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Abstract
It is often desirable in recommender systems and
other information retrieval applications to provide
diverse results, and determinantal point processes
(DPPs) have become a popular way to capture the
trade-off between the quality of individual results
and the diversity of the overall set. However, sam-
pling from a DPP is inherently expensive: if the
underlying collection contains N items, then gen-
erating each DPP sample requires time linear in
N following a one-time preprocessing phase. Ad-
ditionally, results often need to be personalized to
a user, but standard approaches to personalization
invalidate the preprocessing, making personalized
samples especially expensive. In this work we
address both of these shortcomings. First, we
propose a new algorithm for generating DPP sam-
ples in time logarithmic in N , following a slightly
more expensive preprocessing phase. We then ex-
tend the algorithm to support arbitrary query-time
feature weights, allowing us to generate samples
customized to individual users while still retain-
ing logarithmic runtime; experiments show our
approach runs over 300 times faster than tradi-
tional DPP sampling on collections of 100,000
items for samples of size 10.

1. Introduction
Diverse results are desirable in many applications of in-
formation retrieval and recommender systems. For search
engines, diversity can be a way to combat query ambiguity;
for instance, a user querying “TV” might be researching tele-
vision sets to buy or simply interested in the local listings.
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For recommender systems, diversity introduces variety and
increases the chance of engagement with at least one item
(Smyth & McClave, 2001; Herlocker et al., 2004; Ziegler
et al., 2005; Hurley & Zhang, 2011).

Determinantal point processes (DPPs) are probabilistic mod-
els of diverse subsets that have often been applied to these
kinds of problems (Krause et al., 2008; Zhou et al., 2010;
Lin & Bilmes, 2012; Chao et al., 2015; Mariet & Sra, 2016a)
and have achieved notable success in practice (Chen et al.,
2017; Wilhelm et al., 2018). At their core, DPPs provide a
formal trade-off between the quality of individual selected
results and the diversity of the overall result set. Unlike
many heuristic approaches to capturing diversity, DPPs de-
fine full probability distributions over sets of items. This
means that they can be repeatedly sampled, for instance to
provide the user with a new and diverse set of recommenda-
tions each time that they reload a webpage.

However, DPPs suffer from computational limitations that
can make them difficult to use in practice. Existing algo-
rithms for sampling from a DPP are at least linear in the
number of candidate results, which can be prohibitive in
modern applications that may have many thousand or even
millions of items. And when results need to be personalized
according to the preferences of a user, these algorithms can
become even more expensive. In this work we show how
to address both of these limitations, providing a method for
generating DPP samples that runs in time logarithmic in
the number of items and allows for personalization with
minimal additional overhead.

Speed. A DPP defines a probability distribution over pos-
sible result sets, giving higher probability to sets that contain
high quality, diverse results. To instantiate a specific set of
results in a recommendation or information retrieval sce-
nario one often samples a set from the DPP. Although DPPs
can be impressively efficient given the exponential num-
ber of subsets being modeled (Kulesza & Taskar, 2012),
sampling is often limited by performance in practice. In
particular, the most basic algorithm for sampling a DPP
over a ground set of N items (e.g., a database of N news
articles or videos) requires O(N3) time, dominated by the
eigendecomposition of an N × N matrix. This is rarely
practical when N is more than a few hundred.
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The situation is improved somewhat when multiple samples
are required, since the eigendecomposition can be reused.
In this case, after precomputing the eigendecomposition in
O(N3) time, each sample requires onlyO(k2N) additional
time, where k is the cardinality of the sampled set (Gillen-
water, 2014, Algorithm 2). In most practical applications,
k is a small constant; for instance, k = 5 slots might be
reserved for recommended items in the user interface.

Going further, the eigendecomposition itself can be sped
up when the items are represented by D-dimensional fea-
ture vectors, D � N , requiring only O(ND2) time (see
Section 2 for more details), or when the DPP kernel has
a Kronecker structure (Mariet & Sra, 2016b). When the
item features are not inherently low-dimensional, random
projections can be used to reduce the dimensionality to a
small D without significantly altering the resulting DPP
(Gillenwater et al., 2012). All told, with existing techniques,
repeated exact DPP sampling can often made be practical
when N is in the tens of thousands.

