Supplements

A. Proof of Theorem 1

Following the definition, we can derive the PL for the PLA-GGM as:

$$
\begin{aligned}
\ell_{P L}\left(\left\{\mathbf{z}_{i}, g_{i}\right\}_{i \in[n]} ; \mathbf{R}(\cdot), \Omega_{0}\right) \propto & \sum_{i=1}^{n} \sum_{j=1}^{p}\left\{z_{i j}\left(\Omega_{i j j}+\sum_{j^{\prime} \neq j} \Omega_{i j j^{\prime}} z_{i j} z_{i j^{\prime}}\right)-\frac{1}{2} z_{i j}^{2}\right. \\
& \left.-\frac{1}{2}\left(\Omega_{i j j}+\sum_{j^{\prime} \neq j} \Omega_{i j j^{\prime}} z_{i j} z_{i j^{\prime}}\right)^{2}\right\}
\end{aligned}
$$

Then Lemma 1 can be proved by the definition of $\mathbf{z}_{i,-j}$.

B. Proof of Lemma 2

According to the analysis in Section 3.1, we treat the PL as p partially-linear additive linear regressions. Then, for each regression, we can derive $\hat{M}_{i j}$ as the estimation to the smooth part following the rationale in (Fan et al., 2005). Combining the results for every regression, we can derive Lemma 2.

C. Proof of Theorem 1

In this Section, we prove the \sqrt{n}-sparsistency of the L_{1}-regularized MPPLE by following the widely-used primal-dual witness proof technique (Wainwright, 2009; Ravikumar et al., 2010; Yang \& Ravikumar, 2011; Yang et al., 2015a). PDW is characterized by the following Lemma 3:
Lemma 3. Let $\hat{\boldsymbol{\Omega}}_{0}$ be an optimal solution to (5), and $\hat{\mathbf{Z}}$ be the corresponding dual solution. If $\hat{\mathbf{Z}}$ satisfies $\left\|\hat{\mathbf{Z}}_{N}\right\|_{\infty}<1$, then any given optimal solution to (5) $\tilde{\boldsymbol{\Omega}}_{0}$ satisfies $\tilde{\boldsymbol{\Omega}}_{0 I}=\mathbf{0}$. Moreover, if $\mathbf{H}_{S S}$ is positive definite, then the solution to (5) is unique.

Proof. Specifically, following the same rationale as Lemma 1 in Wainwright 2009, Lemma 1 in Ravikumar et al. 2010, and Lemma 2 in Yang \& Ravikumar 2011, we can derive Lemma 3 characterizing the optimal solution of (5).

Bound $\left\|\nabla F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}$
Before we use the PDW, we first provide a Lemma bounding $\left\|\nabla F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}$, which has been shown to be vital for PDW (Wainwright, 2009; Ravikumar et al., 2010; Yang \& Ravikumar, 2011; Yang et al., 2015a).
Lemma 4. Let $r:=4 C_{5} \lambda$. For any $\epsilon_{d}>0$, with probability of at least $1-\epsilon_{d}$, there exists $C_{4}>0$ and $N_{d}>0$ satisfying the following two inequalities:

$$
\begin{gather*}
\left\|\nabla F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty} \leq C_{4} \sqrt{\frac{\log p}{n}} \tag{8}\\
\left\|\tilde{\boldsymbol{\Theta}}_{S}-\boldsymbol{\Theta}_{S}^{*}\right\|_{\infty} \leq r \tag{9}
\end{gather*}
$$

for $n>N_{d}$.
Proof. We prove (8) and (9) in turn.
Proof of (8)
To begin with, we prove (8). We define

$$
\lambda_{i j}^{*}=\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j} \boldsymbol{\Omega}_{0 \cdot j}^{*}
$$

We use the F to denote the PPL defined in Definition 1. Then, the derivative of $F\left(\boldsymbol{\Omega}_{0 . j}^{*}\right)$ is:

$$
\begin{align*}
\frac{\partial F\left(\boldsymbol{\Omega}_{0}^{*}\right)}{\partial \Omega_{0 j^{\prime} j}^{*}}= & \frac{\sum_{i=1}^{n}\left\{-\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{y}_{j}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j}\right]_{j^{\prime}}+\lambda_{i j}^{*}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j}\right]_{j^{\prime}}\right\}}{n} \tag{10}\\
& +\frac{\sum_{i=1}^{n}\left\{-\left(\mathbf{1}_{i}-\mathbf{S}_{i j^{\prime}}\right)^{\top} \mathbf{y}_{j^{\prime}}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j^{\prime}}\right)^{\top} \mathbf{x}_{j^{\prime}}\right]_{j}+\lambda_{i j^{\prime}}^{*}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j^{\prime}}\right]_{j}\right\}}{n}
\end{align*}
$$

where $[\cdot]_{j}$ denotes the $j^{\text {th }}$ component of the vector. For the ease of presentation, we define

$$
\mathbf{y}_{j}^{\prime}=\left[\begin{array}{c}
\left(\mathbf{1}_{1}-\mathbf{S}_{1 j}\right)^{\top} \mathbf{y}_{j} \\
\vdots \\
\left(\mathbf{1}_{n}-\mathbf{S}_{n j}\right)^{\top} \mathbf{y}_{j}
\end{array}\right] \text { and } \mathbf{x}_{j}^{\prime}=\left[\begin{array}{c}
\left(\mathbf{1}_{1}-\mathbf{S}_{1 j}\right)^{\top} \mathbf{x}_{j} \\
\vdots \\
\left(\mathbf{1}_{n}-\mathbf{S}_{n j}\right)^{\top} \mathbf{x}_{j}
\end{array}\right]
$$

