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Abstract
As data becomes the fuel driving technological
and economic growth, a fundamental challenge is
how to quantify the value of data in algorithmic
predictions and decisions. For example, in health-
care and consumer markets, it has been suggested
that individuals should be compensated for the
data that they generate, but it is not clear what is
an equitable valuation for individual data. In this
work, we develop a principled framework to ad-
dress data valuation in the context of supervised
machine learning. Given a learning algorithm
trained on n data points to produce a predictor,
we propose data Shapley as a metric to quantify
the value of each training datum to the predic-
tor performance. Data Shapley uniquely satisfies
several natural properties of equitable data valua-
tion. We develop Monte Carlo and gradient-based
methods to efficiently estimate data Shapley val-
ues in practical settings where complex learning
algorithms, including neural networks, are trained
on large datasets. In addition to being equitable,
extensive experiments across biomedical, image
and synthetic data demonstrate that data Shapley
has several other benefits: 1) it is more powerful
than the popular leave-one-out or leverage score
in providing insight on what data is more valuable
for a given learning task; 2) low Shapley value
data effectively capture outliers and corruptions;
3) high Shapley value data inform what type of
new data to acquire to improve the predictor.

1. Introduction
Data is valuable and it is the fuel that powers artificial in-
telligence. Increasingly in sectors such as health care and
advertising, data generated by individuals is a key compo-
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nent of the market place, similar to labor and capital (Posner
& Weyl, 2018). It has been suggested that certain data con-
stitute individual property, and as such individuals should be
compensated in exchange for these data (Regulation, 2018).
Like labor and capital, a fundamental question is how to
equitably value individual’s data.

We focus on data valuation in the specific setting of super-
vised machine learning. In order to make sense of data
value, we need three ingredients in our investigation: a
fixed training data set, a learning algorithm, and a perfor-
mance metric. The training data is a fixed set of n data
points, {xi, yi}n1 , where xi and yi are the features and the
label of point i, respectively. For our purpose, a learning
algorithm A is a procedure that takes an arbitrary training
set and produces a predictor. For example, A could be
the common empirical risk minimization where it solves
θ∗ = arg minθ

∑
l(f(xi; θ), yi), where l is the loss, θ

parametrizes a family of models and f( ; θ∗) is the pre-
dictor. For any predictor f , we also need a performance
metric of V (f). We can think of V as the test performance
of f on whatever metric of interest.

The two questions that we want to investigate are: 1) what
is an equitable measure of the value of each (xi, yi) to
the learning algorithm A with respect to the performance
metric V ; and 2) how do we efficiently compute this data
value in practical settings. For example, suppose we have
data from N = 1000 patients and we train a small neural
network to build a heart disease classifier. We also have
some independent metric to assess the performance of the
trained classifier—e.g. its prediction accuracy on a test set.
Then we would like to quantify the value of each patient’s
data to the classifier’s performance on this task.

Note that we do not define a universal value for data. Instead,
the value of each datum depend on the learning algorithm,
the performance metric as well as on other data in the train-
ing set. This dependency is reasonable and desirable in
machine learning. Certain data points could be more impor-
tant if we are training a logistic regression instead of a neural
network. Similarly, if the performance metric changes—e.g.
regressing to the age of heart disease onset instead of heart
disease incidence—then the value of certain patient’s data
should change. Moreover the performance metric could
be computed on a different population/distribution than the
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training data; we make no assumptions about how it is done.

A common method to evaluate data importance is some form
of leave-one-out (LOO) test: compare the difference in the
predictor’s performance when trained on the full dataset
vs. the performance when trained on the full set minus
one point (Cook, 1977). The drop in performance in one
measure of the “value” of that point. LOO is often approxi-
mated by leverage or influence score, which measures how
the predictor changes when the weight of one point changes
slightly (Cook & Weisberg, 1982). We will show below
that leave-one-out does not satisfy natural properties we
expect for equitable data valuation, and it performs poorly
in experiments. For a simple intuition of why leave-one-out
fails, suppose our predictor is a nearest-neighbor classifier—
i.e. for each test point we find its nearest neighbor in the
training set and assign it that label. Moreover suppose ev-
ery training point has two exact copies in the training set.
Removing one point from training does not change the pre-
dictor at all, since its copy is still present. Therefore the
leave-one-out approach would assign every training point
zero value, regardless of how well the actual predictor per-
forms. This simple example illustrates that leave-one-out
does not capture potentially complex interactions between
subsets of data. Our proposed data Shapley value provides
more meaningful valuation by precisely accounting for such
interactions.

