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A. Proofs
A.1. Proposition 1

Observe for z(k+1) of (9) that g2(z(k+1)) = K, which
satisfies the constraint of optimization problem (P2a).
For index sequence j, introduced in Proposition 1, define
c
(k)
ji

:= `
(
xji , f(xji), h

(k)(xji)
)
. By definition, c(k)j1

<

c
(k)
j2

< · · · < c
(k)
jN

. We use the following lemmas:

Lemma 1. For any m ≤ K, the solution of (P2a) satisfies
z
(k+1)
jm

= 1.

Lemma 2. For any m > K, the solution of (P2a) satisfies
z
(k+1)
jm

= 0.

From Lemmas 1 and 2, ‖z(k+1)‖0 = K and

z
(k+1)
i =

{
1 i = j1, j2, . . . , jK

0 i = jK+1, . . . , jN ,

which completes the proof.

A.2. Proposition 2

Note that the constraint on z must be closed and convex,
as a sufficient condition for convergence of BCD. Clearly
this is not the case with z ∈ {0, 1}N in (Q1). Leverag-
ing the equivalence between (P2) and its linear program
relaxation, (P3), the constraint z ∈ [0 , 1]N is closed and
convex. Since a unique minimizer is found at each update,
convergence to a stationary point follows from the standard
convergence results Bertsekas (1999)[Chap 2.7].

A.3. Proposition 4

We start by proving Proposition 4 for d = 1. To this end,
we first introduce a variant of (P2) in which we define
K equidistant marks in x ∈ X = [0, T ] and project E?
to this set of marks, namely we replace every entry in E?
by its closest mark (measured by the Euclidian distance).
Moreover, we limitH to the class of L-Lipschitz functions
passing through those marks. We first observe that the ap-
proximation error of the solution of (P2) is upper bounded
by that of the variant. In the following, we derive the bound
of Proposition 4 using the variant problem.

Divide entire domain X by K marks to some K−1 disjoint
sets {Si |

⋃
i∈[K−1] Si = X ,Si

⋂
Sj = φ, ∀i, j ∈ [K−1]}.

xi−1 xi xi+1

Si
x

f(x), h(x)

Figure A.1: Illustration of the functional class F . Input space X
is divided into disjoint sets {Si}. F is the set of all L-Lipschitz
functions passing through samples/marks {xi}i∈[K]. All functions
f, h ∈ F lie in the dashed red parallelograms. The slopes of these
parallelograms are ±L. Three possible functions are shown in the
figure.

Define without loss of generality Si = [xi−1, xi) for sorted
xi, and define x0 := 0 and xK−1 := T . Note that F is
the set of L-Lipschitz functions, samples are noiseless, and
{xi} are in the compressed dataset. Figure A.1 illustrates
the function class F and three potential examples for f(x)
and h(x).

Define `x := ` (x, f(x), h?(x)). Let µx be the probability
measure on X that generates input samples x. We have

Ex`x =

∫
X
`x dµx =

∑
i∈[K−1]

∫
Si
`si dµsi , (A.1)

where si ∈ Si, {µsi} are sub-probability measures on sets
{Si}, and

∑
i∈[K−1] µsi = 1. From the extreme value

theorem, there exists `max
si for every interval Si such that

`si ≤ `max
si ,∀si ∈ Si. Therefore, Ex`x ≤ maxi `

max
si .

Consider the following lemma:

Lemma 3. For our variant problem, |f(x) − h(x)| ≤
2L‖x‖ for all x ∈ Si and all i, where ‖x‖ is the L2-norm
of vector x.

The proof os Lemma 3 is straightforward after noting that
f(x)− h(x) is a 2L-Lipschitz function.

Consider loss function `x = |f(x)− h(x)|2. When d = 1,
it is easy to see from Lemma 3 and figure A.1 that `max

si ≤
4L2(xi − xi−1)2 for every set Si, where xi − xi−1 is the
measure of set Si. Now, since sets {Si}, i ∈ [K − 1] have
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the same measure (defined based on equidistant grid points),
we have xi − xi−1 = T/(K − 1), so

Ex`x ≤ max
i

`max
si ≤ 4L2T 2

(K − 1)
2 .

By setting g (h?, z?) ≤ Ex`x ≤ δ, we get K ≥ 1 +
2LT/

√
δ.

