
A Tree-Based Method for Fast Repeated Sampling of DPPs

A. Sublinear sampling
Proof of Proposition 1.

Proof. We have from Equation 3 that:∑
j∈S

KY
jj =

∑
j∈S

[
Kjj −

∑
y1,y2∈Y

[(KY)−1]y1y2Kjy1Kjy2

]
=
∑
j∈S

Kjj −
∑

y1,y2∈Y
[(KY)−1]y1y2

∑
j∈S

Kjy1Kjy2 .

(11)

The first summation reduces to:∑
j∈S

Kjj =
∑
j∈S

∑
i∈E

γiG
2
ij =

∑
i∈E

z
(S)
i = 1>z

(S)
E , (12)

where z
(S)
E is a |E| × 1 vector and 1 is the all-1s vector.

The innermost summation reduces to:∑
j∈S

Kjy1Kjy2 =
∑
j∈S

[∑
i∈E

HijGiy1

][∑
i∈E

HijGiy2

]
=
∑
i1∈E

∑
i2∈E

Gi1y1Gi2y2
∑
j∈S

Hi1jHi2j

=
∑
i1∈E

∑
i2∈E

Gi1y1Gi2y2A
(S)
i1i2

= G>Ey1A
(S)
E GEy2 , (13)

where GEy1 is a |E| × 1 vector containing rows E and
column y1 ofG, andA(S)

E is the |E|×|E|matrix containing
rows and columns E from A(S). The proposition result
follows from plugging Equation 12 and Equation 13 into
Equation 11.

Proof of Theorem 1.

Proof. Algorithm 2 describes the construction of the tree.
It takes as inputs:

• γ, which can be computed inO(D3) time via an eigen-
decomposition of the dual kernel C = BB>,

• G (Equation 4), which can be computed via dot prod-
ucts in O(ND2) time, and

• H (Equation 4), which can be computed from G in
O(ND) time.

The complexity of constructing a leaf node is dominated
by the O(D2) Line 4, where A is computed. There are
N leaf nodes, so overall leaf node construction requires
O(ND2) time. The complexity of constructing an internal
(non-leaf) node is dominated by the O(D2) Line 12, where

its children’s A matrices are summed. There are also N
internal nodes in the tree. Thus, the overall complexity of
tree construction is O(ND2).

Algorithm 3 describes how to sample given a tree and the
quantities λ, G, and H that were pre-computed.

The initial step of selecting an elementary DPP is identical to
that of the standard dual sampling algorithm (Algorithm 1),
and requires O(D) time.

Complexity of sampling a single item: As shown by Propo-
sition 1, the probabilities required for moving down one
level in the tree are computable in O(|E|2|Y |) time, where
Y is the set of items that have been sampled so far and
|E| is the size of the selected elementary DPP. Thus, the
COMPUTEMARGINAL subroutine in Algorithm 3 requires
O(|E|2|Y |) time. To sample a single item, this subroutine
gets called twice for each of the O(logN) levels of the tree.
Thus, the complexity of sampling a single item after |Y |
others have already been selected is: O(|E|2|Y | logN).

Now, recall from Section 2 that, having selected an elemen-
tary DPP with |E| items, any sample Y from this elementary
DPP will have |Y | = |E|. Thus, we have to call the SAM-
PLEITEM subroutine |E| times. This gives an overall com-
plexity of O(|E|4 logN) for sampling from the elementary
DPP.

B. Personalized sampling
Proof of Proposition 2.

Proof. The proof is similar to that of Prop. 1; this time we
need to expand all inner products and analyze each sum
separately. As previously, we have:∑
j∈S

K̂Y
jj =

∑
j∈S

K̂jj −∑
y1,y2∈Y

[(K̂Y)−1]y1y2
∑
j∈S

K̂jy1K̂jy2 . (14)

The first summation reduces to:∑
j∈S

K̂jj =
∑
i∈E

γ̂i
∑
j∈S

(
b̂
>
j v̂i

)2

=
∑
i∈E

γ̂i

D∑
`1,`2=1

∑
j∈S

b̂`1j v̂`1ib̂`2j v̂`2i

=
∑
i∈E

γ̂i

D∑
`1,`2=1

w`1 v̂`1iw`2 v̂`2i
∑
j∈S

b`1jb`2j

=
∑
i∈E

γ̂i

D∑
`1,`2=1

w`1 v̂`1iw`2 v̂`2iΣ
(S)
`1`2

. (15)

A Tree-Based Method for Fast Repeated Sampling of DPPs

Let W denote the D ×D diagonal matrix with weights w
on its diagonal and let Γ̂ denote the D ×D diagonal matrix
with the inverse eigenvalues γ̂ on its diagonal. Let V̂:,E

denote all rows of V̂ and columns indexed by E. Define
M = V̂ >:,EW . Then Equation 15 above can be written as
the following matrix product:∑

j∈S
K̂jj = 1>

[
(M>Γ̂EM) ◦ Σ(S)

