1,...,n
UE

λmax

1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

 .

Proof of Theorem 3. Applying the previous lemma we get

L
(21)

≤ n

b

b− 1

n− 1
L+

1

b

n− b

n− 1
Lmax + max

i=1,...,n
UE [λmax (N)] , (32)

with N := 1
b

∑

j∈Si aja
⊤
j − 1

b
b−1
n−1

∑

j∈[n]\{i} aja
⊤
j .

To further our argument, we will encode different samplings using unit coordinate vectors. Let e1, . . . , en ∈ R
n be the unit

coordinate vectors. Let Si = {Si
1, . . . , S

i
b} denote an arbitrary but fixed ordering of the elements of Si. With this we can

encode the sampling without replacement as

∑

j∈Si

aja
⊤
j =

b−1
∑

k=1

∑

j∈[n]\{i}

(ej)Si

k

aja
⊤
j . (33)

Using this notation, the matrix N which can be further decomposed as

N =
1

b

∑

j∈Si

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

=
1

b

b−1
∑

k=1

∑

j∈[n]\{i}

(ej)Si

k

aja
⊤
j − 1

b

b− 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

=

b−1
∑

k=1

1

b

∑

j∈[n]\{i}

(

(ej)Si

k

− 1

n− 1

)

aja
⊤
j

:=

b−1
∑

k=1

Mk .

Optimal Mini-Batch and Step Sizes for SAGA

where we have encoded the sampling Si using unit coordinate vectors. The matrices M1, . . . ,Mb−1 are sampled without

replacement from the set

∑

j∈[n]\{i}

1

b

(

xj −
1

n− 1

)

aja
⊤
j : x ∈ {e1, . . . , ei−1, ei+1, . . . , en}

. (34)

Now let X1, . . . , Xb be matrices sampled with replacement from (34) and let Xk := 1
b

∑

j∈[n]\{i}

(

zkj − 1
n−1

)

aja
⊤
j and

Y :=
∑b−1

k=1 Xk thus the vectors zk are sampled with replacement from {e1, . . . , ei−1, ei+1, . . . , en}. Consequently

P
[

zkj = 1
]

=
1

n− 1
, ∀j ∈ {1, . . . , i− 1, i+ 1, . . . , n} .

We are now in a position to apply the Bernstein matrix inequality. To this end we have

• A sum of centered random matrices: E [Xk] = 0.

• Let k∗ be the unique index such that zkk∗ = 1. We have a uniform bound of the largest eigenvalue of our Xk

λmax(Xk) =
1

b
λmax

∑

j∈[n]\{i}

zkj aja
⊤
j − 1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

≤ 1

b
λmax

∑

j∈[n]\{i}

zkj aja
⊤
j

=
1

b
λmax

(

ak∗a⊤k∗

)

≤ 1

b

Lmax

U
, (35)

where we applied the Lemma 9 in the first inequality.

• And a bound on the variance too

E
[

X2
k

]

= E

1

b

∑

j∈[n]\{i}

(

zkj − 1

n− 1

)

aja
⊤
j

2

=
1

b2
E

∑

j,p∈[n]\{i}

zkj z
k
paja

⊤
j apa

⊤
p − 2

n− 1

∑

j,p∈[n]\{i}

zkj aja
⊤
j apa

⊤
p +

1

(n− 1)2

∑

j,p∈[n]\{i}

aja
⊤
j apa

⊤
p

=
1

b2

∑

j,p∈[n]\{i}

(

(E
[

zkj z
k
p

]

aja
⊤
j apa

⊤
p − 2

n− 1
E
[

zkj
]

aja
⊤
j apa

⊤
p +

1

(n− 1)2
aja

⊤
j apa

⊤
p

)

=
1

b2

∑

j,p∈[n]\{i}

(

E
[

zkj z
k
p

]

aja
⊤
j apa

⊤
p − 2

(n− 1)2
aja

⊤
j apa

⊤
p +

1

(n− 1)2
aja

⊤
j apa

⊤
p

)

=
1

b2

1

n− 1

∑

j∈[n]\{i}

aja
⊤
j aja

⊤
j − 1

(n− 1)2

∑

j,p∈[n]\{i}

aja
⊤
j apa

⊤
p

 , (36)

Optimal Mini-Batch and Step Sizes for SAGA

where, in the last equality, we used that zkj z
k
p = 0 if j 6= p and E

[

zkj z
k
j

]

= E
[

zkj
]

= 1
n−1 , so that

∑

j,p∈[n]\{i}

E
[

zkj z
k
p

]

aja
⊤
j apa

⊤
p = E

∑

j,p∈[n]\{i}

zkj z
k
p

 aja
⊤
j apa

⊤
p

=
∑

j∈[n]\{i}

E
[

zkj z
k
j

]

aja
⊤
j apa

⊤
p

=
1

n− 1

∑

j∈[n]\{i}

aja
⊤
j apa

⊤
p .

Summing in (36), taking the largest eigenvalue and applying Lemma 9 results in

λmax

(

b−1
∑

k=1

E
[

X2
k

]

)

≤ λmax

b−1
∑

k=1

1

b2
1

n− 1

∑

j∈[n]\{i}

aja
⊤
j aja

⊤
j

≤ b− 1

b2

(

max
j∈[n]\{i}

λmax

(

aja
⊤
j

)

)

· λmax

1

n− 1

∑

j∈[n]\{i}

aja
⊤
j

≤ b− 1

b2
Lmax

U2
L[n]\{i} . (37)

Considering Equations (35) and (37) and applying the matrix Bernstein concentration inequality in Theorem 7 we get

UE [λmax(N)] ≤
√

2
b− 1

b2
LmaxL[n]\{i} log d+

1

3

Lmax

b
log d

Taking the maximum over i and using L[n]\{i} ≤ n
n−1L we have that

max
i=1,...,n

UE [λmax(N)] ≤
√

2
b− 1

b2
n

n− 1
LmaxL log d+

1

3

Lmax

b
log d

Combining the above result with (32) leads us to

L ≤ (n− b)Lmax

b(n− 1)
+

n(b− 1)L

b(n− 1)
+

√

2

(

b− 1

b

n

n− 1
L

)

·
(

1

b
Lmax log d

)

+
1

3

Lmax

b
log d

≤ (n− b)Lmax

b(n− 1)
+

n(b− 1)L

b(n− 1)
+

b− 1

b

n

n− 1
L+

4

3

Lmax

b
log(d)

= 2
b− 1

b

n

n− 1
L+

1

b

(

4

3
log(d) +

n− b

n− 1

)

Lmax.

where in the second inequality we used the inequality
√
2ab ≤ a+ b.