Our contributions We provide a natural formulation of
the important problem of equitable data valuation in ma-
chine learning. We propose data Shapley value, leveraging
powerful results from game theory, to quantify the the con-
tribution of individual data points to a learning task. Data
Shapley uniquely satisfies three natural properties of equi-
table valuation. Moreover, our empirical studies demon-
strate that data Shapley has several additional utilities: 1) it
gives more insights into the importance of each data point
than the common leave-one-out score; 2) it can identify
outliers and corrupted data; 3) it can inform how to acquire
future data to improve the predictor.

2. Equitable Data Valuation for ML
Preliminaries Let D = {(xi, yi)}n1 be our fixed training
set. We do not make any distributional assumptions about
D and the data need not be independent. The yi’s can be
categorical or real for classification and regression, respec-
tively. Let A denote the learning algorithm. We view A as
a black-box that takes as input a training data set of size
between 0 and∞, and returns a predictor. We are particu-
larly interested in the predictor trained on subsets S ⊆ D.
The performance score V is another black-box oracle that
takes as input any predictor and returns a score. We write
V (S,A), or just V (S) for short, to denote the performance

score of the predictor trained on data S. Our goal is to com-
pute a data value φi(D,A, V ) ∈ R, as a function of D,A
and V , to quantify the value of the i-th datum. We will
often write it as φi(V ) or just φi to simplify notation. For
convenience, we will sometimes overload the notation for
S and D so that it can also indicate the set of indices—i.e.
i ∈ S if (xi, yi) is in that subset and D = {1, ..., n}.

Example Suppose yi’s are binary and A corresponds to
a logistic regression learner—i.e. A takes any dataset and
returns a logistic regression fitted to it. The score V here
could be the 0/1 accuracy on a separate test set. Then V (S)
is the 0/1 test accuracy when the logistic regression is trained
on a subset S ⊆ D. If S = ∅, then V (S) is the performance
of a randomly initialized classifier. In general, the test data
used to compute V could be from a different distribution
than that of D.

Equitable properties of data valuation We believe that
φ should satisfy the following properties in order to be
equitable:

1. If (xi, yi) does not change the performance if it’s added
to any subset of the training data, then it should be
given zero value. More precisely, suppose for all S ⊆
D − {i}, V (S) = V (S ∪ {i}), then φi = 0.

2. If for data i and j and any subset S ⊆ D − {i, j},
we have V (S ∪ {i}) = V (S ∪ {j}), then φi = φj .
In other words, if i and j, when added to any subset
of our training data, always produce exactly the same
change in the predictor’s score, then i and j should be
given the same value by symmetry.

3. In most ML settings, V = −
∑
k∈test set lk where lk

is the loss of the predictor on the k-th test point (we
took a minus so that lower loss is higher score). We
can define Vk = −lk to be the predictor’s performance
on the k-th test point. Similarly φi(Vk) quantifies the
value of the i-th training point to the k-th test point. If
datum i contributes values φi(V1) and φi(V2) to the
predictions of test points 1 and 2, respectively, then
we expect the value of i in predicting both test points—
i.e. when V = V1 + V2—to be φi(V1) + φi(V2). In
words: when the overall prediction score is the sum of
K separate predictions, the value of a datum should
be the sum of its value for each prediction. Formally:
φi(V +W ) = φi(V )+φi(W ) for performance scores
V and W .

While there are other desirable properties of data valuation
worth discussing, these three properties listed above actually
pin down the form of φi up to a proportionality constant.
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Proposition 2.1. Any data valuation φ(D,A, V ) that sat-
isfies properties 1-3 above must have the form

φi = C
∑

S⊆D−{i}

V (S ∪ {i})− V (S)(
n−1
|S|
) (1)

where the sum is over all subsets of D not containing i and
C is an arbitrary constant. We call φi the data Shapley
value of point i.

