
Improved Parallel Algorithms for Density-Based Network Clustering

Mohsen Ghaffari * 1 Silvio Lattanzi * 2 Slobodan Mitrović * 3

Abstract

Clustering large-scale networks is a central topic
in unsupervised learning with many applications
in machine learning and data mining. A classic
approach to cluster a network is to identify re-
gions of high edge density, which in the literature
is captured by two fundamental problems: the
densest subgraph and the k-core decomposition
problems. We design massively parallel com-
putation (MPC) algorithms for these problems
that are considerably faster than prior work. In
the case of k-core decomposition, our work im-
proves exponentially on the algorithm provided
by Esfandiari et al. (ICML’18). Compared to
the prior work on densest subgraph presented
by Bahmani et al. (VLDB’12, ’14), our result
requires quadratically fewer MPC rounds. We
complement our analysis with an experimental
scalability analysis of our techniques.

1. Introduction
Density-based clustering is a classic technique in unsuper-
vised learning. In this field, extracting dense subgraphs,
i.e., subgraphs that have large edge-to-vertex ratio, is a
basic primitive used in a wide range of machine learning
and data analysis tasks. In fact, thanks to their nice struc-
tural properties (for example they often correspond to well-
connected components that are also robust to outliers and
noise), extracting dense subgraphs has proved to be useful
in spam detection (Gibson et al., 2005), finding commu-
nities in social networks (Leskovec et al., 2008; Chen &
Saad, 2012; Gionis & Tsourakakis, 2015), computational
biology (Fratkin et al., 2006; Saha et al., 2010), and detect-
ing common patterns (Liu & Yan, 2010; Chen et al., 2011).

In literature, there are two classic formalizations of density-

*Equal contribution 1ETH Zurich 2Google Research
Zurich 3MIT. Correspondence to: Mohsen Ghaffari <ghaf-
fari@inf.ethz.ch>, Silvio Lattanzi <silviol@google.com>,
Slobodan Mitrović <slobo@mit.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

based clustering in graphs: the densest subgraph problem
and the k-core decomposition problem. In the densest sub-
graph problem, we are interested in finding the subgraph
of highest density in a graph. This problem was originally
introduced by Goldberg (Goldberg, 1984) and since then,
it attracted extensive attention from the machine learning,
data mining, and algorithmic community (Esfandiari et al.,
2015; Bahmani et al., 2012; Epasto et al., 2015; Jethava
et al., 2012; Miller et al., 2010; Papailiopoulos et al., 2014).
In the k-core decomposition, a given network is decom-
posed into vertex-layers based on their local connectiv-
ity. Namely, for each node v this decomposition deter-
mines the maximum threshold k such that there exists a
subgraph whose minimum degree is at least k and the sub-
graph contains v. Such a decomposition is very useful in
practice and it induces a natural hierarchical clustering on
any graph. For this reason, the k-core decomposition has
found many applications in analyzing dynamic of social
networks (Bhawalkar et al., 2015), in community detection
(Mitzenmacher et al., 2015), in visualization of large-scale
complex networks (Alvarez-Hamelin et al., 2005), in an-
alyzing protein-protein interaction (Altaf-Ul-Amin et al.,
2006) and, more broadly, is used for detecting dense com-
ponents of graphs (Lee et al., 2010b).

In modern computational tasks, we often need to cope with
very large networks. Thus, it becomes increasingly more
important to design efficient parallel algorithms for unsu-
pervised learning problems. Obtaining such algorithms is
often challenging because a bulk of graph problems are
inherently sequential, e.g., their structure is defined itera-
tively and in an adaptive manner. For instance, finding the
k-core decomposition of a graph on n vertices is a sim-
ple task if the underlying graph is sufficiently small to fit
on a single machine. To solve this problem sequentially, it
suffices to iteratively select a vertex v of the smallest de-
gree, set that degree to be the label of v, and remove v from
the graph. Unfortunately, implementing this approach di-
rectly as a parallel algorithm requires n rounds of compu-
tation, which is prohibitive. Nevertheless, in many scenar-
ios, if we allow approximate but relatively accurate solu-
tions, then the problem becomes tractable. Motivated by
this, we study the approximate k-core decomposition and
the approximate densest subgraph problems, and provide
efficient parallel algorithms for them. Next, we discuss the

Improved Parallel Algorithms for Density-Based Network Clustering

precise model of parallelism that we use in this work.

The MPC model. We provide algorithms for the massively
parallel computation (MPC) model, which is a theoretical
abstraction of practical settings such as MapReduce (Dean
& Ghemawat, 2008), Hadoop (White, 2012), Spark (Za-
haria et al., 2010) and Dryad (Isard et al., 2007). The MPC
model (Karloff et al., 2010; Goodrich et al., 2011; Beame
et al., 2013) is considered de-facto the standard theoretical
model for large-scale parallel computing.

Computation in MPC proceeds in synchronous parallel
rounds over multiple machines. Each machine has memory
S. At the beginning of a computation, data is partitioned
across the machines. During each round, machines process
data locally. At the end of a round, machines exchange
messages with a restriction that each machine is allowed
to send messages and also receive messages of total size S.
The efficiency of an algorithm in this model is measured by
the number of rounds it takes for the algorithm to terminate
and by the size of the memory of every machine. An inter-
esting regime of MPC computation is when S � N , where
N is the total size of the input, as otherwise all the data can
be stored on a single machine. With respect to S, there are
three main regimes that have been studied in the context of
parallel algorithms for graphs on n vertices: the sublinear
regime S ∈ O(nδ), the almost linear regime S ∈ Õ(n),
and the superlinear regime S ∈ O(n1+δ), where δ is an
arbitrary constant. We begin by presenting a simple algo-
rithm for approximate k-core decomposition in the regime
S ∈ Õ(n). Then, we focus on the most restrictive regime
S ∈ O(nδ), in which we study both approximate k-core
decomposition and approximate densest subgraph.