Then, we consider

$$
\begin{equation*}
\frac{\mathbf{x}_{j}^{\prime}{ }^{\top} \mathbf{x}_{j}^{\prime} \mathbf{\Omega}_{0 \cdot j}^{*}-\mathbf{x}_{j}^{\prime \top} \mathbf{y}_{j}^{\prime}}{n} \tag{11}
\end{equation*}
$$

whose $j^{\text {th }}$ component is just the target value

$$
\frac{\sum_{i=1}^{n}\left\{-\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{y}_{j}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j}\right]_{j^{\prime}}+\lambda_{i j}^{*}\left[\left(\mathbf{1}_{i}-\mathbf{S}_{i j}\right)^{\top} \mathbf{x}_{j}\right]_{j^{\prime}}\right\}}{n}
$$

Therefore, we focus on bounding (11). Then,

$$
\begin{aligned}
\frac{\mathbf{x}_{j}^{\prime \top} \mathbf{x}_{j}^{\prime} \mathbf{\Omega}_{0 \cdot j}^{*}-\mathbf{x}_{j}^{\prime \top} \mathbf{y}_{j}^{\prime}}{n} & =\frac{\mathbf{x}_{j}^{\prime \top} \mathbf{x}_{j}^{\prime}\left[\mathbf{\Omega}_{0 \cdot j}^{*}-\left(\mathbf{x}_{j}^{\prime \top} \mathbf{x}_{j}^{\prime}\right)^{-1} \mathbf{x}_{j}^{\prime \top} \mathbf{y}_{j}^{\prime}\right]}{n} \\
& =\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right)\left(\mathbf{M}_{j}+\boldsymbol{\epsilon}_{j}\right)}{n}
\end{aligned}
$$

where the second equality is due to Lemma 5.
We fist study $\frac{\mathbf{X}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}$: according ot Lemma 8, for any $\epsilon_{a}>0$, there exists $\delta_{a}>0$ and $N_{a}>0$ satisfying

$$
\mathbf{P}\left\{\left\|\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}\right\|_{\infty}>\delta_{a}\left[\frac{\log \left(\frac{1}{h}\right)}{n h}+h^{4}+2 h^{2} \sqrt{\frac{\log \left(\frac{1}{h}\right)}{n h}}\right]\right\}<\epsilon_{a}
$$

with $n>N_{a}$.
According to Assumption 1

$$
\begin{equation*}
\mathrm{P}\left\{\left\|\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}\right\|_{\infty}>\delta_{a} C_{1} \sqrt{\frac{\log p}{n}}\right\}<\epsilon_{a} \tag{12}
\end{equation*}
$$

Now, we study $\frac{\mathbf{x}_{j}^{\prime}{ }^{\top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \epsilon_{j}}{n}$. According to Lemma 9, we have

$$
\begin{array}{r}
\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}}{n}=\sum_{i=1}^{n}\left\{\mathbf{x}_{i j}-\mathbb{E}^{\top}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \mathbb{E}^{-1}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \tilde{\mathbf{x}}_{i j}\right\} \\
\epsilon_{i j}\left(1+o_{p}(1)\right) / n
\end{array}
$$

uniformly for j. Note that $\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}}{n}$ is a $p \times 1$ vector. Therefore, for the $j^{\text {th }}$ component, we have

$$
\begin{align*}
& \left|\left[\frac{\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}}{n}\right]_{j^{\prime}}\right| \\
\leq & \left|\sum_{i: g^{i} \leq g^{*}}\left(1-\mathbb{1}_{g^{i}>g^{*}}^{2}\right) z_{i j^{\prime}} \epsilon_{i j}\right|\left(1+\left|o_{p}(1)\right|\right) / n \tag{13}\\
= & \frac{1}{2 n} \left\lvert\, \sum_{i=1}\left(\left.1-\mathbb{1}_{g_{i}>g^{*}}^{2}\left[\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1-\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}+1\right] \right\rvert\,\left(1+\left|o_{p}(1)\right|\right)\right.\right.
\end{align*}
$$

It can be shown that $\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}$ and $\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}$ are independent and follow chi-squared distribution with degree equal to 1.