B. Linear Algebra Tools

This appendix is dedicated to the presentation of useful results to manipulate more easily the smoothness constants.

B.1. Spectral Lemmas

Let us recall some useful spectral results on Hermitian and positive semi-definite matrices.

Lemma 6. (Weyl’s inequality) Let A,B ∈ R
n×n symmetric matrices. Assume that the eigenvalues of A (resp. B) are

sorted i.e., λ1(A) ≥ · · · ≥ λn(A) (resp. λ1(B) ≥ · · · ≥ λn(B)). Then, we have

λi+j−1(A+B) ≤ λi(A) + λj(B) . (38)

whenever i, j ≥ 1 and i+ j − 1 ≤ n .

Optimal Mini-Batch and Step Sizes for SAGA

Moreover, as a direct consequence of the variational characterization of eigenvalues, namely

λmax(A) = max
v 6=0

v⊤Av

‖v‖22
, (39)

we have an inequality between the maximum diagonal term of a positive semi-definite matrices and its maximum eigenvalue.

Lemma 7. Let A ∈ R
n×n positive semi-definite matrix and the vector containing its diagonal d := diag(A). Then, we

have

max
i=1,...,n

di ≤ λmax(A) . (40)

The following lemma is a direct consequence of Weyl’s inequality for i = j = 1.

Lemma 8. Let A,B ∈ R
n×n symmetric matrices. Then, we have

λmax(A+B) ≤ λmax(A) + λmax(B) . (41)

Lastly, we present a result arising from previous lemma.

Lemma 9. Let A,B ∈ R
n×n symmetric matrices such that B is positive semi-definite. Then, we have

λmax(A−B) ≤ λmax(A) . (42)

Proof. Let A,B ∈ R
n×n symmetric matrices such that B is positive semi-definite. We get directly

λmax(A−B) ≤ λmax(A) + λmax(−B)

= λmax(A)− λmin(B)

≤ λmax(A) ,

where the first inequality stems from Lemma 8 and the second from B � 0.

B.2. Basic properties of the smoothness constants

The complexity results of Gower et al. (2018) depends on smoothness constants defined in Section 3.1. Here are some

inequalities giving an idea of the order of those constants.

Lemma 10. Let ∅ 6= B ⊆ [n] = {1, . . . , n} a batch set drawn randomly without replacement. The following inequalities

hold

(i)

Li ≤ Lmax ∀i = 1, . . . , n . (43)

(ii)

LB ≤ 1

|B|
∑

i∈B

Li ∀i = 1, . . . , n . (44)

(iii)

L
(a)

≤ L̄
(b)

≤ Lmax

(c)

≤ nL
(d)

≤ nL̄ . (45)

Proof. (i) One directly gets that Li ≤ maxj=1,...,n Lj = Lmax.

(ii) This inequality states that the smoothness constant LB of the averaged function fB is upper bounded by the average of

the corresponding smoothness constants Li, over the batch B. The proof consists in |B| repetitive calls of Lemma 8.

Optimal Mini-Batch and Step Sizes for SAGA

(iii) (a) Direct implication of (ii) for B = [n].

(b) Direct calculation

L̄ =
1

n

n
∑

i=1

Li ≤
1

n

n
∑

i=1

Lmax ≤ Lmax .

(c) Let us first recall the matrix formulation of our smoothness constants:

L =
U

n
λmax(AA⊤) =

U

n
λmax(A

⊤A)

and

Lmax = U max
i=1,...,n

e⊤i A
⊤Aei ,

Using the min-max theorem, we have that

λmax(A
⊤A) = max

x 6=0

x⊤A⊤Ax

‖x‖22
≥ max

i=1,...,n
e⊤i A

⊤Aei.

Dividing the above by n on both sides gives

L ≥ Lmax

n
.

(d) Direct consequence of (a).

C. Matrix Bernstein Inequality: Sampling Without Replacement

In this appendix, we present the matrix Bernstein inequality for independent Hermitian matrices from Tropp (2015). We

also provide another version of this theorem for matrices sampled without replacement and prove it as explicitly as possible,

taking our inspiration from Tropp (2011). The proof is based the possibility of transferring the results from sampling with to

without through the inequality (50) due to Gross & Nesme (2010). The exact same work can be done for the tail bound,

which is for instance used in Bach (2013).

C.1. Original Bernstein inequality for independent matrices

We first present Theorem 4 which gives a Bernstein inequality for a sum of random and independent Hermitian matrices

whose eigenvalues are upper bounded. If the matrices Xk are sampled from a finite set X , one can interpret this random

sampling of independent matrices as a random sampling with replacement.

Theorem 4 (Tropp (2015), Theorem 6.6.1: Matrix Bernstein Inequality). Consider a finite sequence {Xk}k=1,...,n of n
independent, random, Hermitian matrices with dimension d. Assume that

EXk = 0 and λmax(Xk) ≤ L for each index k .

Introduce the random matrix

SX :=
n
∑

k=1

Xk .

Let v(SX) be the matrix variance statistic of the sum:

v(SX) :=
∥

∥ES2
X

∥

∥ =

∥

∥

∥

∥

∥

n
∑

k=1

EX2
k

∥

∥

∥

∥

∥

= λmax

(

n
∑

k=1

EX2
k

)

. (46)

Then

Eλmax(SX) ≤
√

2v(SX) log d+
1

3
L log d . (47)

This theorem is the one we extend in Theorem 7 to the case when the random matrices Xk are sampled without replacement

from a finite set X . We drew our inspiration from the proof of the matrix Chernoff inequality in Tropp (2011) and the one of

the matrix Bernstein tail bound in Bach (2013), both in the case of sampling without replacement.