However, for many modern applications the ground set may
contain hundreds of thousands or even millions of items,
making even linear time prohibitively slow. Our first con-
tribution is a new algorithm for repeated DPP sampling
whose runtime scales only logarithmically with the number
of items in the ground set; after preprocessing, our algo-
rithm requires O(k4D logN) steps to compute a sample of
cardinality k. Empirically, we see speedups of over 300×
on collections of 100,000 items for k = 10.

To achieve this, we precompute a special binary tree with
N leaves, where each node contains enough information
to probabilistically decide whether to proceed left or right
to reach the next sampled item. This decision takes O(k3)
time when k items have already been selected. Given that
k is typically very small, this remains an efficient proce-
dure in practice despite the high polynomial dependence on
k. Generating the tree requires O(ND2) time, making it
asymptotically no more expensive than the preprocessing
phase of the traditional sampling algorithm.

Approximate sampling. Our second contribution is to ex-
ploit the structure of our tree to develop an approximate sam-
pling algorithm. In particular, we show how to efficiently
identify nodes whose subtrees define almost-uniform distri-
butions; at such nodes we can short-circuit the computation
with only a small loss in accuracy. A simple heuristic for
ordering the items in the tree creates many such nodes in
practice, leading to significant additional savings.

Personalization. While our tree-based algorithm allows
for efficient repeated sampling from the same DPP, in prac-
tice we often require personalization. Consider, for instance,
a movie recommendation system, where there is no one-size-

fits-all quality measure: a horror movie may be the pinnacle
of its genre, but should perhaps not be recommended to a
family with young children.

A trivial solution is to build and store a unique DPP for
each user with personalization baked in; however this is
infeasible in applications with millions of users. Instead,
we propose a simple model for personalization where each
user is associated with arbitrary feature weights that reflect
their propensity to engage with different kinds of content.
For instance, new parents might have higher weight on
features corresponding to kid-friendly or animated movies,
while a young adult might have higher weight on features
corresponding to action and horror genres.

Our third contribution is to show that our tree-based sam-
pling algorithm can be adapted to efficiently incorporate
personal feature weights at query time. Thus, we can per-
sonalize the sample in a flexible and powerful way while
still scaling only logarithmically with the number of items.

Related work. We are aware of one publication that is
closely related to ours in terms of sampling time complexity,
by Dereziński (2018). That work also provides an exact DPP
sampling scheme with complexity sublinear in N , after a
one-time pre-processing phase. Which method is faster
depends on the relative magnitudes ofN , D, and the sample
size. In contrast to our work, however, it is not yet known
how to generalize the method of Dereziński (2018) to k-
DPPs, which generate fixed-size samples, and which are
favored in practice (e.g., because a web interface reserves a
fixed number of slots for recommendations).

There is also some existing work on approximate sampling.
For instance, it has been shown that standard MCMC chains
are relatively fast mixing (Anari et al., 2016; Li et al., 2016).
However, the mixing time is still linear inN , and hence may
not be as practical for large datasets as the method proposed
in this work.

2. Background and Notation
A DPP on a ground set Y of N items is specified by an
N × N positive semi-definite (PSD) kernel matrix L. It
defines the following distribution over subsets Y of Y:

PL(Y ) = det(LY )/det(L+ I) , (1)

where LY is the submatrix of L whose rows and columns
are indexed by the items in Y .

If we factor the PSD kernel as L = B>B, where B ∈
RD×N (which is always possible for D ≤ N ), then we can
think of entry Lij as a dot product between the columns bi
and bj of B. A basic property of DPPs is that they prefer
diversity with respect to the similarity measure defined by
this dot product; that is, the probability of two items i and
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j appearing together in Y decreases as b>i bj increases. If
we think of bi as a D-dimensional feature vector for item i,
then the DPP PL favors sets of items with diverse features
(Kulesza & Taskar, 2012, Section 2.2.1).

This diversity property is useful for many applications. In
order to make use of it, we often want to generate samples
fromPL, and although there are 2N possible subsets Y ⊆ Y ,
DPPs admit polynomial-time sampling algorithms.