Proof. The expression of φi in Eqn. 1 is the same as the
Shapley value defined in game theory, up to the constant C
(Shapley, 1953; Shapley et al., 1988). This motivates calling
φi the data Shapley value. The proof also follows directly
from the uniqueness of the game theoretic Shapley value,
by reducing our problem to a cooperative game (Dubey,
1975). In cooperative game theory, there are n players and
there is a score function v : 2[n] → R. Basically v(S) is
the reward if the players in subset S work together. Shapley
proposed a way to divide the score among the n players
so that each player receives his/her fair payment, where
fairness is codified by properties that are mathematically
equivalent to the three properties that we listed. We can view
data valuation as a cooperative game: each training datum
is a player, and the training data work together through the
learner A to achieve prediction score v = V . The data
Shapley value is analogous to the payment that each player
receives.

The choice of C is an arbitrary scaling and does not affect
any of our experiments and analysis.

Interpretation of data Shapley Eqn. 1 could be inter-
preted as a weighted sum of all possible “marginal contri-
butions” of i; where the weight is inverse the number of
subsets of size |S| in D − {i}. This formulation is close to
that of leave-one-out where instead of considering the last
marginal contribution V (D) − V (D − {i}), we consider
each point’s marginal contribution assuming that instead of
the whole training set, a random subset of it is given. In
other words, we can assume the scenario where instead of
the train data, we were given a random subset of it; Shapley
formula outputs an equitable value by capturing all these
possible subset scenarios.

3. Approximating Data Shapley
As discussed in the previous section, the Shapley formula in
Eqn. 1 uniquely provides an equitable assignment of values
to data points. Computing data Shapley, however, requires
computing all the possible marginal contributions which is
exponentially large in the train data size. In addition, for
each S ⊆ D, computing V (S) involves learning a predictor
on S using the learning algorithm A. As a consequence,

calculating the exact Shapley value is not tractable for real
world data sets. In this section, we discuss approximation
methods to estimate the data Shapley value.

3.1. Approximating Shapley Value

As mentioned, computing the Shapley value has exponential
complexity in number of data points n. Here, we discuss
two methods for circumventing this problem:

Monte-Carlo method: We can rewrite Eqn. 1 into an
equivalent formulation by setting C = 1/n!. Let Π be
the uniform distribution over all n! permutations of data
points, we have:

φi = Eπ∼Π[V (Siπ ∪ {i})− V (Siπ)] (2)

where Siπ is the set of data points coming before datum i in
permutation π (Siπ = ∅ if i is the first element).

As described in Eqn. 2, calculating the Shapley value can be
represented as an expectation calculation problem. There-
fore, Monte-Carlo method have been developed and an-
alyzed to estimate the Shapley value (Mann & Shapley,
1962; Castro et al., 2009b; Maleki et al., 2013). First, we
sample a random permutations of data points. Then, we
scan the permutation from the first element to the last ele-
ment and calculate the marginal contribution of every new
data point. Repeating the same procedure over multiple
Monte Carlo permutations, the final estimation of the data
Shapley is simply the average of all the calculated marginal
contributions. This Monte Carlo sampling gives an unbiased
estimate of the data Shapley. In practice, we generate Monte
Carlo estimates until the average has empirically converged.
Previous work has analyzed error bounds of Monte-carlo
approximation of Shapley value (Maleki et al., 2013). Fig 6
in Appendix A depicts examples of convergence of data
Shapley. In practice, convergence is reached with number
of samples on the order n; usually 3n Monte Carlo samples
is sufficient for convergence.

Truncation: In the machine learning setting, V (S) for
S ⊆ N is usually the predictive performance of the model
learned using S on a separate test set. Because the test set
is finite, V (S) is itself an approximation to the true perfor-
mance of the trained model on the test distribution, which
we do not know. In practice, it is sufficient to estimate the
data Shapley value up to the intrinsic noise in V (S), which
can be quantified by measuring variation in the performance
of the same predictor across bootstrap samples of the test
set (Friedman et al., 2001). On the other hand, as the size of
S increases, the change in performance by adding only one
more training point becomes smaller and smaller (Mahajan
et al., 2018; Beleites et al., 2013). Combining these two
observations lead to a natural truncation approach.
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Algorithm 1 Truncated Monte Carlo Shapley
Input: Train data D = {1, . . . , n}, learning algorithm
A, performance score V
Output: Shapley value of training points: φ1, . . . , φn