Optimal Mini-Batch and Step Sizes for SAGA

C.2. Technical random matrices prerequisites

Before proving Theorem 7, which extends the matrix Bernstein inequality to sampling without replacement, we need to

introduce the key tools of the matrix Laplace transform technique. This technique is precious to prove tail bounds for sums

of random matrices such as Chernoff, Hoeffding or Bernstein bounds, as presented in (Tropp, 2012).

Here, ‖·‖ denotes the spectral norm, which is defined for any Hermitian matrix H by

||M || = max {λmax(H),−λmin(H)} . (48)

We also introduce the moment generating function (mgf) and the cumulant generating function (cgf) of a random matrix,

which are essential in the Laplace transform method approach.

Definition 6 (Matrix Mgf and Cgf). Let X be a random Hermitian matrix. For all θ ∈ R, the matrix generating function

MX and the matrix cumulant generating function ΞX are given by

MX(θ) := E eθX

and

ΞX(θ) := logE eθX .

Remark 4. These expectations may not exist for all values of θ.

Proposition 2 (Tropp (2015), Proposition 3.2.2: Expectation Bound of the Maximum Eigenvalue). Let X be a random

Hermitian matrix. Then

Eλmax (X) ≤ inf
θ>0

{

1

θ
logE tr eθX

}

. (49)

Remark 5. This proposition is an adaptation of the Laplace transform method to obtain a bound of the expectation of the

maximum eigenvalue of a random Hermitian matrix. Contrary to the tail bounds, there is no exact analog of the expectation

bounds in the scalar setting.

Proof of Proposition 2. Fix a positive number θ. Because λmax(·) is a positive-homogeneous map, we have

Eλmax (X) =
1

θ
Eλmax (θX)

=
1

θ
E log eλmax(θX)

≤ 1

θ
logE eλmax(θX)

=
1

θ
logEλmax

(

eθX
)

≤ 1

θ
logE tr eθX ,

where in the third line we used the Jensen’s inequality, in the fourth one the spectral mapping theorem and in the last line the

domination by the trace of a positive-definite matrix.

Theorem 5 (Tropp (2015), Theorem 8.1.1: Lieb). Let H be a fixed Hermitian matrix with dimension d. The function

X → tr exp (H +X)

is a concave map on the the convex cone of d× d positive-definite matrices.

Proof of Theorem 5. See Chapter 8 in Tropp (2015).

Corollary 1. Let H be a fixed Hermitian matrix with dimension d. Let X be a random Hermitian matrix of same dimension.

The following inequality holds

E tr exp (H +X) ≤ tr exp
(

H + logE eX
)

is a concave map on the the convex cone of d× d positive-definite matrices.

Optimal Mini-Batch and Step Sizes for SAGA

Proof of Corollary 1. Introducing Y = eX , we have directly

E tr exp (H +X) = E tr exp
(

H + log eX
)

= E tr exp (H + log Y)

≤ tr exp (H + logEY)

= tr exp
(

H + logE eX
)

.

where the inequality comes from the application of Theorem 5 and Jensen’s inequality.

Lemma 11 (Tropp (2015), Lemma 3.5.1 or Tropp (2012), Lemma 3.4: Subadditivity of Matrix Cgfs). Consider a finite

sequence {Xk} of independent, random, Hermitian matrices of the same dimension. Let θ ∈ R, then

tr exp
(

Ξ∑
k=1nXk

(θ)
)

= E tr exp
(

θ
∑

k
Xk

)

≤ tr exp
(

∑

k
logE eθXk

)

= tr exp
(

∑

k
ΞXk

(θ)
)

.

Proof of Lemma 11. Let us assume, without loss of generality, that θ = 1. Let a finite sequence {Xk}nk=1 of n independent,

random, Hermitian matrices of the same dimension. We write down Ek the expectation with respect only to the k-th random

matrix Xk.

tr exp
(

Ξ∑
n

k=1
Xk

(1)
)

= tr exp

(

logE exp

(

n
∑

k=1

Xk

))

= E tr exp

(

n
∑

k=1

Xk

)

= E1 . . .En−1En tr exp

(

n−1
∑

k=1

Xk +Xn+1

)

≤ E1 . . .En−1 tr exp

(

n−1
∑

k=1

Xk + logEn e
Xn+1

)

= E1 . . .En−1 tr exp

(

n−2
∑

k=1

Xk +Xn−1 + logEn e
Xn+1

)

≤ E1 . . .En−2 tr exp

(

n−2
∑

k=1

Xk + logEn−1 e
Xn−1 + logEn e

Xn

)

≤ · · · ≤ tr exp
(

∑

k
logE eθXk

)

= tr exp

(

∑

k

ΞXk
(θ)

)

.

where first and second inequalities result from Corollary 1, the last one comes the fact that Ek e
Xk = E eXk , ∀k ∈ [n] and

the final equality directly comes from an indentification of Definition 6.

Lemma 12 (Tropp (2015), Lemma 6.6.2: Matrix Bernstein Mgf and Cgf Bounds). Let X a random Hermitian matrix such

that

EX = 0 and λmax (X) ≤ L .

Then, for 0 < θ < 3/L,

MX(θ) := E eθX � exp

(

θ2/2

1− θL/3
· EX2

)

Optimal Mini-Batch and Step Sizes for SAGA

and

ΞX(θ) := logE eθX � θ2/2

1− θL/3
· EX2 .

Proof of Lemma 12. See Tropp (2015).

C.3. Extended results for sampling without replacement

This section is dedicated to the main result, Lemma 13, needed for transferring results from sampling with to without

replacement. This lemma is actually the matrix version of a classical result from Hoeffding (1963). We then combine it with

previous results of Appendix C.2 to produce a new master bound in Theorem 6, which is the key inequality of the proof of

Theorem 7.