The standard algorithm, due to Hough et al. (2006), requires
an eigendecomposition of L and is therefore cubic in N ,
making it too expensive for many real-world applications.
Instead, we focus here on the “dual” algorithm, which is
usually preferred when the number of features D is much
smaller than the number of items N . For the rest of this
paper, we will assume that D � N ; if necessary, random
projections can be used to reduce D to a suitable level with
minimal loss of accuracy (Gillenwater et al., 2012).

Algorithm 1 Dual DPP sampling
(Kulesza & Taskar, 2012, Algorithm 3)

1: Input: eigendecomposition {(vi, λi)}Di=1 of C = BB>

2: E ← ∅, Y ← ∅
3: for i = 1, . . . , D do
4: E ← E ∪ {i} w.p. λi/(λi + 1)

5: V ←
{
vi/
√

v>i Cvi

}
i∈E

6: while |V | > 0 do
7: Select j from Y w.p. 1

|V |
∑

v∈V (v>bj)
2

8: Y ← Y ∪ j
9: Choose v0 ∈ V such that b>j v0 6= 0

10: V ←
{
v − v>bj

v>
0 bj

v0

∣∣∣ v ∈ V − {v0}
}

11: Orthonormalize V w.r.t. 〈v1,v2〉 = v>1 Cv2

12: return Y

The dual algorithm (Algorithm 1) begins with an eigende-
composition of the dual kernel C = BB> ∈ RD×D and
then proceeds in two phases: first, a subset E ⊆ [D] of
indices is selected. Then, in the second phase, we sample
from the elementary DPP defined by E (Kulesza & Taskar,
2012, Definition 2.4). Due to the properties of elementary
DPPs, we are guaranteed to sample a set with exactly |E|
items.

The second phase of Algorithm 1 can be understood more
directly via the elementary DPP’s marginal kernel:

K =
∑
i∈E

1

λi
(B>vi)(B

>vi)
> . (2)

One can show that item j selected on the first iteration
of Line 7 is sampled with probability proportional to Kjj .
Then, on subsequent iterations, when we have already se-
lected a partial subset of items Y , a new item j is sampled
with probability proportional to KY

jj , where KY is the con-

ditional marginal kernel given by:

KY , KȲ −KȲ Y (KY )−1KY Ȳ . (3)

Here we use double subscripts to indicate a submatrix whose
rows and columns are indexed by different sets. (E.g., KY Ȳ

consists of rows Y and columns Ȳ from K.) Thus, Algo-
rithm 1 first chooses an elementary DPP indicated by E,
which determines the ultimate cardinality (phase one). It
then repeatedly samples an item according to the current
marginal kernel and conditions the marginal kernel on the
selected item (phase two).

Because it directly samples from the multinomial distribu-
tion, Algorithm 1 has a linear dependence on N . In this
paper we will show how the second phase can be improved
such that the dependence becomes logN . Because we do
not modify the first phase, our approach is also compatible
with k-DPPs, which use an alternative first phase to ensure
that exactly k items are sampled (Kulesza & Taskar, 2011).
For k-DPPs, this first phase is only slightly more expen-
sive, O(kD) instead of O(D) (Kulesza & Taskar, 2012,
Algorithm 8).

3. Sublinear Sampling
To sample from a DPP in sublinear time, we cannot afford
to compute Kjj and KY

jj for each j ∈ Y . Instead, the key
idea is to create a balanced binary tree of depth logN such
that the root node corresponds to the full set of items and
each child node corresponds to half of its parent’s items. If
we pre-compute and store appropriate summary statistics in
this tree (a one-time cost), then we can repeatedly sample
in time sublinear in N by exploiting the tree’s contents.

We begin by describing the tree construction. Let
{(vi, λi)}Di=1 be an eigendecomposition of the dual ker-
nel C, as in Algorithm 1, let V be the D ×D matrix whose
i-th column is equal to vi, and let γi = 1/λi. We first
pre-compute two D ×N matrices G and H:

Gij = b>j vi , Hij = γiGij . (4)

We will use gj and hj to represent the jth column of G and
H , respectively.