1.1. Our Contributions

k-core decomposition. As our first result we present a sim-
ple algorithm for computing (1 + ε)-approximate k-core
decomposition for all the vertices simultaneously when the
memory per machine S is Õ(n). In the same regime, (Es-
fandiari et al., 2018) show how to obtain such decomposi-
tion inO(log n) MPC rounds, while our algorithm requires
only O(log log n) many rounds.

Theorem 1. There is an algorithm that for any constant
ε ∈ (0, 1) in O(log log n) rounds whp computes a (1 + ε)-
approximate coreness value for each vertex. This algorithm
requires Õ(n) memory per machine.

We also consider a more restricted memory-per-machine
regime in which each machine is allowed to have maximum
load of S = Õ(nδ) bits, for any fixed constant δ > 0. To
the best of our knowledge no algorithm was known for this
regime prior to our work.

Theorem 2. There is an algorithm that for any constant
ε ∈ (0, 1) in O(

√
log n · log log n) MPC rounds whp com-

putes a (2 + ε)-approximate coreness value for each ver-
tex. The algorithm uses Õ(nδ) memory per machine, for
an arbitrary constant δ ∈ (0, 1), and the total memory of
Õ(max{m,n1+δ}).

By extending our ideas for the k-core decomposition, we
also improve the state-of-the-art of parallel computation of
graph orientation. Due to the space constraints, we present
this result in Appendix D.
Densest subgraph. Given a graph G, (Esfandiari et al.,
2015) show that a densest subgraph of Õ(n) randomly and
independently sampled edges ofG is a (1+ε)-approximate
densest subgraph of G. When S ∈ Õ(n), it is easy to
translate this idea into an algorithm for finding (1 + ε)-
approximate densest subgraph in O(1) MPC rounds.

In the regime S ∈ Õ(nδ) bits, for any fixed constant δ > 0,
it is implicit in the work of (Bahmani et al., 2014) that there
exists an algorithm for computing (1 + ε)-approximate
densest subgraph in O(log n) rounds. This algorithm uses
the Multiplicative Weights Update (MWU) framework, and
crucially relies on executing each MWU iteration in a sepa-
rate MPC round. Since MWU executes at leastO(log n) it-
erations, translating this approach directly to MPC requires
at least O(log n) rounds. Our contribution is that we show
how to compress many MWU iterations into O(1) MPC
rounds. This enables us to find a (1+ε)-approximate dens-
est subgraph in Õ(

√
log n) MPC rounds, and thus quadrat-

ically improve on the prior work.

Theorem 3. There is an algorithm that for any constant
ε ∈ (0, 1) in O(

√
log n · log logn) MPC rounds whp

computes a (1 + ε)-approximate densest subgraph. The
algorithm uses Õ(nδ) memory per machine, for an ar-
bitrary constant δ ∈ (0, 1), and the total memory of
Õ(max{m,n1+δ}).

1.2. Related Work

Several unsupervised problems have been studied in the
MPC model, including metric clustering (Bateni et al.,
2014; Ene et al., 2011), anomaly detection (Akoglu et al.,
2009), etc. In this paper, we focus on graph clustering and
in particular on density-based clustering.

Both k-core decomposition and the densest subgraph prob-
lems have been extensively studied in literature. The most
related line of work is about MPC algorithms for these
problem (Esfandiari et al., 2018; Bahmani et al., 2012;
2014). As mentioned earlier we improve the state of the
art for both problems.

Another related area of work is about streaming algorithms
for density-based problems. There are several solutions for
the densest subgraph (Lee et al., 2010a; Esfandiari et al.,
2015; Bahmani et al., 2012; Epasto et al., 2015; Bhat-
tacharya et al., 2015) and an algorithm for k-core decom-

Improved Parallel Algorithms for Density-Based Network Clustering

position (Esfandiari et al., 2018). The main idea behind
those papers is either to use peeling or sampling to obtain
sparser graphs and to solve the problem there. By com-
bining these ideas it is possible to obtain O(log n) MPC
rounds algorithm for densest k-core decomposition and the
densest subgraph, but to overcome the O(log n) parallel
round barrier we need to introduce in this paper new ideas
and techniques.

2. Preliminaries
Given a graph G = (V,E) and v ∈ V , we use NG(v) to
denote the set of neighbors of v in G. When it is clear from
the context, we omit the subscript and write N(v) instead.
We use dG(v)

def
= |NG(v)| (and similarly d(v)

def
= |N(v)|) to

refer to the degree of v in G.

We use Õ(f) to hide logc f factors, for any constant c ≥ 0.
In particular, Õ(log n) hides logc log n. By saying that an
event E happens with high probability (whp), we refer that
Pr [E] ≥ 1− n−c for some constant c ≥ 1.

k-core decomposition. A k-core of a graphG is a maximal
subgraph H of G such that the minimum vertex-degree of
H is at least k. We say that v has coreness number k (or
only “coreness k”) if it belongs to k-core but not to (k+1)-
core. Also, for α ≥ 1, k′ is an α-approximate coreness
value of a vertex of coreness k if k′ ∈ [k, αk].

In our analysis, we will use the following fact.
Observation 4. Let S ⊆ V be the set of all vertices that
have coreness at most k. Then, number of the edges inci-
dent to S is at most k|S|.
Densest subgraph. Given an undirected graphG = (V,E)

and a set S ⊆ V , the density d(S) is defined as d(S)
def
=

|E(S)|/|S|, where E(S) is the set of the edges of the
subgraph induced by S. A densest subgraph S? is a set
such that S? ∈ arg maxS⊆V d(S). Then, T ⊆ V is
a α-approximate densest subgraph of G, for α ≥ 1, if
d(T) ≥ d(S?)/α.