Lemma 13 (Gross & Nesme (2010), Domination of the Trace of the Mgf of a Sample Without Replacement). Consider two

finite sequences, of same length n, {Xk}k=1,...,n and {Yk}k=1,...,n of Hermitian random matrices sampled respectively

with and without replacement from a finite set X . Let θ ∈ R, SX :=
∑n

k=1 Xk and SY :=
∑n

k=1 Yk, then

trMSY
(θ) := E tr exp (θSY) ≤ E tr exp (θSX) . (50)

Proof of Lemma 13. The left-hand side equality directly arises from Definition 6 and the fact that the trace commutes with

the expectation because it is a linear operator. For the right-hand side inequality, see the proof in Gross & Nesme (2010).

Theorem 6 (Master Bound for a Sum of Random Matrices Sampled Without Replacement). Consider two finite sequences,

of same length n, {Xk}k=1,...,n and {Yk}k=1,...,n of Hermitian random matrices of same size sampled respectively with

and without replacement from a finite set X . Then

Eλmax

(

n
∑

k=1

Yk

)

≤ inf
θ>0

{

1

θ
log tr exp

(

n
∑

k=1

logE eθXk

)}

. (51)

Remark 6. This theorem is a modified version of Theorem 3.6.1 in Tropp (2015) for a sum of matrices sampled without

replacement.

Proof of Theorem 6. Consider two finite sequences, of same length, {Xk} and {Yk} of Hermitian random matrices of same

size sampled respectively with and without replacement from a finite set X . Let θ a positive number.

Eλmax

(

n
∑

k=1

Yk

)

≤ inf
θ>0

{

1

θ
logE tr exp

(

θ

n
∑

k=1

Yk

)}

≤ inf
θ>0

{

1

θ
logE tr exp

(

θ

n
∑

k=1

Xk

)}

≤ inf
θ>0

{

1

θ
log tr exp

(

n
∑

k=1

logE eθXk

)}

.

where we used successively Proposition 2, Lemma 13 and Lemma 11. First, we use the expectation bound for the maximum

eigenvalue. We then use the main result of Gross & Nesme (2010) and invoked in Tropp (2011) to extend the matrix

Chernoff bound for matrices sampled without replacement. This lemma allows us to transfer our results to sampling with

replacement. And finally, we then apply the subadditivity of matrix cgfs to get the desired result.

C.4. Bernstein inequality for sampling without replacement

The following theorem is almost the same than Theorem 4, but in the case of matrices sampled without replacement from a

finite set. The proof stems from results established in previous Appendices C.2 and C.3.

Theorem 7 (Matrix Bernstein Inequality Without Replacement). Let X be a finite set of Hermitian matrices with dimension

d such that

λmax(X) ≤ L, ∀X ∈ X .

Sample two finite sequences, of same length n, {Xk}k=1,...,n and {Yk}k=1,...,n uniformly at random from X respectively

with and without replacement such that

EXk = 0 ∀k .

Optimal Mini-Batch and Step Sizes for SAGA

Introduce the random matrices

SX :=

n
∑

k=1

Xk and SY :=

n
∑

k=1

Yk .

Let v(SX) be the matrix variance statistic of the second sum

v(SX) :=
∥

∥ES2
X

∥

∥ =

∥

∥

∥

∥

∥

n
∑

k=1

EX2
k

∥

∥

∥

∥

∥

= λmax

(

n
∑

k=1

EX2
k

)

. (52)

Then

Eλmax(SY) ≤
√

2v(SX) log d+
1

3
L log d . (53)

Proof of Theorem 7. Consider X a finite set of Hermitian matrices of dimension d such that

λmax(X) ≤ L ∀X ∈ X .

Sample two finite sequences, of same length, {Xk} and {Yk} uniformly at random from X respectively with and without

replacement such that

EXk = 0 ∀k .

The {Xk} matrices are thus independent. Introduce the sums SX =
∑n

k=1 Xk and SY =
∑n

k=1 Yk. Let us bound the

expectation of the largest eigenvalue of the latter

Eλmax(SY) = Eλmax

(

n
∑

k=1

Yk

)

≤ inf
θ>0

{

1

θ
log tr exp

(

n
∑

k=1

logE eθXk

)}

≤ inf
0<θ<3/L

{

1

θ
log tr exp

(

θ2/2

1− θL/3

n
∑

k=1

EX2
k

)}

≤ inf
0<θ<3/L

{

1

θ
log

[

d λmax

(

exp

(

θ2/2

1− θL/3
ES2

X

))]}

≤ inf
0<θ<3/L

{

1

θ
log

[

d exp

(

θ2/2

1− θL/3
λmax

(

ES2
X

)

)]}

≤ inf
0<θ<3/L

{

1

θ
log

[

d exp

(

θ2/2

1− θL/3
v(SX)

)]}

= inf
0<θ<3/L

{

log d

θ
+

θ/2

1− θL/3
v(SX)

}

.

where the inequalities sucessively derive from Theorem 6, Lemma 12 combined with the monotony of tr exp(·), the fact

that tr(M) ≤ d λmax(M), ∀M ∈ R
d×d, the spectral mapping theorem and lastly (48) with EY 2 � 0. Finally, one can

complete the infimum, for instance using a computer algebra system, to finish the proof as it was stated in the original proof

by Tropp (2015) 9. In conclusion,

Eλmax(SY) ≤
√

2v(SX) log d+
1

3
L log d .

D. Miscellaneous

Lemma 14 (Double counting). Let ai,C ∈ R for i = 1, . . . , n and C ∈ C, where C is a collection of subsets of [n]. Then

∑

C∈C

∑

i∈C

ai,C =

n
∑

i=1

∑

C∈C : i∈C

ai,C . (54)

9For instance : Minimize[(log(d)/x) + ((x/2)/(1-(L/3)*x))*v, x >0, x < (3/L), x] in Wolfram Alpha.