Then, for a tree node corresponding to a set of points S ⊆ Y
we store a D-dimensional vector z and a D ×D matrix A:

z
(S)
i = γi

∑
j∈S

G2
ij , A

(S)
i1i2

=
∑
j∈S

Hi1jHi2j . (5)

Note that z(S) and A(S) can be computed efficiently by
recursion: if S, S`, Sr are the sets of items corresponding
to a node and its left and right children, respectively, then
we have z(S) = z(Sr) + z(S`) and A(S) = A(Sr) + A(S`).
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Algorithm 2 describes how the binary tree for DPP sam-
pling can be constructed efficiently1. Note that SPLIT is a
function that partitions a set of items into two subsets of
(approximately) equal size. We will revisit this function in
Section 5.

Algorithm 2 Tree Construction
1: procedure CONSTRUCTTREE(S, γ,G,H)
2: if S = {j} then
3: z ← γ ◦ g2j
4: A← hjh

>
j

5: Σ← bjb
>
j . Personalized only

6: Σmin,Σmax ← bjb
>
j . Approximate only

7: return Tree(z, A,Σ,Σmin,Σmax, j)
8: S`, Sr ← SPLIT(S)
9: T` ← CONSTRUCTTREE(S`, γ,G,H)

10: Tr ← CONSTRUCTTREE(Sr, γ,G,H)
11: z ← T`.z + Tr.z
12: A← T`.A+ Tr.A
13: Σ← T`.Σ + Tr.Σ . Personalized only
14: Σmin ← min(T`.Σmin,Tr.Σmin) . Approximate only
15: Σmax ← max(T`.Σmax,Tr.Σmax) . Approximate only
16: return Tree(z, A,Σ,Σmin,Σmax,T`,Tr)

Algorithm 3 Tree-Based Sampling
1: procedure SAMPLE(T, λ,G,H)
2: E ← ∅, Y ← ∅
3: for i = 1, . . . , D do . Select elementary DPP
4: E ← E ∪ {i} w.p. λi/(λi + 1)

5: Q← 0× 0 matrix . Will hold (KY )−1

6: for j = 1, . . . , |E| do
7: y ← SAMPLEITEM(T, E, Y,G,Q)
8: Y ← Y ∪ y
9: Q← EXTENDINVERSE(Q,G>EyHEY ) . O(|Y |2)

return Y
10: procedure SAMPLEITEM(T, E, Y,G,Q)
11: if T is a leaf then return item at this leaf
12: p` ← COMPUTEMARGINAL(T`, E, Y,G,Q)
13: pr ← COMPUTEMARGINAL(Tr, E, Y,G,Q)
14: if U(0, 1) ≤ p`

p`+pr
then

15: return SAMPLEITEM(T`, E, Y,G,Q)
return SAMPLEITEM(Tr, E, Y,G,Q)

16: procedure COMPUTEMARGINAL(T, E, Y,G,Q)
17: Φ← G>EY T.AE GEY . O(|E|2|Y |)
18: return 1>T.zE − 1>(Q ◦ Φ)1

19: procedure EXTENDINVERSE(Q,u)
20: return Inverse of u appended to Q−1; see Hager (1989).

Given a tree constructed via Algorithm 2, we can draw a
sample from the DPP in sublinear time via Algorithm 3.
The main idea is to sample each item by traversing the tree
from the root to one of the leaves, choosing a child node at
each step according to the probability of sampling an item
in the child’s subset. That is, given that we have already

1Lines marked “Personalized only” are only needed for the
algorithm of Section 4, and lines marked “Approximate only” are
only needed for the algorithm of Section 5.

selected a set of items Y and, to select the next item, have
reached the node S = {S` ∪ Sr}, we proceed to S` with
probability:

Pr(S` | Y ) =
[ ∑
j∈S`

KY
jj

]
/
[∑
j∈S

KY
jj

]
. (6)

Proposition 1 shows how to compute this probability by
combining the statistics stored in the tree with the |Y | × |Y |
marginal matrix KY .