By Lemma 1 in (Laurent \& Massart, 2000), the linear combinition of chi-squared random variables satisfies:

$$
\begin{gathered}
\mathrm{P}\left\{\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \geq 2 \sqrt{n x}+2 \epsilon_{c}\right\} \leq \exp \left(-\epsilon_{c}\right) \\
\mathrm{P}\left\{\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \leq-2 \sqrt{n x}\right\} \leq \exp \left(-\epsilon_{c}\right) \\
\mathrm{P}\left\{-\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \leq-2 \sqrt{n x}-2 \epsilon_{c}\right\} \leq \exp \left(-\epsilon_{c}\right)
\end{gathered}
$$

and

$$
\mathrm{P}\left\{-\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \geq 2 \sqrt{n x}\right\} \leq \exp \left(-\epsilon_{c}\right)
$$

for any $\epsilon_{c}>0$. Combing the previous four probabilistic bounds, we can derive

$$
\begin{align*}
\mathrm{P}\left\{\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)[\right. & {\left[\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] } \\
& \left.-\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \geq 4 \sqrt{n \epsilon}+2 \epsilon_{c}\right\} \leq \exp \left(-2 \epsilon_{c}\right) \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& \mathrm{P}\left\{\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}+\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right]\right. \\
&\left.-\sum_{i=1}\left(1-\mathbb{1}_{g_{i}>g^{*}}^{2}\right)\left[\left(\frac{z_{i j^{\prime}}-\epsilon_{i j}}{\sqrt{2}}\right)^{2}-1\right] \leq-4 \sqrt{n \epsilon}-2 \epsilon_{c}\right\} \leq \exp \left(-2 \epsilon_{c}\right) \tag{15}
\end{align*}
$$

Taking (14) and (15) into (13), we can derive

$$
\begin{equation*}
\mathrm{P}\left\{\left|\left[\frac{\mathbf{X}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}}{n}\right]_{j^{\prime}}\right| \geq\left(2 \sqrt{\frac{\epsilon_{c}}{n}}+\frac{\epsilon_{c}}{n}\right)\left(1+\left|o_{p}(1)\right|\right)\right\} \leq 2 \exp \left(-2 \epsilon_{c}\right) \tag{16}
\end{equation*}
$$

Then, by the definition of $o_{p}(1)$, for any $\epsilon_{b}>0$, there exists N_{b} so that for $n>N_{b}$:

$$
\begin{equation*}
\mathrm{P}\left\{\left|o_{p}(1)\right| \geq 1\right\} \leq \epsilon_{b} \tag{17}
\end{equation*}
$$

Combining (16) and (17), we derive

$$
\begin{equation*}
\mathrm{P}\left\{\left\|\frac{\mathbf{X}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}\right\|_{\infty} \geq\left(4 \sqrt{\frac{\epsilon_{c}}{n}}+2 \frac{\epsilon_{c}}{n}\right)\right\} \leq 2 p \exp \left(-2 \epsilon_{c}\right)+\epsilon_{b} \tag{18}
\end{equation*}
$$

by a union bound. Eventually, according to (12) and (18), and by setting $\epsilon_{c}=2 \log p$ we prove:

$$
\left\|\frac{\mathbf{x}_{j}^{\prime \top} \mathbf{x}_{j}^{\prime} \boldsymbol{\Omega}_{0 \cdot j}^{*}-\mathbf{x}_{j}^{\prime \top} \mathbf{y}_{j}^{\prime}}{n}\right\|_{\infty} \leq\left(6+\delta_{a} C_{1}\right) \sqrt{\frac{2 \log p}{n}}
$$

with probability larger than $1-\epsilon_{b}-\epsilon_{a}-2 p^{-1}$. Thus, for any $\epsilon_{d}>0$, there exists $C_{4}>0$ and $N_{d}>0$

$$
\left\|\nabla F\left(\boldsymbol{\Theta}^{*}\right)\right\|_{\infty} \leq C_{4} \sqrt{\frac{\log p}{n}}
$$

with probability larger than $1-\epsilon_{d}$, for $n>N_{d}$.
Proof of (9)
To prove (9), we use the fixed point method by defining a map $G\left(\boldsymbol{\Delta}_{S}\right):=-\mathbf{H}_{S S}^{-1}\left[\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0 S}^{*}+\boldsymbol{\Delta}_{S}\right)+\lambda \hat{\mathbf{Z}}_{S}\right]+\boldsymbol{\Delta}_{S}$. If $\|\boldsymbol{\Delta}\|_{\infty} \leq r$, by Taylor expansion of $\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}+\boldsymbol{\Delta}\right)$ centered at $\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)$,

$$
\begin{aligned}
\left\|G\left(\boldsymbol{\Delta}_{S}\right)\right\|_{\infty} & =\left\|-\mathbf{H}_{S S}^{-1}\left[\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0 S}^{*}\right)+\mathbf{H}_{S S} \boldsymbol{\Delta}_{S}+\boldsymbol{R}_{S}(\boldsymbol{\Delta})+\lambda \hat{\mathbf{Z}}_{S}\right]+\boldsymbol{\Delta}_{S}\right\|_{\infty} \\
& =\left\|-\mathbf{H}_{S S}^{-1}\left(\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0 S}^{*}\right)+\boldsymbol{R}_{S}(\boldsymbol{\Delta})+\lambda \hat{\mathbf{Z}}_{S}\right)\right\|_{\infty} \\
& \leq\left\|\mathbf{H}_{S S}^{-1}\right\|_{\infty}\left(\left\|\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0 S}^{*}\right)\right\|_{\infty}+\left\|R_{S}(\boldsymbol{\Delta})\right\|_{\infty}+\lambda\left\|\hat{\mathbf{Z}}_{S}\right\|_{\infty}\right) \\
& \leq C_{2}\left(\lambda+C_{3} r^{2}+\lambda\right)=C_{2} C_{3} r^{2}+2 C_{2} \lambda
\end{aligned}
$$

