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Abstract

We study the estimation of the mutual information
I(X;T`) between the input X to a deep neural
network (DNN) and the output vector T` of its
`th hidden layer (an “internal representation”).
Focusing on feedforward networks with fixed
weights and noisy internal representations, we
develop a rigorous framework for accurate estima-
tion of I(X;T`). By relating I(X;T`) to infor-
mation transmission over additive white Gaussian
noise channels, we reveal that compression, i.e.
reduction in I(X;T`) over the course of train-
ing, is driven by progressive geometric clustering
of the representations of samples from the same
class. Experimental results verify this connection.
Finally, we shift focus to purely deterministic
DNNs, where I(X;T`) is provably vacuous, and
show that nevertheless, these models also cluster
inputs belonging to the same class. The binning-
based approximation of I(X;T`) employed in
past works to measure compression is identified as
a measure of clustering, thus clarifying that these
experiments were in fact tracking the same clus-
tering phenomenon. Leveraging the clustering
perspective, we provide new evidence that com-
pression and generalization may not be causally
related and discuss potential future research ideas.

1. Introduction
Measuring the mutual information I(X;T`) between the
input feature X to a deep neural network (DNN) and the
output T` of its `th layer has long been a topic of research,
with applications to unsupervised feature learning (Linsker,
1988; van den Oord et al., 2018; Hjelm et al., 2019) and
deep learning analysis (Shwartz-Ziv & Tishby, 2017; Saxe
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et al., 2018; Achille & Soatto, 2018). Mutual information is
an appealing measure due to its invariance to smooth, invert-
ible transformations and the fact that it has meaningful units
(bits or nats). But, these benefits come at a price: mutual
information is often impossible to compute analytically, and
its estimation from samples is difficult (Paninski, 2003). A
variety of entropy, and thereby mutual information, estima-
tors have been developed over the years, including k-nearest
neighbors (kNN) (Kozachenko & Leonenko, 1987; Kraskov
et al., 2004), kernel density (Kandasamy et al., 2015; Han
et al., 2017), and trainable neural estimators (Belghazi et al.,
2018). However, most previous information-theoretic stud-
ies of deep learning (Shwartz-Ziv & Tishby, 2017; Saxe
et al., 2018) approximate the mutual information by dis-
cretizing neurons’ outputs, an operation called ‘binning’.

The binning-based approach is attractive because of its com-
putational efficiency when the number of bins is not too
large; however, even mildly coarse discretizations can yield
inaccurate estimates.1 This fact is illustrated by the empiri-
cal mutual information plots from (Shwartz-Ziv & Tishby,
2017; Saxe et al., 2018) where the compression phenomenon
of the Information Bottleneck theory, i.e., a long-term de-
crease of I(X;T`) during DNN training, was studied. Both
works plotted the binned mutual information I

(
X;Bin(T`)

)

for deterministic DNNs (networks that deterministically
map inputs to hidden representations) with Bin(T`) being a
per-neuron discretization of T`. But, in deterministic DNNs
with strictly monotone nonlinearities (e.g., tanh or sigmoid)
the true mutual information I(X;T`) is provably either infi-
nite (continuous X) or a constant (discrete X). Therefore,
the fluctuations of I

(
X;Bin(T`)

)
observed during DNN

training by (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018)
must be due to estimation errors rather than changes in mu-
tual information. Indeed, Fig. 1 illustrates how larger bin
sizes can easily cause errors in I

(
X;Bin(T`)

)
trajectories.

The degeneracy of I(X;T`) in deterministic DNNs is a con-
sequence of T` being a deterministic function of X . If the
DNN has continuous nonlinearities and PX is continuous,
then so is T`, and thus I(X;T`) = ∞ (cf. Theorem 2.4
of Polyanskiy & Wu (2012–2017)). When PX is discrete

1The binning-based proxy approaches the true value when the
bin sizes are shrunk to zero by definition (Cover & Thomas, 2006).
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Figure 1. I
(
X;Bin(T`)

)
vs. epochs for different bin sizes and the model in (Shwartz-Ziv & Tishby, 2017), where X is uniformly

distributed over a 212-sized empirical dataset. The curves converge to H(X) = ln(212) ≈ 8.3 for small bins.