Proposition 1. Consider an elementary DPP with kernel
K defined by a subset of indices E ⊆ [D] as in Equation 2.
Let Y be a (potentially empty) subset of elements that have
already been selected. Then:∑
j∈S

KY
jj = 1>z

(S)
E −1>

[
(KY )−1 ◦

(
G>EYA

(S)
E GEY

) ]
1

where KY is the conditional marginal kernel (Equation 3),
◦ denotes entrywise product, and 1 is a vector of all ones.

The proof of this and all subsequent results can be found in
the appendix. The most expensive part of this formula is the
computation of the matrix product G>EYA

(S)
E GEY , which

requires O(|E|2|Y |) time. We are now ready to state the
overall complexity of the tree-based sampling method.

Theorem 1 (Sublinear DPP sampling). Let B ∈ RD×N be
a feature matrix and let {(vi, λi)}Di=1 be the eigendecompo-
sition of the dual kernel C = BB>. Then:

• The eigendecomposition of C, the matrices G and H
(Equation 4), and the tree T (Algorithm 2) can be
constructed in O(ND2) time.

• Given these, sampling a set Y of size k from the DPP
with kernel L = B>B costs O(k4 logN +D).

For comparison, when using standard dual sampling without
the tree we would first construct the C matrix, an O(ND2)
operation, then eigendecompose it, an O(D3) operation.
With this as input, drawing each sample costsO(k2N +D);
using tree-based sampling replaces the N with k2 logN .
For the common case where N is large and k is small, this
can be a dramatic improvement.

4. Personalized Sampling
Can we adapt this approach to allow for user personalization
without introducing a linear dependence on N to the sam-
pling? DPPs are often personalized via an arbitrary quality
function that independently scales the feature vector bi for
each i (Chen et al., 2017; Wilhelm et al., 2018); however,
such a quality function would itself be of size N and hence
there would be no hope of generating a personalized sample
in time sublinear in N .
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Suppose, instead, that we allow each user to place an arbi-
trary weight wi on each feature i ∈ {1, . . . , D}. For the
discussion that follows, we will consider a single user; let
W be a D×D diagonal matrix where the ith diagonal entry
is given by wi. Then the feature matrix B and the primal
and dual kernels L and C can be replaced by personalized
versions:

B̂ = WB, L̂ = B>WWB, Ĉ = WBB>W .

To sample from the DPP defined by this new kernel L̂, we
first need to compute the eigendecomposition {(v̂i, λ̂i)}Di=1

of the dual kernel Ĉ. As there is no simple formula for
computing the singular values of WB from those of W and
B, we have to do a full eigendecomposition for each user.
This can be done in O(D3) time. We can then perform the
first stage of sampling in the usual manner to select a set of
indices E. It remains to show that we can efficiently sample
from the elementary DPP defined by E, a nontrivial task
given that we cannot afford to create a new tree for each W .

Returning to our original binary tree, instead of storing z(S)

and A(S), we instead store a D × D matrix Σ(S) at each
node (Lines 5 and 13 of Algorithm 2):

Σ
(S)
i1,i2

=
∑
j∈S

bi1jbi2j . (7)

This matrix captures pairwise interactions of the features.
Its computation does not change the big-O runtime of the
tree construction.

Algorithm 4 Personalized Tree-Based Sampling
1: procedure SAMPLE(T, C,W )
2: Ĉ ←WCW
3: λ̂, V̂ ← EIGENDECOMPOSE(Ĉ) . O(D3)
4: E ← ∅, Y ← ∅
5: for i = 1, . . . , D do . Select elementary DPP
6: E ← E ∪ {i} w.p. λ̂i/(λ̂i + 1)

7: γ̂E ← (λ̂E)−1

8: Q̂← 0× 0 matrix . Will hold (K̂Y )−1

9: Ĥ ← |E| × 0 matrix . Will be |E| × |Y |
10: M ← V̂ >:,EW

11: R←M>diag(γ̂E)M
12: for j = 1, . . . , |E| do
13: F ← Ĥ>M
14: y ← SAMPLEITEM(T, R, F, Q̂)
15: Y ← Y ∪ y
16: x←Mby
17: Ĥ ← APPENDCOLUMN(Ĥ,x ◦ γ̂E)