Optimal Mini-Batch and Step Sizes for SAGA

Algorithm 2 JACSKETCH PRACTICAL IMPLEMENTATION OF b-NICE SAGA

Input: mini-batch size b, step size γ > 0
Initialize: w0 ∈ R

d, J0 ∈ R
d×n, u0 = 1

nJ
0e

for k = 0, 1, 2, . . . do

Sample a fresh batch B ⊆ [n] s.t. |B| = b
aux =

∑

i∈B(∇fi(w
k)− Jk

:i) // update the auxiliary vector

gk = uk + 1
baux // update the unbiased gradient estimate

uk+1 = uk + 1
naux // update the biased gradient estimate

Jk+1
:i =

{

Jk
:i i /∈ B

∇fi(w
k) i ∈ B.

// update the Jacobian estimate

wk+1 = wk − γgk // take a step

end for

E. Additional Experiments

E.1. Experiment 1: estimates of the expected smoothness constant for artificial datasets

As described in Section 5, we compute our the simple and Bernstein bounds, our practical estimate and the true L for

ridge regression applied to small artificial datasets: uniform (n = 24, d = 50), staircase eigval (n = d = 24) and alone

eigval (n = d = 24). Figure 7 shows first that the practical estimate is a very close approximation of L. On the one hand,

we observe in Figure 7a that the Bernstein bound performs poorly since the feature dimension is very small d = 50. On

the other hand, Figure 7c shows a regime change for b ≈ 10, which highlight the usefulness of combining our bounds to

approximate the expected smoothness constant. Finally, we observe that for the alone eigval dataset Figure 7b, which has

one very large eigenvalue far from the rest of the spectrum, the simple bound matches L because the gap between L̄ and L
shrinks. Indeed, in this configuration L̄ ≈ L ≈ Lmax

n . When the spectrum is more concentrated, like for staircase eigval, we

get a significant gap between L̄ and L as shown in Figure 7c, where the simple bound is far from L when b = n.

5 10 15 20
mini-batch size

20

40

60

80

100

120

140

sm
oo

th
ne

ss
 c

on
st

an
t

(a) uniform.

5 10 15 20
mini-batch size

0

1×10⁴

2×10⁴

3×10⁴

4×10⁴

5×10⁴

sm
oo

th
ne

ss
 c

on
st

an
t

(b) alone eigval.

5 10 15 20
mini-batch size

0

100

200

300

400

500

sm
oo

th
ne

ss
 c

on
st

an
t

(c) staircase eigval.

Figure 7: Expected smoothness constant L and its upper-bounds the mini-batch size b varies (unscaled datasets, λ = 10−1).

We also report the influence of changing the value of the regularization parameter λ. Figure 8 shows that this parameter has

little impact on the general shape of the bounds and of L.

Finally, we study the impact of scaling or standardizing (i.e., removing the mean and dividing by the standard deviation for

each feature) our artificial datasets. In order not to benefit from the diagonal shape of the alone eigval and staircase eigval

datasets we also give examples of the bounds of L after a rotation of the data. The rotation aims at preserving the spectrum

while erasing the diagonal structure of the covariance matrix AA⊤. This rotation procedure consists in transforming A into

Q⊤AQ, where Q is the orthogonal matrix given by the QR decomposition of a random squared matrix (with dimension the

same as the one of A) with uniformly random coefficients M , such that M = QR.

Optimal Mini-Batch and Step Sizes for SAGA

5 10 15 20
mini-batch size

20

40

60

80

100

120

140

sm
oo

th
ne

ss
 c

on
st

an
t

(a) uniform, λ = 10
−1.

5 10 15 20
mini-batch size

0

1×10⁴

2×10⁴

3×10⁴

4×10⁴

5×10⁴

sm
oo

th
ne

ss
 c

on
st

an
t

(b) alone eigval, λ = 10
−1.

5 10 15 20
mini-batch size

0

100

200

300

400

500

sm
oo

th
ne

ss
 c

on
st

an
t

(c) staircase eigval, λ = 10
−1.

5 10 15 20
mini-batch size

25

50

75

100

125

sm
oo

th
ne

ss
 c

on
st

an
t

(d) uniform, λ = 10
−3.

5 10 15 20
mini-batch size

0

1×10⁴

2×10⁴

3×10⁴

4×10⁴

5×10⁴

sm
oo

th
ne

ss
 c

on
st

an
t

(e) alone eigval, λ = 10
−3.

5 10 15 20
mini-batch size

0

100

200

300

400

500

sm
oo

th
ne

ss
 c

on
st

an
t

(f) staircase eigval, λ = 10
−3.

Figure 8: Expected smoothness constant L and its upper-bounds as a function of the mini-batch size for unscaled datasets

with λ = 10−1 (top) and λ = 10−3 (bottom).

We observe in Figure 9 that rotations do not affect our estimates of L, because they preserve the spectrum. Scaling

non-diagonal datasets does not change the general shape neither. As predicted, scaling diagonal matrices leads to a particular

case where the spectrum of the covariance matrix is flattened and for all i ∈ [n], Li ≈ Lmax ≈ L̄. This is why we get a

flat simple bound in Figures 9c and 9g. Even after those different types of preprocessing (rotation and scaling) and with

different values of λ, we end up with the same strong observation that the practical estimate is a very sharp approximation

of the expected smoothness constant.

E.2. Experiment 1: estimates of the expected smoothness constant for real datasets

In what folows, we also used publicly available datasets from LIBSVM10 provided by Chang & Lin (2011) and from

the UCI repository11 provided by Dheeru & Karra Taniskidou (2017). We applied ridge regression to the following

datasets: YearPredictionMSD (n = 515, 345, d = 90) from LIBSVM and slice (n = 53, 500, d = 384) from UCI. We

also applied regularized logistic regression for binary classification on ijcnn1 (n = 141, 691, d = 22), covtype.binary

(n = 581, 012, d = 54), real-sim (n = 72, 309, d = 20, 958), rcv1.binary (n = 697, 641, d = 47, 236) and news20.binary

(n = 19, 996, d = 1, 355, 191) from LIBSVM. When a test set was available, we concatenated it with the train set to have

more samples.