Initialize φi = 0 for i = 1, . . . , n and t = 0
while Convergence criteria not met do
t← t+ 1
πt: Random permutation of train data points
vt0 ← V (∅,A)
for j ∈ {1, . . . , n} do

if |V (D)− vtj−1| < Performance Tolerance then
vtj = vtj−1

else
vtj ← V ({πt[1], . . . , πt[j]},A)

end if
φπt[j] ← t−1

t φπt−1[j] + 1
t (v

t
j − vtj−1)

end for
end for

We can define a “performance tolerance” based on the boot-
strap variation in V . As we scan through a sampled permu-
tation and calculate marginal contributions, we truncate the
calculation of marginal contributions in a sampled permu-
tation whenever V (S) is within the performance tolerance
of V (D) and set the marginal contribution to be zero for
the rest of data points in this permutation. Appendix B
shows that truncation leads to substantial computational
savings without introducing significant estimation bias. In
the rest of the paper, we refer to the combination of trun-
cation with Monte-Carlo as the “Trunctated Monte Carlo
Shapley”(TMC-Shapley); described with more details in
Algorithm 1.

3.2. Approximating Performance Metric V

For every S ⊆ D, calculating V (S) requires A to learn
a new model. For a small D and a fast A—e.g. logistic
regression, LASSO—it is possible to use the TMC-Shapley
method as stated. However, in settings where the number
of data points is large or the predictive model requires high
computational power (e.g. deep neural networks), applying
TMC-Shapley can be quite expensive. We propose two
strategies to further reduce the computational cost of data
Shapley for large data settings.

Gradient Shapley For a wide family of predictive mod-
els, A involves a variation of stochastic gradient descent
where randomly selected batches of D update the model
parameters iteratively. One simple approximation of a com-
pletely trained model in these settings is to consider training
the model with only one pass through the training data; in
other words, we train the model for one “epoch” of D. This

Algorithm 2 Gradient Shapley
Input: Parametrized and differentiable loss function
L (.; θ), train data D = {1, . . . , n} , performance score
function V (θ)
Output: Shapley value of training points: φ1, . . . , φn

Initialize φi = 0 for i = 1, . . . , n and t = 0
while Convergence criteria not met do
t← t+ 1
πt: Random permutation of train data points
θt0 ← Random parameters
vt0 ← V (θt0)
for j ∈ {1, . . . , n} do
θtj ← θtj−1 − α∇θL (πt[j]; θj−1)

vtj ← V (θtj)

φπt[j] ← t−1
t φπt−1[j] + 1

t (v
t
j − vtj−1)

end for
end for

approximation fits nicely within the framework of Algo-
rithm 1: for a sampled permutation of data points, update
the model by performing gradient descent on one data point
at a time; the marginal contribution is the change in model’s
performance. Details are described in Algorithm 2, which
we call Gradient Shapley or G-Shapley for short. In order to
have the best approximation, we perform hyper-parameter
search for the learning algorithm to find the one resulting
best performance for a model trained on only one pass of
the data which, in our experiments, result in learning rates
bigger than ones used for multi-epoch model training. Ap-
pendix D discusses numerical examples of how good of
an approximation G-Shapley method yields in this work’s
experimental results.

Value of groups of data points In many settings, in order
to have more robust interpretations or because the training
set is very large, we prefer to compute the data Shapley for
groups of data points rather than for individual data. For ex-
ample, in a heart disease prediction setting, we could group
the patients into discrete bins based on age, gender, ethnicity
and other features, and then quantify the data Shapley of
each bin. In these settings, we can calculate the Shapley
value of a group using the same procedure as Algorithm 1,
replacing the data point i by group i. As a consequence,
even for a very large data set, we can calculate the group
Shapley value if the number of groups is reasonable.

4. Experiments & Applications
In this section, we demonstrate the estimation and appli-
cations of data Shapley across systematic experiments on
real and synthetic data. We show that points with high
Shapley value are critical for model’s performance and vice
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versa. We then discuss the effect of acquiring new data
points similar to highly valued training points compared to
acquiring new data randomly. Moreover we conduct two
experiments showing that data points that are noisy or have
label corruption will be assigned low Shapley value. Lastly
we demonstrate that Shapley values can also give informa-
tive scores for groups of individuals. Taken together, these
experiments suggest that, in addition to its equitable prop-
erties, data Shapley provides meaningful values to quantify
the importance of data and can inform downstream analysis.
Given that leverage and influence scores seek to approxi-
mate leave-one-out score (Koh & Liang, 2017), throughout
the experiments, we focus on comparing the performance
of the Shapley methods to that of the leave-one-out (LOO)
method. LOO is computed as the difference in the model
performance V between the model trained on the full dataset
with and without the point of interest.