18: Q̂← EXTENDINVERSE(Q̂,x>Ĥ) . O(|Y |2)
return Y

19: procedure SAMPLEITEM(T, R, F, Q̂)
20: Analogous to the non-personalized case
21: procedure COMPUTEMARGINAL(T, R, F, Q̂)
22: Φ← F T.Σ F> . O(|Y |D2)

23: return 1>(R ◦ T.Σ)1− 1>(Q̂ ◦ Φ)1

Algorithm 4 shows how this augmented tree can be used for
personalized sampling. As in the non-personalized case, we
sample an item by moving from the root of the tree down to
one of the leaves. The probability for narrowing down from
S to S` is the same as in Equation 6, but with K replaced by
K̂, the marginal kernel for L̂. Proposition 2 shows how to
compute this probability by combining the statistics stored
in the tree with the |Y | × |Y | marginal matrix K̂Y .

Proposition 2. Consider a personalized elementary DPP
with kernel K̂ defined by a subset of indices E ⊆ [D]
as in Equation 2, but with feature matrix B replaced by
B̂ = WB. Let the eigendecomposition of Ĉ = B̂B̂> be
{(v̂i, λ̂i)}Di=1. Let Y be a (potentially empty) subset of
elements that have already been selected. Define:

Γ̂ = diag(1/λ̂) , M = V̂ >:,EW , Ĥ = Γ̂EMB:,Y , (8)

R = M>Γ̂EM , F = Ĥ>M , (9)

where diag denotes a diagonal matrix and the “:” subscript
indicates selection of all rows. Then:∑

j∈S
K̂Y

jj = 1>
[
R ◦ Σ(S)

]
1 −

1>
[
(K̂Y )−1 ◦ (FΣ(S)F>)

]
1 , (10)

where K̂Y is the conditional marginal kernel (Equation 3),
◦ denotes entrywise product, and 1 is a vector of all ones.

The most expensive part of this formula is the computation
of the matrix product FΣ(S)F>, which requires O(|E|D2)
time. We are now ready to state the overall complexity of
the personalized tree-based sampling method.

Theorem 2 (Sublinear personalized DPP sampling). Let
B̂ = WB ∈ RD×N be a personalized feature matrix and
let C = BB> be the non-personalized dual kernel. Then:

• The dual kernel C and the tree T (Algorithm 2) can be
constructed in O(ND2) time.

• Given these, sampling a set Y of size k from the DPP
with kernel L̂ = B̂>B̂ costs O(k2D2 logN +D3).

For comparison, when using standard dual sampling, draw-
ing each sample costs O(k2N +D3) (after preprocessing);
using tree-based sampling replaces the N with D2 logN .
Compared to unpersonalized tree-based sampling (Theo-
rem 1), personalization replaces a factor of k2 with D2.

5. Approximate Sampling
We can further speed up sampling by introducing approxi-
mations that leverage the structure of our tree. In particular,
we show that we can use the information stored in the tree to
efficiently compute how far the DPP sampling distribution
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at a node S lies from the uniform distribution over S. Intu-
itively, if the DPP distribution is nearly uniform (say, within
some ε), then we can avoid traveling further down the tree
and simply choose an item from S uniformly, incurring only
a small loss in fidelity. This also allows us to potentially
keep less of the tree cached in memory.

We will consider only the personalized sampling case; the
non-personalized case is recovered by setting W = I .

Proposition 3. Let Pr(j | S, Y ) be the probability of sam-
pling item j ∈ S under an elementary DPP with feature
matrix B̂ = WB and indicator indices E ⊆ [D], condi-
tioned on the fact that items in the (potentially empty) subset
Y have already been selected. Then, letting:

Σ̃
(S)
`1`2

= max
j∈S

∣∣∣∣Σ(j)
`1,`2
− 1

|S|
Σ

(S)
`1`2

∣∣∣∣ ,
the distance from Pr(j | S, Y ) to uniform sampling over the
subtree with S at its root is upper-bounded as follows:∣∣∣Pr(j | S, Y )− 1

|S|

∣∣∣ ≤ (∑
j∈S

K̂Y
jj

)−1×

[
1>
[
|R| ◦ Σ̃(S)

]
1 + 1>

[
|(K̂Y )−1| ◦

(
|F |Σ̃(S)|F>|

)]
1
]
,

where | · | is elementwise absolute value, and the matrices
R and F are as defined in Proposition 2.