3. (1 + ε)-approximate Coreness with Õ(n)
Memory per Machine

In this section we prove Theorem 1, that improves expo-
nentially on the round complexity obtained by (Esfandi-
ari et al., 2018). Compared to prior work, our algorithm
samples dense regions less aggressively. Intuitively, this
allows us to collect a relatively large induced subgraph on
each machine and handle a wide range of coreness values
in O(1) MPC rounds.
Intuitive Discussions About the Algorithm. The starting
point of our approach is an algorithmic primitive that for
a given threshold k and a graph G labels each vertex by
ABOVE if its coreness is at least k and by BELOW oth-

erwise. To achieve that, this primitive (Algorithm 1) itera-
tively removes all the vertics whose current degree is less
than k. The algorithm proceeds in this manner as long as
there is at least one such vertex. All the vertices removed in
this process are labeled by BELOW, while the remaining
vertices are labeled by ABOVE.

Input : G : a graph
k : coreness threshold

Output : Label each vertex of G by ABOVE if
its coreness is at least k and label by
BELOW otherwise

1 while do
2 Let S be the set of all the vertices v ∈ G for

which dG(v) < k.
3 if S 6= ∅ then
4 Label all the vertices of S by BELOW.
5 Remove S from G.
6 else
7 Break.

8 Label each unlabeled vertex of G by ABOVE.
9 return the obtained labels
Algorithm 1: A centralized algorithm for computing
vertices with coreness above k

Even for a single k, Algorithm 1 might execute Θ(n) it-
erations, hence its direct implementation in MPC is ineffi-
cient. Nevertheless, by proper sparsification it is possible
to transform this algorithm to compute (1+ε)-approximate
coreness values in O(log n) rounds, as shown by (Es-
fandiari et al., 2018). Their algorithm considers core-
ness values from the largest to the smallest, grouping val-
ues (2i−1, 2i] together. When a range (2i−1, 2i] is pro-
cessed, all the edges whose both endpoints have coreness
value larger than 2i are ignored. The remaining edge-
set is sparsified by keeping each edge with probability
Θ(2i log n/(ε2n)). This step reduces the maximum core-
ness value toO(log n/ε2), which by Observation 4 implies
that the resulting graph can be stored on a single machine.
Moreover, degrees of vertices with coreness (2i−1, 2i] are
concentrated around their expectation. This implies an al-
gorithm that in O(1) MPC rounds labels all the vertices
with coreness in (2i−1, 2i], assuming that all the vertices of
coreness higher than 2i have already been computed.

A natural idea to improve the work of (Esfandiari et al.,
2018) is to process the coreness values in ranges wider than
(2i−1, 2i]. This, however, implies that the sparsification
described above has to be less aggressive, which in turn re-
sults in a graph consisting of more than Õ(n) edges and
hence not fitting on one machine. To overcome this bar-
rier, we use a vertex-based sampling idea. A similar idea
was introduced by (Czumaj et al., 2018) for the maximum

Improved Parallel Algorithms for Density-Based Network Clustering

matching problem. This partitioning enables us to sample
multiple subgraphs each of which captures a wide ranges
of coreness values. Intuitively, this work well because by
sample by vertices we do not need to send all the nodes to a
single machines and furthermore we can sample more ag-
gressively. In the experimental section we will confirm the
impact this intuition also experimentally. Each subgraph
is then processed on a different machine. We present this
algorithm in Section 3.1, and build on it in Section 3.2 to
compose our final MPC algorithm.

3.1. A Warm-up Section

We now describe Algorithm 2, that given a parameter k and
a suitably chosen induced subgraph H of G marks vertices
of H that have coreness at least k in G.

For a parameter p ∈ [0, 1], let H be an induced graph
obtained by sampling each vertex of G with probability p
and independently of other vertices. Algorithm 2 labels by
BELOW each vertex of H whose degree in H is less than
(1 − ε/2)pk, and labels the vertex by ABOVE otherwise.
Although the vertices are labeled with respect to their de-
grees in H , we show that each vertex of V (G) ∩ V (H)
having coreness at least k and each vertex having coreness
at most (1 − ε)k in G is labeled correctly. This statement
is formalized by the following lemma, whose proof is de-
ferred to Appendix B.1.

Input : H : a graph
ε : approximation parameter
k : coreness threshold
p : sampling probability

Output : Labeling each vertex of H by ABOVE
if its coreness is at least k and labeling
by BELOW if its coreness is at most
(1− ε)k

1 while do
2 Let S be the set of all the vertices v ∈ H for

which dH(v) < (1− ε/2)pk.
3 if S 6= ∅ then
4 Label all the vertices of S by BELOW.
5 Remove S from H .
6 else
7 Break.

8 Label each unlabeled vertex of H by ABOVE.
9 return the obtained labels
Algorithm 2: Computing a (1+2ε)-approximate core-
ness with respect to a threshold

Lemma 5. Let p ∈ [0, 1] and p ≥ min{1, 50 logn
kε2 }. Let

VH be a vertex subset of G obtained by sampling each ver-
tex from G with probability p and independently of other
vertices. Let H be the graph induced on VH . Then, for

given H , ε, k and p, Algorithm 2 whp labels the vertices of
H satisfying the following:

(A) The vertices of H that have coreness at least k in G
are labeled by ABOVE.

(B) The vertices of H that have coreness at most (1− ε)k
in G are labeled by BELOW.

3.2. The Main MPC Algorithm

Given a single coreness threshold k, Algorithm 2 approx-
imately labels the vertices of a subgraph of G. We build
on Algorithm 2 to approximately label all the vertices of
G for all the relevant thresholds. We achieve this in two
steps. First, we assume that all the vertices with coreness
more than k are already properly labeled. Then, we design
a method (Algorithm 3) that finds (1 + 2ε)-approximate
coreness of all the vertices of G whose coreness is between
k0.9 and k. Moreover, this algorithm can be implemented
in only O(1) MPC rounds. Second, we use Algorithm 3 to
label the vertices in batches as described next.