where the inequality is due to Assumption 4 and Assumption 5, and $\left\|\nabla_{S} F\left(\Theta^{*}\right)\right\|_{\infty} \leq \lambda$ with a high probability, according to (8). Then, based on the definition of r, we can derive the upper bound of $\left\|G\left(\boldsymbol{\Delta}_{S}\right)\right\|_{\infty}$ as $\left\|G\left(\boldsymbol{\Delta}_{S}\right)\right\|_{\infty} \leq r / 2+r / 2=r$.
Therefore, according to the fixed point theorem (Ortega \& Rheinboldt, 2000; Yang \& Ravikumar, 2011), there exists $\boldsymbol{\Delta}_{S}$ satisfying $G\left(\boldsymbol{\Delta}_{S}\right)=\boldsymbol{\Delta}_{S}$, which indicates $\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}+\boldsymbol{\Delta}\right)+\lambda \hat{\mathbf{Z}}_{S}=\mathbf{0}$. The optimal solution to (20) is unique, and thus $\tilde{\boldsymbol{\Delta}}_{S}=\boldsymbol{\Delta}_{S}$. Therefore, $\left\|\tilde{\boldsymbol{\Delta}}_{S}\right\|_{\infty} \leq r$, with probability larger than $1-\epsilon$.

PDW

By Lemma 3, we can prove the sparsistency by building an optimal solution to (5) satisfying the strict dual feasibility (SDF) defined as $\left\|\hat{\mathbf{Z}}_{N}\right\|_{\infty}<1$, which is summarized. Therefore, we now build a solution by solving a restricted problem.

Solve a Restricted Problem

First of all, we derive the KKT condition of (5):

$$
\begin{equation*}
\boldsymbol{\nabla} F\left(\hat{\boldsymbol{\Omega}}_{0}\right)+\lambda \hat{\mathbf{Z}}=\mathbf{0} \tag{19}
\end{equation*}
$$

To construct an optimal primal-dual pair solution, we define $\tilde{\boldsymbol{\Omega}}_{0}$ as an optimal solution to the restricted problem:

$$
\begin{equation*}
\tilde{\boldsymbol{\Omega}}_{0}:=\min _{\boldsymbol{\Omega}_{0}} F\left(\boldsymbol{\Omega}_{0}\right)+\lambda\left\|\boldsymbol{\Omega}_{0}\right\|_{1} \tag{20}
\end{equation*}
$$

with $\boldsymbol{\Omega}_{0 N}=\mathbf{0}$. $\tilde{\boldsymbol{\Omega}}_{0}$ is unique due to Lemma 3. Then, we define the subgradient corresponding to $\tilde{\boldsymbol{\Omega}}_{0}$ as $\tilde{\mathbf{Z}}$. Therefore, $\left(\tilde{\boldsymbol{\Omega}}_{0}, \tilde{\mathbf{Z}}\right)$ is a pair of optimal solutions to the restricted problem (20). $\tilde{\mathbf{Z}}_{S}$ is determined according to the values of $\tilde{\boldsymbol{\Omega}}_{0 S}$ via the KKT conditions of (20). Thus we have

$$
\begin{equation*}
\boldsymbol{\nabla}_{S} F(\tilde{\boldsymbol{\Theta}})+\lambda \tilde{\mathbf{Z}}_{S}=\mathbf{0} \tag{21}
\end{equation*}
$$

where ∇_{S} represents the gradient components with respect to S. Letting $\hat{\boldsymbol{\Omega}}_{0}=\tilde{\boldsymbol{\Omega}}_{0}$, we determine $\tilde{\mathbf{Z}}_{N}$ according to (19). It now remains to show that $\tilde{\mathbf{Z}}_{N}$ satisfies SDF.

SDF

Now, we demonstrate that $\tilde{\boldsymbol{\Theta}}$ and $\tilde{\mathbf{Z}}$ satisfy SDF. We define $\tilde{\boldsymbol{\Delta}}:=\tilde{\boldsymbol{\Theta}}-\boldsymbol{\Theta}^{*}$. By (21), and by the Taylor expansion of $\boldsymbol{\nabla}_{S} F\left(\tilde{\boldsymbol{\Omega}}_{0}\right)$, we have that

$$
\mathbf{H}_{S S} \tilde{\boldsymbol{\Delta}}_{S}+\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)+\boldsymbol{R}_{S}(\tilde{\boldsymbol{\Delta}})+\lambda \tilde{\mathbf{Z}}_{S}=\mathbf{0}
$$

which means

$$
\begin{equation*}
\tilde{\boldsymbol{\Delta}}_{S}=\mathbf{H}_{S S}^{-1}\left[-\nabla_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)-\boldsymbol{R}_{S}(\tilde{\boldsymbol{\Delta}})-\lambda \tilde{\mathbf{Z}}_{S}\right], \tag{22}
\end{equation*}
$$

where $\mathbf{H}_{S S}$ is positive definite and hence invertible.
By the definition of $\tilde{\Omega}_{0}$ and $\tilde{\mathbf{Z}}$,

$$
\begin{equation*}
\boldsymbol{\nabla} F\left(\tilde{\boldsymbol{\Omega}}_{0}\right)+\lambda \tilde{\mathbf{Z}}=\mathbf{0} \Rightarrow \boldsymbol{\nabla} F\left(\boldsymbol{\Omega}_{0}^{*}\right)+\mathbf{H} \tilde{\boldsymbol{\Delta}}+\boldsymbol{R}\left(\tilde{\boldsymbol{\Omega}}_{0}\right)+\lambda \tilde{\mathbf{Z}}=\mathbf{0} \Rightarrow \boldsymbol{\nabla}_{N} F(\tilde{\boldsymbol{\Theta}})+\mathbf{H}_{N S} \tilde{\boldsymbol{\Delta}}_{S}+\boldsymbol{R}_{N}(\tilde{\boldsymbol{\Delta}})+\lambda \tilde{\mathbf{Z}}_{N}=\mathbf{0} . \tag{23}
\end{equation*}
$$