Note that Σ̃ can be computed by storing intermediate values
Σmin and Σmax (as shown in Lines 6, 14, and 15 of Algo-
rithm 2) via Σ̃ = max(|Σmin− 1

|S|Σ|, |Σmax− 1
|S|Σ|). Thus,

the overall upper bound can be computed inO(|E|D2) time,
just like the expression from Proposition 2.

Algorithm. To exploit Proposition 3 for approximate tree-
based sampling, we modify SAMPLEITEM by adding the
following check at its start: if the upper bound on the differ-
ence from uniform is≤ ε

|S| , then return y sampled uniformly
from S \Y . The following theorem characterizes the quality
of a sample obtained via this modified algorithm.

Theorem 3. Let Y = {y1, . . . , yk} ⊆ Y . Let B ∈ RD×N
be a feature matrix defining a DPP. Let p(Y ) be the prob-
ability of sampling Y in the order y1, . . . , yk from the tree-
based sampling algorithm, and let q(Y ) be the probability
of sampling Y in order from the approximate tree-based
sampling algorithm. Then |p(Y )− q(Y )| ≤ (1 + ε)k − 1.

Splitting function. In order to make it more likely for the
approximation to apply, we can engage a so-far unexplored
degree of freedom: the node splitting function used to di-
vide into left and right subtrees (see Line 8 of Algorithm 2).
The splitter could be relatively cheap; e.g., find two dis-
tinct items in the parent node, seed left and right subtrees

with these, and then place each remaining item into the sub-
tree with the most similar seed. The splitter could also be
much more sophisticated; e.g., build a complete graph over
a node’s items with pairwise similarities as edge weights,
then run a min-cut algorithm to partition. In general, if a
splitter requires time O(|S|rD) for a node with items S,
then the overall tree construction complexity is increased
from O(ND2) to O(ND2 +NrD logN). A more expen-
sive splitter means slower tree construction, but this might
pay off if the tree will be used to generate many samples.

6. Experiments
We now present empirical results demonstrating the per-
formance of our sampling algorithms on both synthetic
and real-world data sets. Throughout, we use k-DPP sam-
pling (Kulesza & Taskar, 2011) to fix the size of the sam-
pled sets, as is frequently done in practice. We compare
our tree-based sampler to the fastest existing exact sampling
algorithm for k-DPPs (Gillenwater, 2014, Algorithm 3). We
will refer to this method as “the dual sampler (DS)”.

6.1. Preprocessing costs

Figure 1 shows the time and memory required to complete
the preprocessing step for each algorithm (precomputing
eigendecompositions and feature products for DS, and gen-
erating the tree for our sampler). Results are only shown
for the personalized case, but the unpersonalized results are
similar. Only the dimensions of the feature matrix B affect
these results—the actual feature values are irrelevant—so
synthetic data are used here.

Although for many applications we can treat the preprocess-
ing step as a one- time, latency-insensitive operation, the
trends here are interesting, and memory use in particular
may be a relevant limitation in some cases. While the tree
grows linearly with N , and is only a constant factor larger
than the storage required by DS, the dependence on D is
quadratic (versus linear for DS). Thus, our sampler may
require keeping the number of features relatively low. This
is usually not an issue in practice, especially if using random
projections (Gillenwater et al., 2012). A modern machine
can easily handle millions of items with tens of features

6.2. Sampling speed

Figure 2 shows the actual time required to compute a single
DPP sample under various settings. Again, the contents of
the feature matrix do not affect the speed of sampling, so
synthetic data are used here as well.

Several interesting trends are apparent. Firstly, our sampler
is faster than DS in essentially all cases (though this would
probably change for ≤ 1000 items). While the scaling is
similar to DS for the number of features D and the sample
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Figure 1. Time and memory required for preprocessing. Each point is an average over ten samples.
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Figure 2. Time required to produce a k-DPP sample. Each point is an average over 10,000 samples.

size k, our sampling scales logarithmically with N , so for
large numbers of items it is several orders of magnitude
faster than DS. This is precisely the setting in which modern
systems usually find themselves. When N is one million,
our sampler returns a personalized result in about 0.01 sec-
onds, versus almost 4 seconds for DS. Secondly, the costs
for the method of personalization that we have proposed are
quite low; the overhead is negligible in most cases.