Let kmax = k be the maximum coreness of the unlabeled
vertices so far. Then, Algorithm 3 is invoked to label all
the vertices having coreness between k0.9 and k. After Al-
gorithm 3 terminates, it is then invoked with kmax = k0.9.
It proceeds in this manner until kmax becomes log2 n. Once
kmax ≤ log2 n, all the vertices are gathered on one machine
and the labeling is performed locally. This in total requires
O(log log n) MPC rounds. In Section 3.3 we comment how
to implement this while using Õ(n) memory per machine.

Next we describe Algorithm 3. That is, we show how to
label all the vertices having coreness between k0.9max and
kmax, assuming that all the vertices having coreness more
than kmax have been labeled correctly. Algorithm 3 in
parallel considers all the coreness thresholds of the form
(1 + ε)i ∈ [k0.9max, kmax] (see Line 2). Then, for a fixed
threshold the algorithm partitions G into 1/p subgraphs
(see Line 4). For each subgraph in parallel it invokes Al-
gorithm 2. In this way, for each vertex v Algorithm 3 gets
a sequence of labels saying whether v has coreness above
or below each of the considered thresholds. Finally, Algo-
rithm 3 sets the coreness of v to be the highest threshold, if
any, for which v got label ABOVE.

The value p defined on Line 1 of Algorithm 3 satisfies the
conditions of Lemma 5. Hence, the correctness follows by
Lemma 5.

3.3. MPC Implementation

Let p be as defined on Line 1 of Algorithm 3. By Obser-
vation 4, the number of edges incident to all the vertices of
coreness at most k is O(kn). Furthermore, the probability
of one of those edges being inHi is p2, i.e., an edge appears
in Hi only if both of its endpoints appear there. Hence, Hi

Improved Parallel Algorithms for Density-Based Network Clustering

Input : G : a graph
ε : approximation parameter
kmax : maximum unlabeled coreness
l : the current labels of vertices

Output : Updated l for vertices of coreness
between k0.9max and kmax

1 p← min
{

1, 50 logn
k0.5max ε

2

}
2 K ← {(1+ε)i : i ∈ N and (1+ε)i ∈ [k0.9max, kmax]}.

3 foreach k ∈ K do in parallel
4 Partition V (G) across 1/p machines. Each

vertex is assigned to one of the machines
independently and uniformly at random.

5 Let Gi be an induced graph on machine i.
6 Let Hi be obtained by removing the edge of Gi

whose both endpoints are labeled by l.
7 Pass Hi, ε, k and p to Algorithm 2 and record

the returned labels.
8 foreach v ∈ V (G) unlabeled by l do
9 Let k ∈ K be the largest k for which

Algorithm 2 labeled v by ABOVE.
10 If such k exists, set l(v)← k.

11 return the updated labels l
Algorithm 3: Labeling vertices with coreness between
k0.9

max and kmax

in expectation contains O(p2kn) ∈ O(n log2 n/ε4) many
edges. In Appendix B.2 we prove the following statement,
that shows that this bound holds whp as well.

Lemma 6. Hi whp contains O(n log2 n/ε4) many edges.

This concludes the proof of Theorem 1.

4. (2 + ε)-approximate Coreness with
Sublinear Memory per Machine

This section is devoted to proving Theorem 2. Similarly
as in Section 3, we reduce the task of computing (2 + ε)-
approximate coreness to one that for a given threshold k
labels by BELOW all the vertices of coreness less than k
and potentially some of those having coreness between k
and (2 + ε)k.
Intuitive explanation of our approach. We first present
an O(log n) MPC round process for computing (2 + ε)-
approximate coreness, and then explain how to transform it
to an algorithm that runs in Õ(

√
log n) rounds. We first ob-

serve that if all the vertices that have degree at most (2+ε)k
are simultaneously removed, then the number of vertices of
coreness at most k reduces by at least ε/(2 + ε) fraction.
(This statement, that we make formal in our proofs, fol-
lows from Observation 4.) Hence, by repeatedly removing

the vertices of degree at most (2 + ε)k for O(log n) rounds
divides the vertices on those having coreness at most and
those having coreness more than (2 + ε)k. Running this
method in parallel for all the coreness thresholds (1 + ε)i

leads to the desired coreness decomposition. To obtain
Õ(
√

log n) round complexity, we split theseO(log n) itera-
tions of vertex-removal into Θ(

√
log n) phases, each phase

consisting of T ∈ Θ(
√

log n) iterations. Then, one phase
for each vertex v is executed by gathering a carefully cho-
sen part of T -hop neighborhood of v (that can be done in
O(log T) MPC rounds), and locally executing T iterations
for v on the gathered neighborhood. This approach is mo-
tivated by a recent work of (Ghaffari & Uitto, 2019). To
maintain the neighborhood size within the memory limit of
nδ , our algorithm carefully selects vertices of “large” de-
gree and ignores/freezes them in this process. As we show,
the “large degree” is chosen in such a way that it affects
the round complexity only by little. We next describe our
method for simulating one phase, called Algorithm 4.

In the initialization, Algorithm 4 marks as frozen each ver-
tex of degree more than 2k · 2

√
δ logn. Then, all the edges

whose both endpoints are frozen are marked as frozen. Af-
ter that, the algorithm proceeds in T iterations. In each iter-
ation is sampled a subset of non-frozen edges. Each edge is
sampled with probability p = C logn

ε2k , for some constant C,
and independently of other edges. Then, all the non-frozen
vertices having degree less than (2 + ε)kp are labeled by
BELOW, indicating that their coreness is below k. The
edges incident to all such labeled vertices are removed.