]
1 . (16)

Similarly, the innermost summation reduces to:

∑
j∈S

K̂jy1K̂jy2 =
∑
j∈S

[∑
i∈E

γ̂ib̂
>
j v̂ib̂

>
y1 v̂i

][∑
i∈E

γ̂ib̂
>
j v̂ib̂

>
y2 v̂i

]

=
∑

i1,i2∈E
γ̂i1 γ̂i2

∑
j∈S

b̂
>
j v̂i1 b̂

>
y1 v̂i1 b̂

>
j v̂i2 b̂

>
y2 v̂i2

=
∑

i1,i2∈E
γ̂i1 γ̂i2 b̂

>
y1 v̂i1 b̂

>
y2 v̂i2

×
∑
j∈S

(D∑
`1=1

w`1b`1j v̂`1i1

)(D∑
`2=1

w`2b`2j v̂`2i2

)
=

∑
i1,i2∈E

γ̂i1 γ̂i2 b̂
>
y1 v̂i1 b̂

>
y2 v̂i2

×
D∑

`1,`2=1

w`1 v̂`1i1w`2 v̂`2i2Σ
(S)
`1`2

= B>:,y1M
>Γ̂EMΣ(S)M>Γ̂EMB:,y2 , (17)

Define Ĥ = Γ̂EMB:,Y . Then the conditioning summation
from Equation 14 can be written as the following matrix
product:∑
y1,y2∈Y

[(K̂Y)−1]y1y2
∑
j∈S

K̂jy1K̂jy2

= 1>
[
(K̂Y)−1 ◦ (Ĥ>MΣ(S)M>Ĥ)

]
1 . (18)

The proposition result follows from plugging Equations 16
and 18 into Equation 14.

Proof of Theorem 2.

Proof. The proof that tree construction takesO(ND2) time
is analogous to the proof for the non-personalized case.
(Replacing z andA by Σ in fact saves some time and space.)

Algorithm 4 describes how to sample given that a tree and
the non-personalized dual kernel C are pre-computed. Con-
structing the personalized dual kernel Ĉ = WCW and
computing its eigendecomposition takes O(D3) time. As
shown by Proposition 2, the value returned by the COM-
PUTEMARGINAL subroutine is computable in O(|Y |D2)
time, where Y is the set of items that have been sampled

so far. Thus, by the same arguments as made in the non-
personalized proof, this gives an overall complexity of
O(k2D2 logN +D3) for sampling.

Extension to other types of personalization. More gen-
erally, we can get a sublinear-time sampling algorithm for
any personalization method where, after one-time prepro-
cessing work, we can compute

∑
j∈S b̂`1j b̂`2j in time in-

dependent of N . For example, this is the case when we
have B̂ = WB + c for c ∈ RD. This transformation yields
b̂`1j = w`1b`1j + c`1 and so:∑

j∈S
b̂`1j b̂`2j = w`1w`2

∑
j∈S

b`1jb`2j + w`1c`2
∑
j∈S

b`1j

+ w`2c`1
∑
j∈S

b`2j + |S|c`1c`2 ,

which can be computed in time independent of N as long as
we also precompute and store [

∑
j∈S bij]

D
i=1 at each node.

C. Approximate sampling
Proof of Proposition 3.

Proof. Under the elementary DPP with marginal kernel
K̂, given that the elements in the set Y have already been
selected, recall that the probability of selecting j ∈ S after
reaching node S is given by:

Pr(j | S, Y) =
K̂Y

jj∑
j′∈S K̂

Y
j′j′

,

where K̂Y is the conditional marginal kernel, as defined
in Equation 2. Also notice that, as previously mentioned,
Equation 2 implies that the diagonal entries of this condi-
tional can be written in terms of the unconditioned kernel
as follows:

KY
jj = Kjj −

∑
y1y2∈Y

[(KY)−1]y1y2Kjy1Kjy2 .

For ease of notation, given a set S, let:

ZS :=
∑
j∈S

K̂jj , and

ZSY :=
∑

y1,y2∈Y
[(K̂Y)−1]y1y2

∑
j∈S

K̂jy1K̂jy2 .