6.3. Exact vs. approximate sampling

To synthetically evaluate the approximation technique pro-
posed in Section 5, we generate feature matrices B such
that each column bi is drawn from a mixture of multivariate
Gaussians with n components, and we draw personalization
vectors w uniformly at random from [0, 1]D.

When constructing the tree, we use the following simple
splitting heuristic: we use the items i, j that maximize ‖bi−
bj‖∞ to initialize the left and right subtrees; all other items
are then greedily added to the left or right tree in order to
minimize their (infinity-norm) distance to the initial item.
This encourages similar nodes to lie in the same subtree,

leading to more uniform distributions. This splitter requires
O(|S|2D) time to compute, and so the tree construction in
this case is O(ND2 +N2D logN).

Figure 3 reports the time required to sample sets of k = 5
elements for various feature lengths and ground set sizes.
We check for approximate sampling between depths 5 and
d − 2 where d is the total depth of the tree. Approximate
sampling is significantly faster under all conditions, and the
gap increases as log(N) if D and k remain constant.

We also investigate the tightness of the upper bound in
Prop. 3. Figure 4 shows the predicted upper bound (blue)
and the true distance to the uniform distribution (red) for
varying ground set sizes; the reported measurements are
averaged over all nodes in the tree for each fixed ground set
size, with D = 10 features and n = 5 components to the
Gaussian mixture generating B. Figure 4 also shows the
spread of the difference between our upper bound and the
true distance to uniform: although it is very loose, the two
values differ by less than 10−6 for certain sizes, showing
that our upper bound is (theoretically) tight.
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Figure 3. Comparison of exact and approximate personalized tree-based DPP sampling (ε = 0.1).
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Figure 4. Comparison of the upper bound (Prop. 3) and the true distance to uniform. The shaded grey area represents the minimum and
maximum gap between the two lines.

6.4. Movie recommendation

As a practical demonstration of the proposed techniques, we
build a realistic movie recommender system based on the
MovieLens dataset (Harper & Konstan, 2016), which con-
tains over 20M user ratings for over 25k movies. To obtain
a feature vector for each movie suitable for constructing a
DPP kernel, we apply nonnegative matrix factorization to
decompose the rating matrix into factors of rank 30. Details
are omitted due to space constraints, but our factorization
achieves an RMSE of 0.88 on held out test data, which
is roughly comparable to existing results in the literature
(Williamson & Ghahramani, 2008; Sedhain et al., 2015).

We use the resulting movie factor matrix as B (N = 26744,
D = 30) to define the DPP kernel, and the corresponding
user factor matrix as a source of realistic weights for person-
alization, uniformly sampling rows to simulate the arrival of
random users at our recommendation engine. Table 1 shows
that, as before, our sampler dramatically outperforms DS.

Of course, as noted above, the time required to compute
exact samples does not depend on the data itself, so perhaps
the more interesting aspect here is the effect of the uniform
approximation. On a random subset of 5000 movies, using
a threshold of ε = 0.4, approximate sampling is on average
1.5 times faster than exact sampling with personalization.

Sampler Time per sample

DUAL 42.2 ms
TREE 3.2 ms
PERSONALIZED DUAL 52.2 ms
PERSONALIZED TREE 5.8 ms

Table 1. Time to sample a set of movie recomendations, averaged
over 10,000 samples.

This suggests that the gains illustrated synthetically in Fig-
ure 3, which depend on pockets of similar items that can
safely be grouped together during inference, translate to
realistic data as well.

7. Conclusion
Our tree-based sampling algorithm can be used to generate
DPP samples in sublinear time after an initial pre-processing
phase. This includes personalized samples that depend on
user preferences. Our algorithm dramatically outperforms
existing sampling algorithms for large item sets, making
large-scale DPP systems practical. The unique tree structure
we use also enables approximations that reduce the com-
putational costs even further, and we suspect that further
optimizations may be possible.
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