(e.g., when the features are discrete or ifX adheres to an em-
pirical distribution over the dataset), the mutual information
equals the entropy H(X), a constant that is independent
of the DNN parameters. This follows because the map-
ping from a discrete X to the support of T` is injective for
strictly monotone nonlinearities for any but a measure-zero
set of weights. Both continuous and discrete degeneracies
were previously observed (Amjad & Geiger, 2018; Kolchin-
sky et al., 2019). These are a consequence of the fact that
deterministic DNNs can encode information about X in ar-
bitrarily fine variations of T` essentially without loss, even
if deeper layers have fewer neurons.

That said, the estimate I
(
X;Bin(T`)

)
is system dependent

and its compression observed in past works seems meaning-
ful. What mechanism drives this compression? To answer
this question, we develop a rigorous framework for track-
ing the flow of information in DNNs. To ensure I(X;T`)
is useful for studying the learned representations, the map
X 7→ T` must be a stochastic parameterized channel whose
parameters are the DNN’s weights and biases. To obtain
pertinent insights into practical systems, we impose the fol-
lowing requirements on the framework. (R1) The stochas-
ticity should be intrinsic to the operation of the DNN, so
that the characteristics of mutual information measures are
related to the learned internal representations. (R2) The
stochasticity should relate the mutual information to the
deterministic binned version I

(
X;Bin(T`)

)
, since this is

the object whose compression was observed; this requires
the injected noise to be isotropic over the domain of T`
analogously to the per-neuron binning operation. (R3) Most
importantly, the network trained under this stochastic model
should be closely related to those trained in practice.

In Section 2 we propose a stochastic DNN framework in
which independently and identically distributed (i.i.d.) Gaus-
sian noise is added to the output of each of the DNN’s hidden
layer neurons. This makes the map X 7→ T` stochastic, en-
sures the data processing inequality is satisfied, and makes
I(X;T`) reflect the DNN’s true operating conditions, per
(R1). Since the noise is centered and isotropic, (R2) holds.
As for (R3), experiments show that the DNN’s learned rep-
resentations and performance are not meaningfully affected
by the addition of noise, for variances β2 not too large.

Under the stochastic model, I(X;T`) has no exact analytic

expression and is intractable to evaluate numerically. In
Section 3 we construct a provably accurate estimator for
I(X;T`), employing a sampling technique that decomposes
the estimation problem into several instances of the differ-
ential entropy estimation setup studied in (Goldfeld et al.,
2019). Leveraging the risk bounds derived therein, we prove
that for any dimension of the hidden layer, the risk of our
mutual information estimator converges at the parametric
rate of estimation (see Section 3). We then introduce a
method for efficient implementation of our mutual infor-
mation estimator and derive theoretical guarantees on its
accuracy. Having a tool for accurately tracking I(X;T`)
over the course of stochastic DNN training, we focus on the
geometric phenomenon that drives its fluctuations. We re-
late I(X;T`) to the well-understood notion of data transmis-
sion over additive white Gaussian noise (AWGN) channels.
Namely, I(X;T`) is the aggregate information transmitted
over the channel PT`|X with input X drawn from a con-
stellation defined by the data samples and the noisy DNN
parameters. As training progresses, the representations of
inputs from the same class tend to cluster together and be-
come increasingly indistinguishable at the channel’s output,
thereby decreasing I(X;T`). Furthermore, these clusters
tighten as one moves into deeper layers, providing evidence
that the DNN’s layered structure progressively improves the
representation of X to increase its relevance for Y .