In all of the following experiments, we have a train set,
a separate test set used for calculating V , and a held-out
set used for reporting the final results of each figure. Our
convergence criteria for TMC-Shapley and G-Shapley is
1
n

∑n
i=1

|φt
i−φ

t−100
i |
|φt

i|
< 0.05. For all the experiments, calcu-

lating data Shapley values took less than 24 hours on four
machines running in parallel (each with 4 cpus) except for
one of the experiments where the model is a Conv-Net for
which 4 GPUs were utilized in parallel for 120 hours. It
should be mentioned that both data Shapley algorithms are
parallelizable up to the number of iterations and therefore,
the computations can become faster using more machines
in parallel.

4.1. Data Shapley for Disease Prediction

In this experiment, we use the UK Biobank data set (Sudlow
et al., 2015); the task is predicting whether an individual
will be diagnosed with Malignant neoplasm of breast and
skin (ICD10 codes C50 and C44, binary classification) using
285 features. Balanced binary data sets for each task are
created and we use 1000 individuals for the task of training.
Logistic regression yields a test accuracy of 68.7% and
56.4% for breast and skin cancer prediction, respectively.
Performance is computed as the accuracy of trained model
on 1000 separate patients. The varying accuracies for the
two tasks allow us to investigate data Shapley for classifiers
that are more or less accurate. We first compute the TMC-
Shapley, G-Shapley, and leave-one-out values. The TMC-
Shapley converges in 4000 Monte Carlo iterations for both
tasks while G-Shapley is already converged at iteration 1500.
Appendix A shows examples of convergence for randomly
selected data points in the train sets.

Importance of valuable datum After calculating data
values, we remove data points from the training set starting

from the most valuable datum to the least valuable and train
a new model each time. Fig. 1(a) shows the change in
the performance as valuable data points are thrown away;
points that data Shapley considers valuable are crucially
important for the model performance while leave-one-out
valuation is only slightly better than random valuation (i.e.
removing random points). Fig. 1(b) depicts the results for
the opposite setting; we remove data points starting from the
least valuable. Interestingly points with low Shapley value
in these training set actually harm the model’s performance
and removing them will improve accuracy.

Acquiring new data Looking at which type of train data
have high Shapley value and inform us how to collect new
data—by recruiting similar individuals—in order to improve
the model performance. Let’s consider the following practi-
cal scenario: we want to add a number of new patients to the
training data to improve our model. Adding an individual
carries a cost, so we have to choose among a pool of 2000
candidates. We run two experiments: first we try to add
points that are similar to high value training points and then
we repeat the same experiment by adding low value points.
To this end, we fit a Random Forest regression model to
the calculated data Shapley values. The regression model
learns to predict a data point’s value given its observables.
Using the trained regression model, we estimate the value of
patients in the patient pool. Fig. 1(c) depicts how the model
performance changes as we add patients with high estimated
value to our training set; the model’s performance increases
more effectively than adding new patients randomly. Con-
sidering the opposite case, Fig. 1(d) shows that by choosing
the wrong patients to add, we can actually hurt the current
model’s performance.

4.2. Synthetic Data

We use synthetic data to further analyze Shapley values.
The data generating process is as follows. First, features
are sampled from a 50-dimensional Gaussian distribution
N (0, I) . Each sample i’s label is then assigned a binary
label yi where P (yi = 1) = f() for a function f(.). We
create to sets of data sets: 20 data sets were feature-label
relationship is linear (linear f(.)) , and 20 data sets where
f(.) is a third order polynomial. For the first sets of data set
we us a logistic regression model and for the second set we
use both a logistic regression and a neural network with one
hidden layer. We then start removing training points from
the most valuable to the least valuable and track the change
in model performance. Fig. 2 shows the results for using
train data size of 100 and 1000; for all of the settings, the
Shapley valuation methods do a better job than the leave-
one-out in determining datum with the most positive effect
on model performance. Note here that Shapley value is
always dependent on the chosen model: in a dataset with



Data Shapley: Equitable Valuation of Data for Machine Learning
Br

ea
st

 C
an

ce
r

Sk
in

 C
an

ce
r

(a) (c) (d)

Removing high 
value data

Adding high 
value data

Adding low
value data

Removing low 
value data

(b)