For d > 1, we can define equidistant marks on every co-
ordinate of X and define a grid of (K1/d − 1)d disjoint
sets {Si}i, where we have assumed that K1/d is an integer
number to avoid unnecessary notation complications. The
distance between two consecutive marks on every coordi-
nate is T/(K1/d − 1), and therefore from Lemma 3

Ex ≤ max
i

`max
si ≤

(
2L

T
√
d

K1/d − 1

)2

.

By setting g (h?, z?) ≤ Ex`x ≤ δ, we get K ≥(
1 + 2LT

√
d/δ
)d

. This completes the proof.

A.4. Lemma 1

Assume
∑

i∈[N ] z
(k+1)
i =

∑
i∈[N ] z

(k+1)
ji

= M ≥ K. For

k = 1, if z(k+1)
j1

= 1 the statement holds. If z(k+1)
j1

= 0,

then take any n for which z(k+1)
jn

= 1 and observe that the
following inequality holds by definition of index set j:

∑
i∈[N ] z

(k+1)
ji

c
(k)
ji

M
=

∑
i∈[N ]\{n} z

(k+1)
ji

c
(k)
ji

+ c
(k)
jn

M

≥
∑

i∈[N ]\{n} z
(k+1)
ji

c
(k)
ji

+ c
(k)
j1

M
,

since c(k)j1
< c

(k)
jn

for any n. This completes the proof for

k = 1. For k = 2 ≤ K, if z(k+1)
j2

= 1 the statement holds.

If z(k+1)
j2

= 0, then take any n ≥ 3 for which z(k+1)
jn

= 1.

Use z(k+1)
j1

= 1 and observe that

∑
i∈[N ]

z
(k+1)
ji

c
(k)
ji

M
=

c
(k)
j1

+ c
(k)
jn

+
∑

i∈[N ]\{1,n}
z
(k+1)
ji

c
(k)
ji

M

≥
c
(k)
j1

+ c
(k)
j2

+
∑

i∈[N ]\{1,n}
z
(k+1)
ji

c
(k)
ji

M

since c(k)j2
< c

(k)
jn

for any n > 2. We can use the same

arguments recursively to prove that z(k+1)
jm

= 1 for any
m ≤ K.

A.5. Lemma 2

Assume
∑

i∈[N ] z
(k+1)
ji

= M ≥ K. By Lemma 1,

z
(k+1)
ji

= 1 for all i ≤ K. We should show that

∑
i∈[K] c

(k)
ji

K
≤
∑

i∈[K] c
(k)
ji

+
∑N

i=K+1 z
(k+1)
ji

c
(k)
ji

M

for any z(k+1)
ji

. This is clearly true as the left-hand-side is
the average of the K smallest values of the loss function on
dataset of size N . In particular,

∑
i∈[K] c

(k)
ji

+
∑N

i=K+1 z
(k+1)
ji

c
(k)
ji

M

≥
∑

i∈[K] c
(k)
ji

+

M−K︷ ︸︸ ︷
c
(k)
jK

+ c
(k)
jK

+ . . .+ c
(k)
jK

M

=

∑
i∈[K] c

(k)
ji

K

+

≥0︷ ︸︸ ︷
(M −K)Kc

(k)
jK
− (M −K)

∑
i∈[K]

c
(k)
ji

MK

(a)

≥
∑

i∈[K] c
(k)
ji

K
,

where (a) holds as Kc(k)jK
≥
∑

i∈[K] c
(k)
ji

. This completes
the proof.

A.6. Optimality of (8)

To prove the optimality of (8), recall that 1Tz = K in (P2a)
is of the form Az = B, where A is a totally unimodular
matrix, and B is an integer. Thus, optimization problem(8)
is equivalent to (P2a), and the linear program relaxation is
optimal.

B. Additional Examples
The following example shows the generality of Assump-
tions 1 and 2.

Example 4. Let P denote the space of polynomial functions
on R, f(x) = ex(∈ P), h(x) =

∑N−1
n=0 x

n/n! (∈ P) be
the first N(< ∞) terms of the Taylor expansion of f(x),
and `n(h) := |f(xn)− h(xn)|2. `n(h) is compatible with
Assumption 1. Moreover, for almost any xn, xm ∈ R (except
a set of Lebesgue measure 0) such that xn 6= xm, we have
`n(h) 6= `m(h), so Assumption 2 holds.

This example be easily generalized to the class of problems
we study in this paper.
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