In Section 5.1 we experimentally demonstrate that, in some
cases, I(X;T`) exhibits compression during training of
noisy DNNs. It is further shown that regardless of whether
I(X;T`) compresses or not, its fluctuations always track
the degree of clustering in the internal representation space.
Finally, in Section 5.2, we examine clustering in a determin-
istic DNN. Several methods for measuring clustering (valid
for both noisy and deterministic systems) are identified and
used to show that clusters of inputs in learned representa-
tions form during deterministic DNN training as well. We
complete the circle back to I

(
X;Bin(T`)

)
by demonstrating

that this quantity measures clustering. This explains what
previous works were actually observing in those determinis-
tic systems: not (the theoretically impossible) compression
of mutual information, but increased clustering of hidden
representations. Leveraging the clustering perspective we
then provide new evidence that compression of I(X;T`)
and generalization may not be causally related. The ge-
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Figure 2. kth noisy neuron in layer `: W(k)
` and b`(k) are the kth

row/entry of the weight matrix and the bias, respectively.

ometric clustering of internal representations is thus the
fundamental phenomenon of interest, and we aim to test
its connection to generalization performance, theoretically
and experimentally, in future work. Code to replicate the
experiments in this paper is in preparation, and Goldfeld
et al. (2018) will be updated when it is available.

2. Preliminary Definitions
Noisy DNNs: For integers k ≤ `, let [k : `] ,

{
i ∈ Z

∣∣k ≤
i ≤ `

}
and use [`] when k = 1. Consider a noisy DNN

with L+ 1 layers {T`}`∈[0:L], with input T0 = X and out-
put TL. The `th hidden layer, ` ∈ [L− 1], is described by
T` = f`(T`−1)+Z`, where f` : Rd`−1 → Rd` is a determin-
istic function of the previous layer and Z` ∼ N

(
0, β2Id`

)
;

no noise is injected to the output, i.e., TL = fL(TL−1).
We set S` , f`(T`−1) and use ϕβ for the probability den-
sity function (PDF) of Z`. The functions {f`}`∈[L] can
represent any type of layer (fully connected, convolutional,
max-pooling, etc.). Fig. 2 shows a neuron in a noisy DNN.

To explore the relation between noisy and deterministic
DNNs under conditions representative of current machine
learning practices, we trained four-layer convolutional neu-
ral networks (CNNs) on MNIST (LeCun et al., 1999). The
CNNs used different internal noise levels (including β = 0)
and one used dropout instead of additive noise. We mea-
sured their performance on the validation set and character-
ized the cosine similarities between their internal represen-
tations (see the extended paper Goldfeld et al. (2018) for
full details). The results in Table 1 show small amounts of
internal noise (β ≤ 0.1) have a minimal impact on classi-
fication performance, while dropout strongly improves it.
The histograms in Fig. 3 show that the noisy (for small β)
and dropout models learn internal representations similar
to those learned by the deterministic model. In this high-
dimensional space, unrelated representations would create
cosine similarity histograms with zero mean and standard
deviation between 0.02–0.3, so the observed values are quite
large. As expected, dissimilarity increases as β increases,
and similarity is lower for the internal layers (2 and 3).

Mutual Information: Noisy DNNs induce a stochastic
map from X to the rest of the network, described by the
conditional distribution PT1,...,TL|X . The corresponding
PDF2 is pT1,...,TL|X=x. Assuming X ∼ PX , the sys-

2PT1,...,TL|X=x is absolutely continuous with respect to (w.r.t.)

Table 1. MNIST validation errors for different models: mean ±
standard deviation over eight initial random seeds.

Model # Errors

Deterministic 50 ± 4.6
Noisy (β = 0.05) 50 ± 5.0
Noisy (β = 0.1) 51 ± 6.9
Noisy (β = 0.2) 86 ± 9.8
Noisy (β = 0.5) 2200 ± 520
Dropout (p = 0.2) 39 ± 3.9

tem is described by the joint distribution PX,T1,...,TL ,
PXPT1,...,TL|X , under which X − T1 − . . . − TL−1 −
TL forms a Markov chain. For each ` ∈ [L − 1],
we study the mutual information I(X;T`) , h(T`) −∫
dPX(x)h(T`|X = x). The composition of Gaussian

noises and nonlinearities renders the stochastic map X 7→
T` too complicated to analytically compute I(X;T`). There-
fore, we focus on estimating I(X;T`) from samples.