In Section 4.2 we show that invoking this algorithm
Θ(
√

log n) times suffices to label all the vertices of core-
ness at most k by BELOW. It is easy to see that Algo-
rithm 4 can be simulated in Θ(

√
log n) MPC rounds. In

Appendix C.2, we show how to simulate this algorithm in
only O(log log n) many MPC rounds.

4.1. Analysis of Algorithm 4

The next lemma bounds the number of frozen vertices in
the initialization step.
Lemma 7. Let V≤k be the set of vertices ofGwith coreness
at most k. Let F be the vertices of coreness at most k frozen
by INITIALIZE of Algorithm 4. Then,

|F | ≤ |V≤k|
2
√
δ logn

.

Proof. From Observation 4, V≤k has at most k·|V≤k| edges
incident to it. Since each vertex of F has degree more than
2k · 2

√
δ logn, we have |F | ≤ 2k|V≤k|

2k·2
√
δ logn .

Set ε′ equals ε/3. We also state the following concetration
result, that follows directly by applying a Chernoff bound.

Improved Parallel Algorithms for Density-Based Network Clustering

Input : G : a graph
ε : approximation parameter
k : coreness threshold

Output : Label by BELOW some vertices of G
of coreness at most (2 + 3ε′)k

/* INITIALIZE: */
1 Freeze all vertices of degree greater than

2k · 2
√
δ logn.

2 Mark as frozen each edge with both endpoints
frozen.

3 ε′
def
= ε/3

/* PEELINGBELOW-k: */

4 p← min
{

1, 10 logn
(ε′)2k

}
5 T ←

√
δ logn
5

6 for T steps do
7 Sample each of the non-frozen edges with

probability p. Let G′ be the sampled graph.
8 Let S be the set of all non-frozen vertices

v ∈ G′ for which dG′(v) < (2 + 2ε′)pk.
9 Label all the vertices of S by BELOW.

10 Remove S from G.

11 return the obtained labels
Algorithm 4: Labeling vertices by BELOW

Lemma 8. Let S be the set obtained at Line 8 of Algo-
rithm 4. Then, whp it holds:

• If dG(v) ≤ (2 + ε′)k, then v is added to S.

• If dG(v) ≥ (2 + 3ε′)k, then v is not added to S.

Each iteration of PEELINGBELOW-k detects some vertices
of coreness at most k and labels them by BELOW. The
main property of this process is that in the next iteration
the number of unlabeled vertices of coreness at most k is
already small, or that their number drops significantly.

Lemma 9. Let V i≤k be the set of vertices ofGwith coreness
at most k (including frozen ones) that are not yet labeled
by the ith iteration of PEELINGBELOW-k of Algorithm 4.
Then, it holds

|V T≤k| ≤
(

2
√
δ logn

)−ε′/40
|V 1
≤k|. (1)

4.2. The Main MPC Algorithm

We now describe our main MPC algorithm. Lemma 9
shows that executing Algorithm 4 reduces the number of
unlabeled vertices of coreness at most k by a factor of(

2
√
δ logn

)ε′/40
. Hence, to properly label by BELOW all

the vertices whose coreness is below k, we invoke Algo-
rithm 4 for 40 ·

√
δ log n/ε′ times. Note that a vertex of

coreness more than (2 + ε)k has at least (2 + ε)k inci-
dent vertices of coreness more than (2 + ε)k. Hence, by
Lemma 8 (recall that ε′ = ε/3), no vertex of coreness more
than (2 + ε)k is labeled by BELOW.

These executions are done for each coreness threshold (2+
ε)i in parallel. Then, the coreness of vertex v is the largest
threshold for which it has not been labeled by BELOW.

MPC Implementation. To obtain the round complexity
of Õ(

√
log n), we implement Algorithm 4 in O(log logn)

rounds as follows. We simulate PEELINGBELOW-k block
(that begins at Line 4) by collecting all the relevant infor-
mation in T -hop neighborhood of each vertex. This can
be done by graph exponentiation in O(log log n) rounds.
After that, each vertex independently and locally simulates
PEELINGBELOW-k. In Appendix C.2 we provide details
on how to efficiently gather these T -hop neighborhoods.

5. (1 + ε)-approximate Densest Subgraph
with Sublinear Memory per Machine

We now focus on proving Theorem 3. We reduce this the-
orem to the task that for a given D either finds a subgraph
of density at least (1 − ε)D, or reports that such subgraph
does not exist. Then, to find a (1 + ε)-approximate densest
subgraph, it suffices to execute this task for all the values
(1 + ε)i in place of D, and output the densest subgraph
found in this way. Moreover, it is known (e.g., by (Es-
fandiari et al., 2015)) that by proper sampling we can as-
sume that it holds D ∈ O(log n/ε2). So, in the rest, for
a constant ε ∈ (0, 1) we assume that we are given a value
D ∈ O(log n), and our goal is to answer whether the input
graph has a subgraph of density (1− ε)D or not.

Starting point of our approach is the work by (Bahmani
et al., 2014). That is, we design an algorithm for approxi-
mately solving the dual of the LP relaxation of the densest
subgraph problem. We review this LPs in Section 5.1. In
this way, we obtain a fractional dual solution. It was shown
by (Bahmani et al., 2014) (as we recall in Appendix E.3)
how to round this fractional to a (1 + ε)-approximate inte-
gral primal solution, i.e., to round to a (1 + ε)-approximate
densest subgraph.