One can observe in Figure 10, that for unscaled datasets the Bernstein bound performs better than the simple bound, except

for YearPredictionMSD (n = 515, 345, d = 90) and covtype.binary (n = 581, 012, d = 54). From Figure 11, we observe

that after feature-scaling, the Bernstein bound is always below the simple bound.

E.3. Experiment 2: step size estimates for artificial datasets

In this section we give the step sizes estimate corresponding to the expected smoothness constant, the simple and Bernstein

upper-bounds and the practical estimate for our small artificial datasets. In Figure 12, we show that the practical step size

10
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

11
https://archive.ics.uci.edu/ml/datasets/

Optimal Mini-Batch and Step Sizes for SAGA

estimate is larger than all others. Moreover, for except for small value sof b, our γsimple or γBernstein estimates are larger than

the one proposed in (Hofmann et al., 2015).

E.4. Experiment 2: step size estimates for real datasets

Here we show the step sizes estimate corresponding to the simple and Bernstein upper-bounds and the practical estimate for

real datasets detailed in Appendix E.2. On these real data, unscaled in Figure 13 scaled in Figure 14, we see that the gap

between our step size estimates and γHofmann are even larger. We observe in Figure 13, accordlingly to previous remarks in

Appendix E.2, that simple bound leads to higher step sizes than the Bernstein one. Yet, as noticed before, Figure 14 seems

to show that scaling the data leads to γBernstein larger than γsimple.

E.5. Experiment 3: comparison with previous SAGA settings

In this section we provide more example of the performance of our practical settings compared to previously known

SAGA settings. In Figures 16 to 21 we run our experiments on real datasets introduced in detail in Appendix E.1. SAGA

implementations are run until the suboptimality reaches a relative error of 10−4, except in some cases where the Hofmann’s

exceeded our maximal number of epochs like in Figure 17. In Figure 19, the curves corresponding to Hofmann’s settings are

not displayed because it achieves a total complexity which is too large. Figure 15 shows an example of such a configuration.

These experiments show that our settings (bpractical, γpractical) outperforms whether the classical (b = 1, γDefazio) or the

(b = 20, γHofmann) settings both in terms of epochs and running time. Interestingly enough, Figure 21a exhibits a case for

which our estimate of the optimal mini-batch size (bpractical = 64, 141) is closed to the number of data points (n = 72, 309
for real-sim). So, our method also seems to indicate when to apply gradient descent rather than stochastic gradient methods.

E.6. Experiment 4: optimality of the mini-batch size

This experiment aims to estimate how close is our practical estimate bpractical to the empirical best mini-batch size one could

get running a grid search. We recall that we use the following grid for the mini-batch sizes: {2i, i = 0, . . . , 14}, with

216, 218 and n added in some cases. We show in the log-scaled Figures 22 to 27 the empirical total complexity Ktotal,

e.g., the number of computed gradients to reach a relative error of 10−4, as a function of the mini-batch b.

We always observe a change of regime in the empirical complexity, except in Figure 27a. For small values of b, the

complexity is of the same order of magnitude, then, for values greater than the empirical optimal mini-batch size, the

complexity explodes. The exception of Figure 27a displays a case for which the total complexity is minimized for b ≈ n,

e.g., for which classical gradient descent performs better than SAGA. Our practical settings succesfully predict this behaviour,

like mentioned in Appendix E.5, since bpractical = 64, 141 ≈ n.

This experiment shows that our optimal mini-batch size bpractical correctly designates the largest mini-batch achieving the

best complexity as large as possible, without reaching the regime where the total complexity explodes, or is predicting when

to use gradient descent rather than stochastic methods.

Optimal Mini-Batch and Step Sizes for SAGA

5 10 15 20
mini-batch size

0

100

200

300

400

500

sm
oo

th
ne

ss
 c

on
st

an
t

(a) staircase eigval

5 10 15 20
mini-batch size

0

100

200

300

sm
oo

th
ne

ss
 c

on
st

an
t

(b) staircase eigval rotated

5 10 15 20
mini-batch size

0

20

40

60

80

100

120

sm
oo

th
ne

ss
 c

on
st

an
t

(c) staircase eigval scaled

5 10 15 20
mini-batch size

0

20

40

60

80

100

120

sm
oo

th
ne

ss
 c

on
st

an
t

(d) staircase eigval rotated then scaled

5 10 15 20
mini-batch size

0

1×10⁴

2×10⁴

3×10⁴

4×10⁴

5×10⁴

sm
oo

th
ne

ss
 c

on
st

an
t

(e) alone eigval

5 10 15 20
mini-batch size

0

5.0×10³

1.0×10⁴

1.5×10⁴

sm
oo

th
ne

ss
 c

on
st

an
t

(f) alone eigval rotated

5 10 15 20
mini-batch size

0

20

40

60

80

100

120

sm
oo

th
ne

ss
 c

on
st

an
t

(g) alone eigval scaled

5 10 15 20
mini-batch size

0

200

400

600

800

sm
oo

th
ne

ss
 c

on
st

an
t

(h) alone eigval rotated then scaled

Figure 9: Upper-bounds of the expected smoothness constant L for non-rotated (left) and rotated (right) datasets (λ = 10−3).

Optimal Mini-Batch and Step Sizes for SAGA

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

2×10⁷

3×10⁷

4×10⁷

5×10⁷
sm

oo
th

ne
ss

 c
on

st
an

t

(a) YearPredictionMSD

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

6.0×10⁶

8.0×10⁶

1.0×10⁷

1.2×10⁷

1.4×10⁷

sm
oo

th
ne

ss
 c

on
st

an
t

(b) covtype.binary

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
mini-batch size

20

30

40

50

60

70

sm
oo

th
ne

ss
 c

on
st

an
t

(c) slice

0 3.0×10⁴ 6.0×10⁴ 9.0×10⁴ 1.2×10⁵
mini-batch size

0.1

0.2

0.3

0.4

0.5

0.6

sm
oo

th
ne

ss
 c

on
st

an
t

(d) ijcnn1

0 2×10⁴ 4×10⁴ 6×10⁴
mini-batch size

0.1

0.2

0.3

0.4

sm
oo

th
ne

ss
 c

on
st

an
t

(e) real-sim

0 2×10⁵ 4×10⁵ 6×10⁵
mini-batch size

0.1

0.2

0.3

0.4

sm
oo

th
ne

ss
 c

on
st

an
t

(f) rcv1.binary

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
mini-batch size

0.1

0.2

0.3

0.4

sm
oo

th
ne

ss
 c

on
st

an
t

(g) news20.binary

Figure 10: Upper-bounds of the expected smoothness constant for real unscaled datasets (λ = 10−1).