3. Mutual Information Estimation
We design a provably accurate estimator of I(X;T`) in-
spired by our recent work on differential entropy esti-
mation (Goldfeld et al., 2019). Given a feature dataset
X = {xi}i∈[n] i.i.d. according to PX , our I(X;T`)
estimator is constructed from estimators of h(T`) and
h(pT`|X=x), ∀x ∈ X . We propose a sampling method that
reduces the estimation of each entropy to the framework
from (Goldfeld et al., 2019). Using entropy estimation risk
bounds derived therein we control the error of our sample
propagation (SP) estimator ÎSP of I(X;T`).

Each differential entropy is estimated and computed via a
two-step process. First, we approximate each true entropy
by the differential entropy of a known Gaussian mixture
(defined only through the available resources: the obtained
samples and the noise parameter). This estimate converges
to the true value at the parametric estimation rate, uniformly
in the dimension. However, since the Gaussian mixture en-
tropy has no closed-form expression, in the second (compu-
tational) step we develop a Monte Carlo integration (MCI)
method to numerically evaluate it. Mean squared error
(MSE) bounds on the MCI computed value are established.

3.1. Sampling Procedure and the Estimator

Unconditional Entropy: Since T` = S` + Z`, where S`
and Z` are independent, we have pT` = pS` ∗ ϕβ . To es-
timate h(pT`) feed each x ∈ X into the DNN and collect
the output it produces at the (` − 1)-th layer. The func-
tion f` is then applied on each collected output to obtain
S` , {s`,i}i∈[n], which is a set of n i.i.d. samples from pS` .
Denoting by p̂A the empirical probability mass function of

the Lebesgue measure for all x ∈ X .
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Figure 3. Cosine similarity histograms between internal representations of deterministic, noisy, and dropout MNIST CNNs.

a set A = {ai}i∈[n], we estimate h(pT`) via h(p̂S` ∗ ϕβ),
which is the differential entropy of a Gaussian mixture with
centers {s`,i}i∈[n].
Conditional Entropies: Fix x ∈ X and consider estimat-
ing h(pT`|X=x), where pT`|X=x = pS`|X=x ∗ ϕβ . We sam-
ple from pS`|X=x by feeding x into the DNN nx times,
collecting T`−1 outputs that correspond to different noise
realizations, and applying f` on each. The obtained samples
S(x)` ,

{
s
(x)
`,i

}
i∈[nx] are i.i.d. according to pS`|X=x. Each

h(pT`|X=x) is estimated by h
(
p̂S(x)

`

∗ ϕβ
)
.3

Mutual Information Estimator: We estimate I(X;T`) by

ÎSP , h(p̂S` ∗ ϕβ)− 1

n

∑
x∈X

h
(
p̂S(x)

`

∗ ϕβ
)
. (1)

3.2. Theoretical Guarantees and Computation

This sampling procedure unifies the estimation of h(pT`)
and

{
h(pT`|X=x)

}
x∈X into the problem of differential en-

tropy estimation under Gaussian convolutions (Goldfeld
et al., 2019): estimate h(pS ∗ ϕβ) based on i.i.d. samples
Sn , {Si}i∈[n] from pS and knowledge of ϕβ . Our ÎSP
is inspired by the differential entropy estimator proposed
in (Goldfeld et al., 2019), which approximates h(pS ∗ ϕβ)

by h(p̂Sn ∗ ϕβ). Before analyzing ÎSP performance, we
note that its estimation is statistically difficult since any
good estimator of h(pS ∗ ϕβ) using Sn and ϕβ requires
exponentially many samples in d (Theorem 1 of Goldfeld
et al. (2019)). Nonetheless, Theorem 2 therein shows that
the absolute-error risk of h(p̂Sn ∗ ϕβ) converges at the best
possible rate of O

(
cd/
√
n
)
, for a constant c and all d.