Figure 1. Disease Prediction For breast and skin cancer prediction tasks, we calculate the value of every point in the train set using
TMC-Shapley, G-Shapley and leave-one-out (LOO). (a) We remove the most valuable data from the train set, as ranked by the three
methods plus uniform sampling. The Shapley methods identifies important data points, and removing the most TMC-Shapley or G-Shapley
valuable points results in performance worse than randomly removing data. This is not true for LOO. (b) Removing the low TMC-Shapley
or G-Shapley value data from the train set improves the predictor performance. (c) We acquired new patients who are similar to the high
TMC-Shapley or G-Shapley value patients in the training data. This resulted in greater performance gains compared to adding random
patients. (d) Acquiring new patients who are similar to low TMC-Shapley or G-Shapley value patients do not help.

non-linear feature-label relationship, data points that will
improve a non-linear model’s performance, can be harmful
to a linear model and therefore valueless.

4.3. Label Noise

Labeling data sets using crowd-sourcing is susceptible to
mistakes (Frénay & Verleysen, 2014) and mislabeling the
data can be used as a simple data poisoning method (Stein-
hardt et al., 2017). In this experiment, given a train data with
noisy labels, we check and correct the mislabeled examples
by inspecting the data points from the least valuable to the
most valuable as we expect the mislabeled examples to be
among the lowest valuable points (some have negative Shap-
ley value). Fig. 3 shows the effectiveness of this method
using TMC-Shapley, Gradient-Shapley (If applicable), and
leave-one-out methods compared to the random inspection
benchmark. We run the experiment for three different data
sets and three different predictive models. In the first exper-
iment, we use the spam classification data set (Metsis et al.,
2006). 3000 data points are used for training a Multinomial
Naive Bayes model that takes the bag of words represen-
tation of emails as input. We randomly flip the label for
20% of training points. TMC-Shapley converges in 5000

iterations.In the next experiment, we use the flower image
classification data set1 with 5 different classes. We pass the
flower images through Inception-V3 model and train a multi-
nomial logistic regression model on the learned network’s
representation of 1000 images where 10% of the images
are mislabeled. Both Shapley algorithms converge in 2000
iterations. At last, we train a convolutional neural network
with one convolutional and two feed-forward layers on 1000
images from the Fashion MNIST data set(Xiao et al., 2017)
to classify T-Shirts and Tops against Shirts. 10% of data
points have flipped labels. TMC-Shapley and G-Shapley
both converge in 2000 iterations. The value is computed on
separate sets of size 1000. Fig. 3 displays the results. Fig 4
shows the 5 least TMC-Shapley valued images for Flow-
ers and Fashion MNIST data sets where all are mislabeled
examples.

4.4. Data Quality and Value

In this experiment, we used the Dog vs. Fish data set intro-
duced in (Koh & Liang, 2017). For each class, 1200 images
are extracted from Imagenet (Russakovsky et al., 2015). We

1adapted from https://goo.gl/Xgr1a1
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Figure 2. Synthetic experiments Average results are displayed for three different settings. Vertical axis if relative accuracy which stands
for accuracy divided by the accuracy of the model trained on the whole train data without any removal. For each figure, 20 data sets are
used. In all data sets, the generative prorcess is as follows: for input features , the label is generated such that p(y|x) = f(x) where in
(a) f(.) is linear and in (b) f(.) is a third order polynomial and (c) uses the same data sets as (b). In (a) and (b) the model is logistic
regression and in (c) it’s a neural network. Both Shapley methods do a better job at assigning high value to data points with highest
positive effect on model performance. Colored shaded areas stand for standard deviation over results of 20 data sets.

use a state of the art Inception-v3 network(Szegedy et al.,
2016) with all layers but the top layer frozen. 100 images
are randomly sampled as the training set and 1000 images
are used to compute the value function. We corrupt 10% of
train data by adding white noise and compute the average
TMC-Shapley value of clean and noisy images and repeat
the same experiment with different levels of noise. As it
is shown in Fig. 5(a), as the noise level increases (the data
quality drops), the data Shapley value of the noisy images
decreases.

4.5. Group Shapley Value

In this experiment, we use a balanced subset of the hos-
pital readmission data set (Strack et al., 2014) for binary
prediction of a patient’s readmission. We group patients
into 146 groups by intersections of demographic features
of gender, race, and age. A gradient boosting classifier
trained on a train set of size 60000 yields and accuracy of
58.4%. We then calculate the TMC-Shapey values of groups.
Fig 5(b) shows that the most valuable groups are also the
most important ones for model’s performance. In addition to
computational efficiency, an important advantage of group
Shapley is its easy interpretations. For instance, in this data
set, groups of older patients have higher value than younger
ones, racial minorities get less value, and groups of females
tend to be more valuable than males with respect to data
Shapley, and so forth.