To solve this LP, (Bahmani et al., 2014) employ the Mul-
tiplicative Weights Update (MWU) method (that we recall
in Section 5.2). They massage the dual LP so that its width
becomes a constant, and then solve each MWU iteration
in O(1) many MPC rounds. Since, even with the reduced
width, MWU requires at least O(log n) iterations of com-
putation, their approach requires at least O(log n) MPC
rounds. We also use MWU, but employ this method in a
different way. Let T = Θ(

√
δ log n). We provide a way

Improved Parallel Algorithms for Density-Based Network Clustering

to collect all the relevant information for each vertex in
its T -hop neighborhood so that it has size O(nδ). Then,
we use this information to execute T MWU iterations in
O(1) MPC rounds. Note that, however, even though that
D ∈ O(log n), a vertex can have degree Θ(n). Hence,
even a 1-hop neighborhood can contain all the vertices,
and so cannot be stored on one machine. As our main re-
sult, we show how to reduce the degree of each vertex to
only Õ(2T) in a way that all the relevant information is
preserved for executing T MWU iterations for each vertex.

5.1. LP View
We now state the LP formulation of the densest subgraph
problem (Charikar, 2000)

maximize
∑
e

ye

subject to ye ≤ xe ∀e ∈ E, e incident on v∑
v

xv ≤ 1

xv, ye ≥ 0 ∀v ∈ V,∀e ∈ E

The dual LP of the LP above is

minimize z

subject to αeu + αev ≥ 1 ∀e = {u, v} ∈ E∑
e incident on v

αev ≤ z ∀v ∈ V

αev ≥ 0 ∀e, v

In the sequel, we focus on solving this dual LP. We reduce
this task to the one of solving the feasibility problem ob-
tained from the dual by fixing the value of z to D. Let
DUAL(D) denote this feasibility question.

5.2. Multiplicative Weights Update Method
As DUAL(D) is a covering LP, in this section we provide
a brief overview of the MWU method in the context of de-
ciding feasibility of covering LPs, and refer a reader to Ap-
pendix E.2 for details. The feasibility question of a cover-
ing LP can be stated as follows:

Feasibility of Covering LP:
Given a convex set P ⊂ Rd, a matrix A ∈ Rr×d such
that Ax ≥ 0 for all x ∈ P , does there exist y ∈ P
such that Ay ≥ 1?

To solve this problem by MWU, it is needed to provide
access to the following oracle, that gets invoked by MWU:

ORACLE(w):
Given a vector w ∈ Rr≥0: return a vector x such that

wTAx ≥ ‖w‖1; otherwise report “fail”.

The vector w is updated by MWU after each itera-
tion, where the updates are a function of the output of
ORACLE(w). Let ρ be such that (Ax)i ≤ ρ for any x ∈ P .
The value ρ is called width. It is well-known that:

Theorem 10 ((Arora et al., 2012)). Consider a feasibility
covering LP problem of width ρ. Then, for any constant ε ∈
(0, 1), after Θ(ρ log r) iterations the MWU method either
correctly reports that the covering problem is infeasible, or
outputs a vector x̄ such that such that Ax̄ ≥ (1− ε)1.

5.2.1. APPLYING MWU TO DUAL(D)

To solve DUAL(D) by MWU, we let the convex set P be
the set of points corresponding to all but the first constraint
of DUAL(D):

P = {α ∈ RE×V :
∑

e incident on v

αev ≤ D, and αev ≥ 0}.

Then, we use MWU to decide whether there exists a point
α ∈ P such that αeu + αev ≥ 1 for all e = {u, v} ∈ E. A
natural oracle for this problem is as follows. Recall that w
corresponds to the constraints that we are aiming to satisfy.
Hence, w is indexed by E. For each vertex v, ORACLE(w)
selects an edge e?v such that

e?v = arg max
e incident to v

we.

Let α? be the output of the oracle. Then, α? is set so that
α?e?vv = D and α?ev = 0 for each e 6= e?v .

It is not hard to see that this approach has width D, requir-
ing O(log2 n) iterations of MWU. (Recall that w.l.o.g. we
assumed that D ∈ O(log n.) Nevertheless, as shown by
(Bahmani et al., 2014), by adding constraints αev ≤ 2, for
all e, v, the width of DUAL(D) becomes O(1) while the
optimal solution remains the same. We discuss this width-
reduction in more details in Appendix E.2.3. Hence, the
massaged version of DUAL(D) can be solved in O(log n)
iterations of MWU. Moreover, each of the iterations can
be executed in O(1) MPC rounds. The main challenge
here is to execute these O(log n) MWU iterations in only
Õ(
√

log n) MPC rounds.

5.2.2. COMPRESSING MWU ITERATIONS

As earlier, let T = Θ(
√
δ log n). Observe that ORACLE

requires only local information of each vertex (access to
its incident edges). Motivated by this, we will for each
vertex collect its T -hop neighborhood and execute MWU
locally. However, there are two difficulties with this ap-
proach. First, although D is relatively small, a vertex can
have degree as large as Θ(n), e.g., in a star graph, hence its
neighborhood would quickly become larger than the mem-
ory per machine. Second, even if we manage to somehow

Improved Parallel Algorithms for Density-Based Network Clustering

sparsify the neighborhood of each vertex v based on the
current value of w, ORACLE is invoked with different val-
ues of w from iteration to iteration and it is not a priori
clear what will be the largest in w edges incident to v after
several iterations. We now show how to overcome both of
these barriers.

Assume for a moment that the degree of each vertex is
O(D) = O(log n). Then, T -hop neighborhood of a vertex
has size less than nδ , and hence fits on one machine. Un-
fortunately, as discussed, a small D does not imply small
degrees. However, a small D does imply sufficiently small
degree for most of the vertices. To leverage this observa-
tion, for each vertex we keep only Õ(2T) incident edges
with their values largest in the current vector w. This re-
sult in neighborhoods that fit on one machine. A downside
of this approach is that neighborhoods of large-degree ver-
tices do not have enough information to simulate MWU for
T iterations, as the largest in w edges are changing from it-
eration to iteration. Nevertheless, we prove that majority of
vertices simulate MWU correctly, which suffices to prove
that our oracle solves the corresponding LP. We defer this
proof to Appendix E.4.1.