We now bound the estimation risk of ÎSP (the result is stated
for bounded nonlinearities for simplicity; see Theorem 3 in
the extended paper (Goldfeld et al., 2018) for corresponding
ReLU results).

Theorem 1. Fix ` ∈ [L− 1] and assume ‖f`‖∞ ≤ 1. For
ÎSP from (1) with n = nx, for all x ∈ X , we have

sup
PX

E
∣∣∣I(X;T`)− ÎSP

∣∣∣ ≤
8cd` + d` log

(
1 + 1

σ2

)

4
√
n

, (2)

where c is a numerical constant explicitly given in Appendix

3For ` = 1, we have h(T1|X) = h(Z1) =
d1
2
log(2πeβ2).

C.3 of the extended version of the paper (Goldfeld et al.,
2018).

Theorem 1 is proven in Appendix D.1 of the extended paper
(Goldfeld et al., 2018). Interestingly, the quantity 1

σ2 is the
signal-to-noise ratio (SNR) between S and Z. The larger σ
is, the easier estimation becomes, since the noise smooths
out the complicated PX distribution.

Evaluating the SP estimator requires computing differential
entropies of (known) Gaussian mixture distributions (see
(1)). Let p̂sn ∗ ϕβ be such a mixture and G ∼ p̂sn ∗ ϕβ .

Noting that h(p̂sn ∗ ϕβ) = −E
[

log
(
(p̂sn ∗ ϕβ)(G)

)]
, we

numerically approximate the RHS via efficient MCI (Robert,
2004). Specifically, we generate nMC i.i.d. samples from
p̂sn ∗ ϕβ and approximate the expectation by an empir-
ical average. This unbiased proxy achieves an MSE of
O
(
(n · nMC)−1

)
(Theorem 6 in Appendix C.4 of the ex-

tended paper Goldfeld et al. (2018)), and thus only adds a
negligible error to the estimation process.4

Choosing β and n: We describe practical guidelines for
selecting β and n for estimating I(X;T`) in actual clas-
sifiers. Ideally, β is treated as a hyperparameter tuned to
optimize the DNN’s performance on held-out data, since
internal noise serves as a regularizer similar to dropout. In
practice, we sometimes back off from this optimal β to a
higher value to ensure accurate estimation of mutual infor-
mation (ÎSP requires more samples for smaller β values),
depending on factors like the dimensionality of T` and the
number of available data samples.

While n can be selected from the risk bound in (2), this
value can be quite large since Theorem 1 is a worst-case re-
sult. Furthermore, generating the estimated I(X;T`) curves
shown in Section 5 requires repeatedly5 running the dif-
ferential entropy estimator, which makes the n dictated by
Theorem 1 infeasible. To overcome this computational bur-
den while adhering to the theory, we tested the value of n
given by the theorem on a few points of each curve and

4There are other ways to numerically evaluate h(p̂sn ∗ϕβ), e.g.,
the Gaussian mixture bounds from Kolchinsky & Tracey (2017);
however, our proposed method is the fastest of which we are aware.

5Each I(X;T`), for a given set of DNN parameters, involves
computing n + 1 differential entropy estimates, and our experi-
ments estimate the trajectory of I(X;T`) across training epochs.
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Figure 4. Single-layer tanh network: (a) the density pT (k) at epochs k = 250, 2500; (b) pT (k) and (c) I
(
X;T (k)

)
as a function of k; and

(d) mutual information as a function of k, for different β values..

reduced it until the overall computation cost became reason-
able. To ensure estimation accuracy was not compromised
we empirically tested that the estimate remained stable.