Due to (22),

$$
\begin{aligned}
\lambda\left\|\tilde{\mathbf{Z}}_{N}\right\|_{\infty} & =\left\|-\mathbf{H}_{N S} \tilde{\boldsymbol{\Delta}}_{S}-\boldsymbol{\nabla}_{N} F\left(\boldsymbol{\Omega}_{0}^{*}\right)-\boldsymbol{R}_{N}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty} \\
& \leq\left\|\mathbf{H}_{N S} \mathbf{H}_{S S}^{-1}\left[-\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)-\boldsymbol{R}_{S}(\tilde{\boldsymbol{\Delta}})-\lambda \tilde{\mathbf{Z}}_{S}\right]\right\|_{\infty}+\left\|\boldsymbol{\nabla}_{N} F\left(\boldsymbol{\Omega}_{0}^{*}\right)+\boldsymbol{R}_{N}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty} \\
& \leq\left\|\mathbf{H}_{N S} \mathbf{H}_{S S}^{-1}\right\|_{\infty}\left\|\boldsymbol{\nabla}_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)+\boldsymbol{R}_{S}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty}+\left\|\mathbf{H}_{N S} \mathbf{H}_{S S}^{-1}\right\|_{\infty}\left\|\lambda \tilde{\mathbf{Z}}_{S}\right\|_{\infty}+\left\|\boldsymbol{\nabla}_{N} F\left(\boldsymbol{\Omega}_{0}^{*}\right)+\boldsymbol{R}_{N}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty}
\end{aligned} .
$$

Further, we use the Assumption 4,

$$
\begin{align*}
\lambda\left\|\tilde{\mathbf{Z}}_{N}\right\|_{\infty} & \leq(1-\alpha)\left(\left\|\nabla_{S} F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}+\left\|\boldsymbol{R}_{S}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty}\right)+(1-\alpha) \lambda+\left(\left\|\nabla_{N} F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}+\left\|\boldsymbol{R}_{N}(\tilde{\boldsymbol{\Delta}})\right\|_{\infty}\right) \\
& \leq(2-\alpha)\left(\left\|\nabla F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}+\|\boldsymbol{R}(\tilde{\boldsymbol{\Delta}})\|_{\infty}\right)+(1-\alpha) \lambda \tag{24}
\end{align*}
$$

where we have used in the first inequality, and the third inequality is due to Assumption 4.
Now, we study $\left\|\nabla F\left(\boldsymbol{\Omega}_{0}^{*}\right)\right\|_{\infty}$.By Lemma 4 and the assumption on λ in Theorem 1, $\left\|\nabla F\left(\boldsymbol{\Theta}^{*}\right)\right\|_{\infty} \leq \frac{\alpha C_{4}}{4} \sqrt{\frac{\log p}{n}} \leq \frac{\alpha \lambda}{4}$, with probability larger than $1-\epsilon_{d}$.
It remains to control $\|\boldsymbol{R}(\tilde{\boldsymbol{\Delta}})\|_{\infty}$. According to Assumption 5 and Lemma 4,

$$
\begin{equation*}
\|\boldsymbol{R}(\tilde{\boldsymbol{\Delta}})\|_{\infty} \leq C_{3}\|\boldsymbol{\Delta}\|_{\infty}^{2} \leq C_{3} r^{2} \leq C_{3}\left(4 C_{2} \lambda\right)^{2}=\lambda \frac{64 C_{2}^{2} C_{3}}{\alpha} \frac{\alpha \lambda}{4} \leq\left(C_{5} \sqrt{\frac{\log p}{n}}\right) \frac{64 C_{2}^{2} C_{3}}{\alpha} \frac{\alpha \lambda}{4}, \tag{25}
\end{equation*}
$$

where in the last inequality we have used the assumption $\lambda \leq C_{5} \sqrt{\frac{\log p}{n}}$ in Theorem 1. Therefore, when we choose $n \geq\left(64 C_{5} C_{2}^{2} C_{3} / \alpha\right)^{2} \log p$ in Theorem 1, from (25), we can conclude that $\|\boldsymbol{R}(\tilde{\boldsymbol{\Delta}})\|_{\infty} \leq \frac{\alpha \lambda}{4}$. As a result, $\lambda\left\|\hat{\mathbf{Z}}_{N}\right\|_{\infty}$ can be bounded by $\lambda\left\|\tilde{\mathbf{Z}}_{N}\right\|_{\infty}<\alpha \lambda / 2+\alpha \lambda / 2+(1-\alpha) \lambda=\lambda$. Combined with Lemma 3, we demonstrate that any optimal solution of (5) satisfies $\dot{\boldsymbol{\Theta}}_{N}=\mathbf{0}$. Furthermore, (9) controls the difference between the optimal solution of (5) and the real parameter by $\left\|\tilde{\boldsymbol{\Delta}}_{S}\right\|_{\infty} \leq r$, by the fact that $r \leq\left\|\boldsymbol{\Theta}_{S}^{*}\right\|_{\infty}$ in Theorem 1, $\hat{\boldsymbol{\Theta}}_{S}$ shares the same sign with $\boldsymbol{\Theta}_{S}^{*}$.