6. Experiments
In this section we provide results of empirical evaluation of
our k-core algorithms, while focusing on their scalability.
In particular, we have two main goals:
– Understanding the effect of the vertex partitioning strat-
egy in the performances of our algorithm from Section 3.
– Comparing the speed between an algorithm using almost
linear memory and an algorithm(adapted from the algo-
rithm presented in Section Section 4) using sublinear mem-
ory per machine.
Algorithms. We compare three different algorithms:
– SKC is the algorithm introduced in (Esfandiari et al.,
2018) that is the current state-of-the-art algorithm for the
k-core problem.
– VKC is similar to SKC, with the difference that we use
the vertex partitioning strategy to sample the edges as in the
algorithm presented in Section 3. We note that this algo-
rithm does not capture all the optimization of the algorithm
presented in Section 3, but it captures its main intuition.
– FKC is a simple version of the algorithm presented in
Section 4 that runs in O(log n) rounds but uses sublinear
memory.
Datasets. We test the performances of our algorithms on
public graphs of increasing size from the SNAP Large Net-
works Data Collection (Yang & Leskovec, 2015). The
datasets are described in Table 1.
Results. For each datasets and each algorithms we run
three trials and in Fig. 1 we report the relative running time
for the different algorithm. We note that for smaller graphs

Graph # Nodes # Edges
Amazon 334,863 925,872
Youtube 1,134,890 2,987,624

LiveJournal 3,997,962 34,681,189
Orkut 3,072,441 117,185,083

Friendster 65,608,366 1,806,067,135

Table 1. Description of the datasets analyzed in the experiments.

SKC and VKC have similar performances while for larger
graphs, as Orkut, VKC outperforms SKC by more than a
factor of 2. This shows that the vertex partitioning is quite
impactful on large graph.

Interestingly FKC is significantly faster than all the other
methods and scales to substantially larger networks, show-
ing the importance of designing sublinear space algorithms.
In fact, in practice, we observe that every round of FKC is
significantly faster than a round of SKC or VKC. This is
a consequence of the small amount of data processed dur-
ing every round of FKC. Finally, we also note that for very
large graphs as Friendster we could not even run SKC and
VKC because of their linear memory requirement. Re-

Figure 1. Comparison between running time of different algo-
rithms. The x axes is in log-scale and it is index by the number
of edges in the input graph. The y axes show the relative running
time of the algorithms using as benchmark the running time of
SKC on the Amazon graph.

garding the accuracy of the approximation we note that the
quality of the solutions computed by SKC and VKC are
very similar while FKC has slightly worse accuracy.

7. Conclusions
We design new parallel algorithms for the densest subgraph
and the k-core decomposition problems. We show that our
algorithms outperform the state-of-the-art results both the-
oretically that empirically.

An interesting open question is to design an algorithm that
computes a (1 + ε)-approximate k-core decomposition in
o(log n) MPC rounds with sublinear memory per machine.

Improved Parallel Algorithms for Density-Based Network Clustering

Acknowledgements

We thank the anonymous reviewers for their valuable feed-
back. S. Mitrović was supported by the Swiss NSF grant
P2ELP2_181772 and MIT-IBM Watson AI Lab.

References
Akoglu, L., Mcglohon, M., and Faloutsos, C. Anomaly de-

tection in large graphs. In In CMU-CS-09-173 Technical
Report, 2009.

Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa,
K., and Kanaya, S. Development and implementation
of an algorithm for detection of protein complexes in
large interaction networks. BMC bioinformatics, 7(1):
207, 2006.

Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., and
Vespignani, A. k-core decomposition: A tool for the
visualization of large scale networks. arXiv preprint
cs/0504107, 2005.

Arora, S., Hazan, E., and Kale, S. The multiplicative
weights update method: a meta-algorithm and applica-
tions. Theory of Computing, 8(1):121–164, 2012.

Bahmani, B., Kumar, R., and Vassilvitskii, S. Densest sub-
graph in streaming and mapreduce. Proceedings of the
VLDB Endowment, 5(5):454–465, 2012.

Bahmani, B., Goel, A., and Munagala, K. Efficient primal-
dual graph algorithms for mapreduce. In International
Workshop on Algorithms and Models for the Web-Graph,
pp. 59–78. Springer, 2014.

Bateni, M., Bhaskara, A., Lattanzi, S., and Mirrokni, V. S.
Distributed balanced clustering via mapping coresets. In
Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pp. 2591–2599, 2014.

Beame, P., Koutris, P., and Suciu, D. Communication steps
for parallel query processing. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGAI symposium on Princi-
ples of database systems, pp. 273–284. ACM, 2013.

Bhattacharya, S., Henzinger, M., Nanongkai, D., and
Tsourakakis, C. Space-and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 173–182.
ACM, 2015.

Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T.,
and Sharma, A. Preventing unraveling in social net-
works: the anchored k-core problem. SIAM Journal on
Discrete Mathematics, 29(3):1452–1475, 2015.

Charikar, M. Greedy approximation algorithms for finding
dense components in a graph. In International Workshop
on Approximation Algorithms for Combinatorial Opti-
mization, pp. 84–95. Springer, 2000.

Chen, J. and Saad, Y. Dense subgraph extraction with ap-
plication to community detection. IEEE Transactions
on Knowledge and Data Engineering, 24(7):1216–1230,
2012.

Chen, T., Jiang, S., Chu, L., and Huang, Q. Detection
and location of near-duplicate video sub-clips by finding
dense subgraphs. In Proceedings of the 19th ACM in-
ternational conference on Multimedia, pp. 1173–1176.
ACM, 2011.