As a concrete example, for an error bound of 10% of Fig.
5 plot’s vertical scale (≈ 0.8 absolute error) Theorem 1
requires n = 4 · 109 samples, which is beyond our compu-
tational budget. Performing the above procedure to lower n,
we find good accuracy is achieved for n = 4 · 106. Adding
more samples beyond this value does not change the results.

4. Compression and Clustering
We use a minimal example to connect compression and
clustering via an information-theoretic perspective. Con-
sider one noisy neuron with a scalar input X . Let
T (k) = S(k) + Z = σ(wkX + bk) + Z be the neu-
ron’s output at epoch k, where σ is strictly monotone
and Z ∼ N (0, β2). Invariance of I

(
X;T (k)

)
to invert-

ible operations implies I
(
X;T (k)

)
= I
(
S(k);S(k) + Z

)
.

Information-theoretically, I
(
S(k);S(k) + Z

)
is the aggre-

gate number of nats transmitted over an AWGN channel
with input constellation Sk ,

{
σ(wkx + bk) | x ∈ X

}
.

In other words, I
(
S(k);S(k) + Z

)
measures how distin-

guishable the symbols of Sk are when composed with Gaus-
sian noise (roughly equaling the log of the number of re-
solvable clusters under noise level β). Since the distribution
of T (k) is a Gaussian mixture with means s ∈ Sk, the
closer two constellation points s and s′ are, the more the
Gaussians centered on them overlap. Thus reducing point
spacing in Sk (by changing wk and bk) directly reduces
I
(
X;T (k)

)
. Let σ = tanh, β = 0.01 and X = X−1 ∪ X1,

with X−1 = {−3,−1, 1} and X1 = {3}, labeled −1 and
1, respectively. We train the neuron using mean squared
loss and gradient descent with learning rate 0.01 to illustrate
I
(
X;T (k)

)
trends. The Gaussian mixture pT (k) is plotted

across epochs k in Fig. 4(a)-(b). The learned bias is ap-
proximately −2.3w, ensuring that the tanh transition region
correctly divides the two classes. Initially w = 0, so all
four Gaussians in pT (0) are superimposed. As k increases,
the Gaussians initially diverge, with the three from X−1
eventually re-converging as they each meet the tanh bound-
ary. This is reflected in the mutual information trend in

Fig. 4(c), with the dips in I
(
X;T (k)

)
around k = 103 and

k = 104 corresponding to the second and third Gaussians
respectively merging into the first. Thus, there is a direct
connection between clustering and compression. Fig. 4(d)
shows I

(
X;T (k)

)
for different noise levels β as a function

of k. For small β (as above) the X−1 Gaussians are distinct
and merge in two stages as w grows. For larger β, however,
the X−1 Gaussians are indistinguishable for any w, making
I
(
X;T (k)

)
increase as the two classes gradually separate.

Similar trends are observed for a two-neuron leaky-ReLU
network in the extended paper (Goldfeld et al., 2018).

5. Empirical Results
We show that the observations from Section 4 hold for
two larger networks. The experiments demonstrate that
I(X;T`) compression in noisy DNNs is driven by clus-
tering of internal representations, and that deterministic
DNNs cluster samples as well. The considered DNNs are
(1) the fully connected network (FCN) from (Shwartz-Ziv &
Tishby, 2017; Saxe et al., 2018), dubbed the SZT model, and
(2) a convolutional network for MNIST classification, called
MNIST CNN. We present selected results; see the extended
paper Goldfeld et al. (2018) for additional experiments.