5. Related Works
Shapley value was proposed in a classic paper in game
theory (Shapley, 1953) and has been widely influential in
economics (Shapley et al., 1988). It has been applied to ana-
lyze and model diverse problems including voting, resource
allocation and bargaining (Milnor & Shapley, 1978; Gul,
1989). To the best of our knowledge, Shapley value has
not been used to quantify data value in a machine learning
context like ours. Shapley value has been recently proposed
as a feature importance score for the purpose of interpreting
black-box predictive models (Kononenko et al., 2010; Datta
et al., 2016; Lundberg & Lee, 2017; Cohen et al., 2007;
Chen et al., 2018; Lundberg et al., 2018). Their goal is to
quantify, for a given prediction, which features are the most
influential for the model output. Our goal is very different
in that we aim to quantify the value of individual data points
(not features). There is also a literature in estimating Shapley
value using Monte Carlo methods, network approximations,
as well as analytically solving Shapley value in specialized
settings (Fatima et al., 2008; Michalak et al., 2013; Castro
et al., 2009a; Maleki et al., 2013; Hamers et al., 2016)

In linear regression, Cook’s Distance measures the effect of
deleting one point on the regression model (Cook, 1977).
Leverage and influence are related notions that measures
how perturbing each point affects the model parameters
and model predictions on other data (Cook & Weisberg,
1982; Koh & Liang, 2017). These methods, however, do not



Data Shapley: Equitable Valuation of Data for Machine Learning

Spam Classification
Naïve Bayes Classifier

20% mislabeled

Flower Classification
Multinomial Logistic Regression

10% mislabeled

T-Shirt/Top vs Shirt Classification
ConvNet Classifier

10% mislabeled

Figure 3. Correcting Flipped Labels We inspect train data points from the least valuable to the most valuable and fix the mislabeled
examples. As it is shown, Shapley value methods result in the earliest detection of mislabeled examples. While leave-one-out works
reasonably well on the Logistic Regression model, it’s performance on the two other models is similar to random inspection.
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Figure 4. Label noise and Shapley value Images with the least
TMC-Shapley value. All of them are mislabeled.

satisfy any equitability conditions, and also have been shown
to have robustness issues (Ghorbani et al., 2017). In the
broad discourse, value of data and how individuals should
be compensated has been intensely discussed by economists
and policy makers along with the discussion of incentivizing
participants to generate useful data.(Arrieta Ibarra et al.,
2017; Posner & Weyl, 2018)

6. Discussion
We proposed data Shapley as an equitable framework to
quantify the value of individual training datum for the learn-
ing algorithm. Data Shapley uniquely satisfies three natural
properties of equitable data valuation. There are ML settings
where these properties may not be desirable and perhaps
other properties need to be added. It is a very important
direction of future work to clearly understand these different
scenarios and study the appropriate notions of data value.
Drawing on the connections from economics, we believe
the three properties we listed is a reasonable starting point.
While our experiments demonstrate several desirable fea-
tures of data Shapley, we should interpret it with care. Due
to the space limit, we have skipped over many important

(a) (b)

Figure 5. (a) Value and data quality: White noise is added to 10%
of training points. As the noise level increases, the average TMC-
Shapley value of noisy images becomes decreases compared to
that of clean images. (b) Group Shapley: Removing the valuable
groups degrades the performance more than removing groups with
the highest leave-one-out score.

considerations about the intrinsic value of personal data,
and we focused on valuation in the very specific context
of training set for supervised learning algorithms. We ac-
knowledge that there are nuances in the value of data—e.g.
privacy, personal association—not captured by our frame-
work. Moreover we do not propose that people should be
exactly compensated by their data Shapley value; we believe
data Shapley is more useful for the quantitative insight it
provides.

In the data Shapley framework, the value of individual da-
tum depends on the learning algorithm, evaluation metric
as well as other data points in the training set. Therefore
when we discuss data with high (or low) Shapley value,
all of this context is assumed to be given. A datum that is
not valuable for one context could be very valuable if the
context changes. Understanding how data Shapley behaves
for different learning functions and metrics is an interesting
direction of follow up work.
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