Optimal Mini-Batch and Step Sizes for SAGA

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

25

50

75

100

125

sm
oo

th
ne

ss
 c

on
st

an
t

(a) YearPredictionMSD

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

5

10

15

20

sm
oo

th
ne

ss
 c

on
st

an
t

(b) covtype.binary

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
mini-batch size

100

200

300

400

500

sm
oo

th
ne

ss
 c

on
st

an
t

(c) slice

0 3.0×10⁴ 6.0×10⁴ 9.0×10⁴ 1.2×10⁵
mini-batch size

2

4

6

8

sm
oo

th
ne

ss
 c

on
st

an
t

(d) ijcnn1

Figure 11: Upper-bounds of the expected smoothness constant of L for real feature-scaled datasets (λ = 10−1).

5 10 15 20
mini-batch size

0.005

0.010

0.015

0.020

st
ep

 si
ze

(a) uniform.

5 10 15 20
mini-batch size

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

st
ep

 si
ze

(b) alone eigval.

5 10 15 20
mini-batch size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

st
ep

 si
ze

(c) staircase eigval.

Figure 12: Step size estimates as a function the mini-batch size for unscaled artificial datasets (λ = 10−1).

Optimal Mini-Batch and Step Sizes for SAGA

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

0

2.0×10⁻⁹

4.0×10⁻⁹

6.0×10⁻⁹

8.0×10⁻⁹

1.0×10⁻⁸

1.2×10⁻⁸

st
ep

 si
ze

(a) YearPredictionMSD

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

1×10⁻⁸

2×10⁻⁸

3×10⁻⁸

4×10⁻⁸

5×10⁻⁸

st
ep

 si
ze

(b) covtype.binary

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
mini-batch size

0.000

0.002

0.004

0.006

0.008

0.010

0.012

st
ep

 si
ze

(c) slice

0 3.0×10⁴ 6.0×10⁴ 9.0×10⁴ 1.2×10⁵
mini-batch size

0.0

0.5

1.0

1.5

2.0

2.5

st
ep

 si
ze

(d) ijcnn1

0 2×10⁴ 4×10⁴ 6×10⁴
mini-batch size

0

2

4

6

8

st
ep

 si
ze

(e) real-sim

0 2×10⁵ 4×10⁵ 6×10⁵
mini-batch size

0

2

4

6

8

st
ep

 si
ze

(f) rcv1.binary

0 5.0×10³ 1.0×10⁴ 1.5×10⁴ 2.0×10⁴
mini-batch size

0

1

2

3

4

5

6

st
ep

 si
ze

(g) news20.binary

Figure 13: Step size estimates as a function the mini-batch size for real unscaled datasets (λ = 10−1).

Optimal Mini-Batch and Step Sizes for SAGA

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

0.000

0.005

0.010

0.015

0.020
st

ep
 si

ze

(a) YearPredictionMSD

0 1×10⁵ 2×10⁵ 3×10⁵ 4×10⁵ 5×10⁵
mini-batch size

0.00

0.05

0.10

0.15

0.20

0.25

st
ep

 si
ze

(b) covtype.binary

0 1×10⁴ 2×10⁴ 3×10⁴ 4×10⁴ 5×10⁴
mini-batch size

0.000

0.001

0.002

0.003

0.004

st
ep

 si
ze

(c) slice

0 3.0×10⁴ 6.0×10⁴ 9.0×10⁴ 1.2×10⁵
mini-batch size

0.0

0.1

0.2

0.3

st
ep

 si
ze

(d) ijcnn1

Figure 14: Step size estimates as a function the mini-batch size for real feature-scaled datasets (λ = 10−1).

0 100 200 300 400
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =5.53e−06
bpractical =26 , γpractical =1.15e−04
bpractical =26 , γgridsearch=1.22e−04
bHofmann=20 , γHofmann =4.54e−06

Figure 15: Poor performance of Hofmann’s settings for the feature-scaled dataset slice (λ = 10−1).

Optimal Mini-Batch and Step Sizes for SAGA

0 1 2 3 4 5 6
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =2.34e−05
bpractical =5370 , γpractical =3.74e−01
bpractical =5370 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =1.21e−03

0 5 10 15 20 25
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =2.34e−05
bpractical =5370 , γpractical =3.74e−01
bpractical =5370 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =1.21e−03

(a) λ = 10
−1

0 2 4 6 8 10 12
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.73e−03
bpractical =57 , γpractical =1.64e−01
bpractical =57 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =4.77e−03

0.0 2.5 5.0 7.5 10.0
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.73e−03
bpractical =57 , γpractical =1.64e−01
bpractical =57 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =4.77e−03

(b) λ = 10
−3

Figure 16: Performance of SAGA implementations for the feature-scaled dataset ijcnn1.

0 50 100 150
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =3.13e−06
bpractical =15304 , γpractical =6.20e−02
bpractical =15304 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =5.12e−06

0 250 500 750 1000
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =3.13e−06
bpractical =15304 , γpractical =6.20e−02
bpractical =15304 , γgridsearch=2.00e+00
bHofmann=20 , γHofmann =5.12e−06

(a) λ = 10
−1

0 100 200 300 400 500 600
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.80e−06
bpractical =158 , γpractical =8.13e−04
bpractical =158 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =5.16e−06

0 1000 2000 3000 4000
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.80e−06
bpractical =158 , γpractical =8.13e−04
bpractical =158 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =5.16e−06

(b) λ = 10
−3

Figure 17: Performance of SAGA implementations for the feature-scaled dataset covtype.binary.