Czumaj, A., Łącki, J., Mądry, A., Mitrović, S., Onak,
K., and Sankowski, P. Round compression for parallel
matching algorithms. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
471–484. ACM, 2018.

Dean, J. and Ghemawat, S. Mapreduce: simplified data
processing on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

Ene, A., Im, S., and Moseley, B. Fast clustering using
mapreduce. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, USA, August 21-24, 2011,
pp. 681–689, 2011. doi: 10.1145/2020408.2020515.

Epasto, A., Lattanzi, S., and Sozio, M. Efficient densest
subgraph computation in evolving graphs. In Proceed-
ings of the 24th International Conference on World Wide
Web, WWW 2015, Florence, Italy, May 18-22, 2015, pp.
300–310, 2015. doi: 10.1145/2736277.2741638.

Esfandiari, H., Hajiaghayi, M., and Woodruff, D. P. Ap-
plications of uniform sampling: Densest subgraph and
beyond. arXiv preprint arXiv:1506.04505, 2015.

Esfandiari, H., Lattanzi, S., and Mirrokni, V. Parallel and
streaming algorithms for k-core decomposition. In In-
ternational Conference on Machine Learning, pp. 1396–
1405, 2018.

Frank, A. and Gyárfás, A. How to orient the edges of a
graph? Combinatorics, pp. 353–364, 1978.

Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou,
S. Motifcut: regulatory motifs finding with maximum
density subgraphs. Bioinformatics, 22(14):e150–e157,
2006.

Ghaffari, M. Distributed mis via all-to-all communication.
In Proceedings of the ACM Symposium on Principles of
Distributed Computing, pp. 141–149. ACM, 2017.

Improved Parallel Algorithms for Density-Based Network Clustering

Ghaffari, M. and Uitto, J. Sparsifying distributed algo-
rithms with ramifications in massively parallel compu-
tation and centralized local computation. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 1636–1653. SIAM, 2019.

Gibson, D., Kumar, R., and Tomkins, A. Discovering
large dense subgraphs in massive graphs. In Proceed-
ings of the 31st international conference on Very large
data bases, pp. 721–732. VLDB Endowment, 2005.

Gionis, A. and Tsourakakis, C. E. Dense subgraph discov-
ery: Kdd 2015 tutorial. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2313–2314. ACM, 2015.

Goldberg, A. V. Finding a maximum density subgraph.
Technical report, Berkeley, CA, USA, 1984.

Goodrich, M. T., Sitchinava, N., and Zhang, Q. Sorting,
searching, and simulation in the mapreduce framework.
In International Symposium on Algorithms and Compu-
tation, pp. 374–383. Springer, 2011.

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In ACM SIGOPS operating systems
review, volume 41, pp. 59–72. ACM, 2007.

Jethava, V., Martinsson, A., Bhattacharyya, C., and Dub-
hashi, D. P. "the lovasz θ function, svms and find-
ing large dense subgraphs". In Advances in Neural Infor-
mation Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pp. 1169–1177, 2012.

Karloff, H., Suri, S., and Vassilvitskii, S. A model of com-
putation for mapreduce. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pp. 938–948. SIAM, 2010.

Lee, V. E., Ruan, N., Jin, R., and Aggarwal, C. A survey of
algorithms for dense subgraph discovery. In Managing
and Mining Graph Data, pp. 303–336, 2010a.

Lee, V. E., Ruan, N., Jin, R., and Aggarwal, C. A survey of
algorithms for dense subgraph discovery. In Managing
and Mining Graph Data, pp. 303–336. Springer, 2010b.

Lenzen, C. and Wattenhofer, R. Brief announcement:
Exponential speed-up of local algorithms using non-
local communication. In Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on Principles of dis-
tributed computing, pp. 295–296. ACM, 2010.

Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney,
M. W. Statistical properties of community structure in

large social and information networks. In Proceedings
of the 17th international conference on World Wide Web,
pp. 695–704. ACM, 2008.

Liu, H. and Yan, S. Robust graph mode seeking by graph
shift. In Proceedings of the 27th international con-
ference on machine learning (ICML-10), pp. 671–678.
Citeseer, 2010.

Miller, B. A., Bliss, N. T., and Wolfe, P. J. Subgraph
detection using eigenvector L1 norms. In Advances in
Neural Information Processing Systems 23: 24th An-
nual Conference on Neural Information Processing Sys-
tems 2010. Proceedings of a meeting held 6-9 December
2010, Vancouver, British Columbia, Canada., pp. 1633–
1641, 2010.

Mitzenmacher, M., Pachocki, J., Peng, R., Tsourakakis, C.,
and Xu, S. C. Scalable large near-clique detection in
large-scale networks via sampling. In Proceedings of the
21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 815–824. ACM,
2015.

Papailiopoulos, D. S., Mitliagkas, I., Dimakis, A. G., and
Caramanis, C. Finding dense subgraphs via low-rank
bilinear optimization. In Proceedings of the 31th Inter-
national Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, pp. 1890–1898, 2014.

Saha, B., Hoch, A., Khuller, S., Raschid, L., and Zhang, X.-
N. Dense subgraphs with restrictions and applications to
gene annotation graphs. In Annual International Confer-
ence on Research in Computational Molecular Biology,
pp. 456–472. Springer, 2010.

White, T. Hadoop: The definitive guide. " O’Reilly Media,
Inc.", 2012.

Yang, J. and Leskovec, J. Defining and evaluating net-
work communities based on ground-truth. Knowl.
Inf. Syst., 42(1):181–213, 2015. doi: 10.1007/
s10115-013-0693-z. URL https://doi.org/10.
1007/s10115-013-0693-z.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Spark: Cluster computing with working
sets. HotCloud, 10(10-10):95, 2010.

https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z