Then we have, for all j ∈ S:

Pr(j | S, Y)− 1

|S|
=

Zj − ZjY
ZS − ZSY

− 1

|S|

=
Zj − ZjY − 1

|S| (ZS − ZSY)

ZS − ZSY

≤
|Zj − 1

|S|ZS |+ |ZjY −
1
|S|ZSY |

ZS − ZSY
. (19)

A Tree-Based Method for Fast Repeated Sampling of DPPs

Expanding and upper-bounding the first half of the numera-
tor, we have:

Ẑj −
ZS
|S|

=
∑
i∈E

γ̂i(b̂
>
j v̂i)

2 − 1

|S|
∑
j′∈S

∑
i∈E

γ̂i(b̂
>
j′ v̂i)

2

=
∑
i∈E

γ̂i
∑
`1,`2

w`1w`2 v̂`1iv̂`2i

[
b`1jb`2j −

1

|S|
∑
j′∈S

b`1j′b`2j′
]

=
∑
i∈E

γ̂i
∑
`1,`2

w`1w`2 v̂`1iv̂`2i

[
Σ

(j)
`1`2
− 1

|S|
Σ

(S)
`1`2

]
= 1>

[
(WV̂:,EΓ̂E V̂

>
:,EW) ◦

[
Σ(j) − 1

|S|
Σ(S)

]]
1

= 1>
[
(M>Γ̂EM) ◦

[
Σ(j) − 1

|S|
Σ(S)

]]
1

≤ 1>
[
|M>Γ̂EM | ◦ Σ̃(S)

]
1 , (20)

where M is, as previously defined, shorthand for V:,EW ,
and the | · | on the last line is elementwise absolute value.

We now analyze the second term in the numerator of Equa-
tion 19. We omit some of the details as they are largely
the same manipulations as were done in the personalized
sampling proofs. First, recall Equation 18. We will have an
expression very similar to this one.

ZjY −
1

|S|
ZSY

=
∑

y1,y2∈Y
[(K̂Y)−1]y1y2

K̂jy1K̂jy2 −
1

|S|
∑
j′∈S

K̂j′y1K̂j′y2

= 1>

[
(K̂Y)−1 ◦

(
Ĥ>M

[
Σ(j) − 1

|S|
Σ(S)

]
M>Ĥ

)]
1

≤ 1>
[
|(K̂Y)−1| ◦

(
|Ĥ>M |Σ̃(S)|M>Ĥ|

)]
1 . (21)

where the | · | on the last line is elementwise absolute value.

Finally, we analyze the denominator of Equation 19.

ZS − ZSY =
∑
j′∈S

K̂Y
j′j′ .

This is exactly the quantity analyzed by Proposition 2, so
we obtain a formula analogous to that of Equation 10 here.
The proposition result then follows from combining Equa-
tions 20 and 21 with Equation 10.

Proof of Theorem 3.

Proof. Suppose we have already sampled y1, . . . , y`−1. Let
S1, . . . , Sn be the path through the tree such that S1 = Y ,
Sn = {y`} and Si+1 ⊂ Si. To sample y`, both algorithms
must go down the tree through the same Si until they reach a
node Sk where approximate sampling is possible (at which

point the approximate algorithm samples uniformly from
Sk \ Y and the exact algorithm continues through the re-
maining Si>k).

Let p(Sk | Sk−1, y1, . . . , y`−1) be the probability under the
exact algorithm of moving from Sk−1 to Sk given already
selected items y1, . . . , y`−1, and let p(y` | Sk, y1, . . . , y`−1)
be the probability of sampling item y` under the exact sam-
pling algorithm starting at node Sk with items y1, . . . , y`−1

already sampled. Define parallel notation for q to represent
the probabilities under the approximate sampling algorithm.
By hypothesis:

p(Si+1 |Si<k, y1, . . . , y`−1)=q(Si+1 |Si<k, y1, . . . , y`−1)

and

p(y` | Sk, y1, . . . , y`−1)− q(y` | Sk, y1, . . . , y`−1)

q(y` | Sk, y1, . . . , y`−1)
≤ ε .

Thus, as:

p(y` |y1, . . . , y`−1) =

p(y` | Sk, y1, . . . , y`−1)

k−1∏
i=1

p(Si+1 | Si, y1, . . . , y`−1)

(and similarly for q), it follows that:

p(y` | y1, . . . , y`−1)− q(y` | y1, . . . , y`−1)

q(y` | y1, . . . , y`−1)
≤ ε .

Then, letting α` = 1 if element y` was sampled uniformly
by the q and 0 otherwise, we have:∣∣∣∣p(Y)− q(Y)

q(Y)

∣∣∣∣

=

∣∣∣∏k
`=1 p(y` | y1, . . . , y`−1)

−
∏k
`=1 q(y` | y1, . . . , y`−1)

∣∣∣∏k
`=1 q(y` | y1, . . . , y`−1)

≤

∣∣∣∏k
`=1(1 + α`ε)q(y`|y1, . . . , y`−1)

−
∏k
`=1 q(y`|y1, . . . , y`−1)

∣∣∣∏k
`=1 q(y` | y1, . . . , y`−1)

≤ (1 + ε)m − 1 ,

where m = |{α` | α` = 1}|.