Optimal Mini-Batch and Step Sizes for SAGA

0 5 10 15
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.14e−06
bpractical =1233 , γpractical =7.38e−03
bpractical =1233 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =8.54e−06

0 20 40 60 80 100 120
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.14e−06
bpractical =1233 , γpractical =7.38e−03
bpractical =1233 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =8.54e−06

(a) λ = 10
−1

0 5 10 15 20
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.13e−05
bpractical =13 , γpractical =1.12e−04
bpractical =13 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =8.64e−06

0 25 50 75 100 125
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.13e−05
bpractical =13 , γpractical =1.12e−04
bpractical =13 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =8.64e−06

(b) λ = 10
−3

Figure 18: Performance of SAGA implementations for the feature-scaled dataset YearPredictionMSD.

0 5 10 15 20
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =5.53e−06
bpractical =26 , γpractical =1.15e−04
bpractical =26 , γgridsearch=1.22e−04

0 25 50 75 100
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =5.53e−06
bpractical =26 , γpractical =1.15e−04
bpractical =26 , γgridsearch=1.22e−04

(a) λ = 10
−1

0 10 20 30 40 50
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.06e−06
bpractical =1 , γpractical =4.55e−06
bpractical =1 , γgridsearch=7.63e−06

0 50 100 150 200 250
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.06e−06
bpractical =1 , γpractical =4.55e−06
bpractical =1 , γgridsearch=7.63e−06

(b) λ = 10
−3

Figure 19: Performance of SAGA implementations for the feature-scaled dataset slice.

Optimal Mini-Batch and Step Sizes for SAGA

0 1 2 3 4
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.10e−05
bpractical =70 , γpractical =1.20e−02
bpractical =70 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =1.59e−03

0 5 10 15 20 25
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =6.10e−05
bpractical =70 , γpractical =1.20e−02
bpractical =70 , γgridsearch=3.13e−02
bHofmann=20 , γHofmann =1.59e−03

(a) λ = 10
−1

0 1 2 3 4 5
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.98e−03
bpractical =2 , γpractical =3.72e−03
bpractical =2 , γgridsearch=7.81e−03

0 20 40 60 80
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =1.98e−03
bpractical =2 , γpractical =3.72e−03
bpractical =2 , γgridsearch=7.81e−03

(b) λ = 10
−3

Figure 20: Performance of SAGA implementations for the unscaled dataset slice.

0 2 4 6 8 10 12
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.61e−05
bpractical =64141 , γpractical =8.87e+00
bpractical =64141 , γgridsearch=8.00e+00
bHofmann=20 , γHofmann =2.76e−03

0 500 1000 1500 2000
time

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.61e−05
bpractical =64141 , γpractical =8.87e+00
bpractical =64141 , γgridsearch=8.00e+00
bHofmann=20 , γHofmann =2.76e−03

(a) λ = 10
−1

0 2 4 6 8
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.59e−03
bpractical =5266 , γpractical =7.19e+01
bpractical =5266 , γgridsearch=5.12e+02
bHofmann=20 , γHofmann =2.39e−01

0 2 4 6 8
epochs

10−4

10−3

10−2

10−1

100

re
sid

ua
l

bDefazio =1 , γDefazio =4.59e−03
bpractical =5266 , γpractical =7.19e+01
bpractical =5266 , γgridsearch=5.12e+02
bHofmann=20 , γHofmann =2.39e−01

(b) λ = 10
−3

Figure 21: Performance of SAGA implementations for the unscaled dataset real-sim.

Optimal Mini-Batch and Step Sizes for SAGA

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4
65

53
6

14
16

91

mini-batch size

105.7

106.0

106.3

106.6

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 4
bpractical = 5370

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

105.5

106.0

106.5

107.0

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 1
bpractical = 57

(b) λ = 10
−3

Figure 22: Empirical total complexity versus mini-batch size for the feature-scaled ijcnn1 dataset.

1 2 4 8 16 32 64 12
8
25

6
10

24
40

96
16

38
4

65
53

6

26
21

44

58
10

12

mini-batch size

106.8

107.0

107.2

107.4

107.6

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 16384
bpractical = 15304

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8
25

6
10

24
40

96
16

38
4

65
53

6

26
21

44

58
10

12

mini-batch size

107.75

108.00

108.25

108.50

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 1
bpractical = 158

(b) λ = 10
−3

Figure 23: Empirical total complexity versus mini-batch size for the feature-scaled covtype.binary dataset.

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

105.9

106.0

106.1

106.2

106.3

106.4

106.5

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 256
bpractical = 1233

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

105.8

106.0

106.2

106.4

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 1
bpractical = 13

(b) λ = 10
−3

Figure 24: Empirical total complexity versus mini-batch size for the feature-scaled YearPredictionMSD dataset.

Optimal Mini-Batch and Step Sizes for SAGA

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

106.25

106.50

106.75

107.00

107.25
em

pi
ric

al
 to

ta
l c

om
pl

ex
ity bempirical = 2

bpractical = 26

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

106.50

106.75

107.00

107.25

107.50

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 1
bpractical = 1

(b) λ = 10
−3

Figure 25: Empirical total complexity versus mini-batch size for the feature-scaled slice dataset.

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

105.0

105.5

106.0

106.5

107.0

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 2
bpractical = 70

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4

mini-batch size

105.5

106.0

106.5

107.0

107.5

108.0

108.5

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 1
bpractical = 2

(b) λ = 10
−3

Figure 26: Empirical total complexity versus mini-batch size for the unscaled slice dataset.

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4
65

53
6

mini-batch size

105.2

105.3

105.4

105.5

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity

bempirical = 65536
bpractical = 64141

(a) λ = 10
−1

1 2 4 8 16 32 64 12
8

25
6

10
24

40
96

16
38

4
65

53
6

mini-batch size

105.50

105.75

106.00

106.25

em
pi

ric
al

 to
ta

l c
om

pl
ex

ity bempirical = 4096
bpractical = 5266

(b) λ = 10
−3

Figure 27: Empirical total complexity versus mini-batch size for the unscaled real-sim dataset.