Auxiliary Lemmas

In this section, we provide and prove the used auxiliary lemmas.
Lemma 5. For the graphical model defined in Section 2 parameterized by $\boldsymbol{\Omega}_{0}^{*}$, the conditional distribution of $Z_{i j}$ follows

$$
\left(Z_{i j} \mid G_{i}=g_{i}\right) \sim \mathbf{Z}_{i,-j}^{\top} \boldsymbol{\Omega}_{0 \cdot j}+M_{i j}+\epsilon_{i j},
$$

where

$$
\left[\mathbf{Z}_{i,-j}\right]_{j^{\prime}}= \begin{cases}Z_{i j^{\prime}} & j^{\prime} \neq j \\ 1 & j^{\prime}=j\end{cases}
$$

$\epsilon_{i j}$'s follow the standard normal distribution, and $\epsilon_{i j}$ is independent with $\epsilon_{i^{\prime} j}$ for $j \neq j^{\prime} \in[p]$.

Proof. According to Lemma 1, the node-wise conditional distribution of a PLA-GGM follows a Gaussian distribution. Then, Lemma 5 can be proved.
Lemma 6. For a kernel regression on $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ as the IID samples of (X, Y). Assume that $\mathbb{E}|Y|^{s}<\infty$ and $\sup _{X} \in$ $|Y|^{s} f(X, Y) d Y \leq \infty$. Given that $n^{2 \epsilon-1} h \rightarrow \infty$ for $\epsilon<1-s^{-1}$, we have

$$
\sum_{x}\left|\frac{1}{n} \sum_{i=1}^{n}\left[K_{h}\left(x_{i}-x\right)-\mathbb{E}\left\{K_{h}\left(x_{i}-x\right) y_{i}\right\}\right]\right|=O_{p}\left(\left\{\frac{\log (1 / h)}{n h}\right\}^{1 / 2}\right)
$$

Proof. Lemma 6 follows (Mack \& Silverman, 1982).
Lemma 7. Suppose $\mathbf{Y}=\left\{Y_{1}, Y_{2} \cdots, Y_{n}\right\}$ follows a multivariate Gaussian distribution, then max $\left|Y_{i}\right|$ follows a subGaussian distribution with variance max var $\left(Y_{i}\right)$. Further, for any $t>0$, the tail probability can be controlled via

$$
\mathrm{P}\left\{\max \left|\epsilon_{i j}\right| \geq t\right\} \leq \exp \left(\frac{-t^{2}}{2}\right)
$$

Lemma 8. For any $\epsilon>0$, there exists $\delta>0$ and $N>0$, so that when $n>N$, we have

$$
\mathrm{P}\left\{\left\|\frac{\mathbf{X}_{j}^{\prime}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}\right\|_{\infty} \geq \delta c_{n}^{2}\right\} \leq \epsilon
$$

uniformly for $j \in[p]$.
Proof. To start with, we review the definition of $\mathbf{S}_{i j}$

$$
\mathbf{S}_{i j}=\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{z}_{i,-j}^{\top} \quad 0\right]\left(\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}\right)^{-1} \mathbf{D}_{i j}^{\top} \mathbf{W}_{i}
$$

We first study $\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}$:
$\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}=\left[\begin{array}{cc}\sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{z}_{i^{\prime},-j} \mathbf{z}_{i^{\prime},-j}^{\top} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) & \sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{z}_{i^{\prime},-j} \mathbf{z}_{i^{\prime},-j}^{\top} \frac{g_{i^{\prime}}-g_{i}}{h} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) \\ \sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i^{\prime},-j} \mathbf{z}_{i^{\prime}-j}^{\top} \frac{g_{i^{\prime}}-g_{i}}{h} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) & \sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{z}_{i^{\prime},-j} \mathbf{z}_{i^{\prime},-j}^{\top}\left(\frac{g_{i^{\prime}}-g_{i}}{h}\right)^{2} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right)\end{array}\right]$.
To bound $\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}$ uniformly over j, we consider a random vector $\mathbf{B}_{i}=\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i}^{\top}, 1\right]^{\top}$, with observations

$$
\left[\begin{array}{c}
\mathbf{b}_{1}=\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{z}_{1}^{\top}, 1\right] \\
\vdots \\
\mathbf{b}_{n}=\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{z}_{n}^{\top}, 1\right]
\end{array}\right]
$$

Then, we study an auxiliary matrix

$$
\mathbf{O}_{i}=\left[\begin{array}{cc}
\sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{b}_{i^{\prime}} \mathbf{b}_{i^{\prime}}^{\top} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) & \sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{b}_{i^{\prime}} \mathbf{b}_{i^{\prime}}^{\top} \underline{g_{i^{\prime}}-g_{i}} \\
h & \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) \\
\sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{b}_{i^{\prime}} \mathbf{b}_{i^{\prime}}^{\top} \frac{g_{i^{\prime}}-g_{i}}{h} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right) & \sum_{i^{\prime}=1}^{n} \mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{b}_{i^{\prime}} \mathbf{b}_{i^{\prime}}^{\top}\left(\frac{g_{i^{\prime}}-g_{i}}{h}\right)^{2} \psi\left(\left|g_{i^{\prime}}-g_{i}\right| / h\right)
\end{array}\right]
$$

Therefore, the components of $\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}$ belong to \mathbf{O}_{i}, and each part of \mathbf{O}_{i} is in the form of a kernel regression. By Lemma 6, we have

$$
\mathbf{O}_{i}=n f\left(g_{i}\right) \mathbb{E}\left[\mathbf{B}_{i} \mathbf{B}_{i}^{\top} \mid g_{i}\right] \otimes\left[\begin{array}{cc}
1 & 0 \\
0 & \mu_{2}
\end{array}\right]\left\{1+O_{p}\left(c_{n}\right)\right\}
$$

which holds uniformly for i. Therefore,

$$
\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}=n f\left(g_{i}\right) \mathbb{E}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \otimes\left[\begin{array}{cc}
1 & 0 \tag{26}\\
0 & \mu_{2}
\end{array}\right]\left\{1+O_{p}\left(c_{n}\right)\right\}
$$

holds uniformly for i with the same $O_{p}\left(c_{n}\right)$ for every j. Define

$$
\boldsymbol{\alpha}_{j}\left(g_{i}\right)=\left[\begin{array}{lll}
\boldsymbol{\Omega}_{1 \cdot j} & \cdots & \boldsymbol{\Omega}_{n \cdot j}
\end{array}\right] .
$$

By the same technique, uniformly for i and with the same $O_{p}\left(c_{n}\right)$ for every j, we can show

$$
\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{M}_{j}=n f\left(g_{i}\right) \mathbb{E}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \otimes\left[\begin{array}{ll}
1 & 0 \tag{27}
\end{array}\right]^{\top} \boldsymbol{\alpha}_{j}\left(g_{i}\right)\left\{1+O_{p}\left(c_{n}\right)\right\}
$$

and

$$
\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{x}_{j}=n f\left(g_{i}\right) \mathbb{E}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \otimes\left[\begin{array}{cc}
1 & 0 \tag{28}
\end{array}\right]^{\top}\left\{1+O_{p}\left(c_{n}\right)\right\}
$$

Combining (26) and (27) we have

$$
\left[\begin{array}{cc}
\tilde{\mathbf{x}}_{j}^{\top} & 0 \tag{29}
\end{array}\right]\left(\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}\right)^{-1} \mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{M}_{j}=\tilde{\mathbf{x}}_{j}^{\top} \boldsymbol{\alpha}_{j}\left(g_{i}\right)\left\{1+O_{p}\left(c_{n}\right)\right\}
$$

Similarly, combining (26) and (28), we have

$$
\begin{equation*}
\mathbf{x}_{i j}^{\prime}=\mathbf{x}_{i j}-\tilde{\mathbf{x}}_{i j} \mathbb{E}^{-1}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i}^{\top} \mid g_{i}\right] \mathbb{E}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \tag{30}
\end{equation*}
$$

Next, we follow the rationale of the Lemma A. 4 in (Fan et al., 2005), and combine (29) and (30). Finally, we have

$$
\frac{\mathbf{x}_{j}^{\prime}\left(\mathbf{I}-\mathbf{S}_{j}\right) \mathbf{M}_{j}}{n}=O_{p}\left(c_{n}^{2}\right)
$$

uniformly for j.
Lemma 9. For any $\epsilon>0$, there exists $N>0$, so that when $n>N$, we have

$$
\left\|\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}\right\|_{\infty} \geq 2 \sum_{i=1}^{n}\left\{\mathbf{x}_{i j}-\mathbb{E}^{\top}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \mathbb{E}^{-1}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i}^{\top} \mid g_{i}\right] \tilde{\mathbf{x}}_{i j}\right\} \epsilon_{i j}
$$

uniformly for $j \in[p]$ with probability less than ϵ.

Proof. By definition, we have

$$
\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}=\sum_{i=1}^{n} \mathbf{x}_{i j}^{\prime}\left\{\epsilon_{i j}-\left[\begin{array}{ll}
\tilde{\mathbf{x}}_{i j}^{\top} & 0
\end{array}\right]\left(\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}\right)^{-1} \mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \boldsymbol{\epsilon}_{j}\right\}
$$

Using the technique in (26), we have

$$
\left[\begin{array}{cc}
\tilde{\mathbf{x}}_{i j}^{\top} & 0
\end{array}\right]\left(\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}\right)^{-1} \mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \boldsymbol{\epsilon}_{j}=\tilde{\mathbf{x}}_{i j}^{\top} \mathbb{E}^{-1}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i}^{\top} \mid g_{i}\right] \mathbb{E}\left[\tilde{\mathbf{x}}_{i j}^{\top} \mid g_{i}\right] O_{p}\left(c_{n}\right)
$$

Therefore,

$$
\mathbf{x}_{j}^{\prime \top}\left(\mathbf{I}-\mathbf{S}_{j}\right) \boldsymbol{\epsilon}_{j}=\sum_{i=1}^{n}\left\{\mathbf{x}_{i j}-\mathbb{E}^{\top}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}} \mathbf{Z}_{i,-j} \mathbf{Z}_{i,-j}^{\top} \mid g_{i}\right] \mathbb{E}^{-1}\left[\mathbb{1}_{g_{i^{\prime}}>g^{*}}^{2} \mathbf{Z}_{i,-j} \mathbf{Z}_{i}^{\top} \mid g_{i}\right] \tilde{\mathbf{x}}_{i j}\right\} \epsilon_{i j}\left[1+o_{p}(1)\right]
$$

uniformly for j.

D. Proof of Theorem 2

We first study CON-GGMs. According to (6) and (Eaton, 1983), we have

$$
[\operatorname{cov}(\mathbf{Z} \mid G=g)]^{-1}=\left[\boldsymbol{\Sigma}_{\mathbf{Z Z}}-\boldsymbol{\Sigma}_{\mathbf{Z} G} \boldsymbol{\Sigma}_{G G}^{-1} \boldsymbol{\Sigma}_{G \mathbf{Z}}\right]^{-1}
$$

whose right-hand side has nothing to do with g. Therefore, the conditional distribution of $\mathbf{Z} \mid G=g$ follows a GGM with parameter $\left[\boldsymbol{\Sigma}_{\mathbf{Z Z}}-\boldsymbol{\Sigma}_{\mathbf{Z} G} \boldsymbol{\Sigma}_{G G}^{-1} \boldsymbol{\Sigma}_{G \mathbf{Z}}\right]^{-1}$ irrelevant to g. In other words CON-GGM is equivalent to assuming that G follows a normal distribution and $\mathbf{R}(g)=0$ on the basis of the proposed PLA-GGM.
Then, we study LR-GGMs. Again, given $G=g$ for any g, we have

$$
[\operatorname{cov}(\mathbf{Z} \mid G=g)]^{-1}=\mathbf{\Omega}_{0}
$$

which has nothing to do with G either. Given $G=g$, the conditional distribution of $\mathbf{Z} \mid G=g$ follows a GGM with the parameter $\boldsymbol{\Omega}$. Therefore, LR-GGM is a special case of the proposed PLA-GGM by assuming $\mathbf{R}(g)=0$.

E. Experiments

Data Simulation

To simulate the samples from PLA-GGMs, we first define

$$
f(g)= \begin{cases}g-10 & g>12 \\ x+\frac{(x-12)^{2}}{4}-11 & 10<g \leq 12 \\ 0 & -10<g \leq 10 \\ x+\frac{(x+12)^{2}}{4}+11 & -12<g \leq-10 \\ g+10 & g \leq-12\end{cases}
$$

We provide the following procedure:

1. We consider $p=10,20,50,100$, and implement the following steps separately.
2. We randomly generate a sparse precision matrix as Ω_{0} Specifically, each element of Ω_{0} is drawn randomly to be non-zero with probability 0.3 .
3. A dense precision matrix \mathbf{W} is generated to build the confounding.
4. We take $\{-400, \cdots, 0, \cdots, 399\}$ as the confounders. For each $g \in\{-400, \cdots, 0, \cdots, 399\}$, the precision matrix is selected to be $\boldsymbol{\Omega}(g)=\boldsymbol{\Omega}_{0}+f(g) \mathbf{W}$, and a sample is generated by a GGM with parameter $\boldsymbol{\Omega}(g)$. Thus, we get 800 samples.

Note that the procedure is equivalent to selecting $g^{*}=10$.

Glass Brains for Brain Function Connectivity Estimation

We report the glass brains from other angles for the brain function connectivity estimation experiment in Section 6.2.

Schizophrenia Diagnosis using Different $\mathbb{1}_{\left\{|g| \geq g^{*}\right\}}$'s

We conduct the analysis in Section 6.2 using different $\mathbb{1}_{\left\{|g| \geq g^{*}\right\}}$'s. Specifically, we consider the function $1-\exp \left(-k x^{2}\right) / 2$ using $k=144,150$. The achieved accuracy using the parameter selected by the 10 -fold cross validation and AIC are reported in Figure 9. The performance of PLA-GGMs is not hugely affected when selecting $\mathbb{1}_{\left\{|g| \geq g^{*}\right\}}$ in a reasonable range, which is consistent with our analysis in Theorem 1. Note that, if we select k too large, the PPL method will be not applicable. The reason is that a large k corresponds to a small g^{*}, and will induce few non-confounded samples observed. As a result, $\left(\mathbf{D}_{i j}^{\top} \mathbf{W}_{i} \mathbf{D}_{i j}\right)$ will be singular. In practice, if we use a relative large g^{*} corresponding to a small k, (2) will tend to be like $\mathbf{R}(g)=0$ used in CON-GGMs and LR-GGMs.

Figure 5: Controls using PLA-GGMs

Figure 6: Patients using PLA-GGMs

Figure 7: Controls using LR-GGMs

Figure 8: Patients using LR-GGMs

Figure 9: Diagnosis using different $\mathbb{1}_{\left\{|g| \geq g^{*}\right\}}$'s.