5.1. Noisy SZT Model

Consider the data and model of (Shwartz-Ziv & Tishby,
2017) for binary classification of 12-dimensional inputs us-
ing a fully connected 12–10–7–5–4–3–2 architecture. The
FCN was tested with tanh and ReLU nonlinearities as well
as a linear model. Fig. 5(a) presents results for the tanh SZT
model with β = 0.005 (test classification accuracy 97%),
showing the relation across training epochs between the es-
timated I(X;T`), train/test losses and the evolving internal
representations. The rise and fall of I(X;T`) corresponds to
how spread out or clustered the representations in each layer
are. For example, I(X;T5) grows until epoch 28, when the
Gaussians start to move away from each other along a curve
(see scatter plots on the right). Around epoch 80 they start
clustering and I(X;T5) drops. As training progresses, the
saturating tanh units push the Gaussians to opposite corners
of the cube, thereby reducing I(X;T5) even more.
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Figure 5. (a) Evolution of I(X;T`) and training/test losses across training epochs for the SZT model with β = 0.005 and tanh
nonlinearities. The scatter plots show the values of Layer 5 (d5 =3) at the arrow-marked epochs on the mutual information plot. The
bottom plot shows H

(
Bin(T`)

)
across epochs for bin size B=10β. (b) Same setup as in (a) but with regularization that encourages

orthonormal weight matrices. (c) SZT model with β = 0.01 and linear activations.

To confirm that clustering (via saturation) was central to the
compression observed in Fig. 5(a), we also trained the model
using the regularization from (Cisse et al., 2017) (test clas-
sification accuracy 98%), which encourages orthonormal
weight matrices. The results are shown in Fig. 5(b). Apart
from minor initial fluctuations, compression is completely
gone. The scatter plots show that the vast majority of neu-
rons do not saturate and no clustering is observed at the later
stages of training. Saturation is not the only mechanism that
can cause clustering and consequently reduce I(X;T`). For

example, in Fig. 5(c) we illustrate the clustering behavior
in a linear SZT model (test classification accuracy 89%).
As seen from the scatter plots, due to the formation of sev-
eral clusters and projection to a lower dimensional space,
I(X;T`) drops even without the nonlinearities.

The results in Fig. 5(a) and (b) also show that the relation-
ship between compression and generalization performance
is not a simple one. In Fig. 5(a), the test loss begins to
increase at roughly epoch 3200 and continues to grow until
training ends. At the same time compression occurs in lay-
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(a) (b)
Figure 6. (a) Histogram of within- and between-class pairwise distances for SZT model with tanh non-linearities and additive noise
β = 0.005. (b) Same as (a) but training with weight normalization.

ers 4 and 5. In contrast, the test loss in Fig. 5(b) does not
increase, and compression does not occur. We believe this
subject deserves further examination in future work.

To provide another perspective on clustering that is sensitive
to class membership, we compute histograms of pairwise
distances between representations of samples, distinguish-
ing within-class distances from between-class distances.
Fig. 6 shows histograms for the SZT models from Figs. 5(a)
and (b). As training progresses, the formation of clusters
is clearly seen (layer 3 and beyond) for the unnormalized
SZT model in Fig. 5(a). In the normalized model (Fig. 5(b)),
however, no tight clustering is apparent, supporting the con-
nection between clustering and compression.

Having identified clustering as the source of compression,
we focus on it as the point of interest. To measure cluster-
ing we consider the discrete entropy H

(
Bin(T`)

)
, with the

number of equal-sized bins, B, as a tuning parameter. Note
that Bin(T`) partitions the dynamic range (e.g., [−1, 1]d`

for a tanh layer) into Bd` cells or bins. When hidden rep-
resentations are spread out, many bins are non-empty, each
holding a positive probability mass. Conversely, for clus-
tered representations, the distribution is concentrated on a
few bins, each with relatively high probability. Recalling
that the uniform distribution maximizes discrete entropy, we
see why reduction in H

(
Bin(T`)

)
measures clustering.

To illustrate, the bottom plots in Figs. 5(a), (b) and
(c) show H

(
Bin(T`)

)
for each SZT model using B =

10β. Its values differ from those of I(X;T`), suggesting
H
(
Bin(T`)

)
is formally not an estimator of the mutual in-

formation. Nonetheless, a clear correspondence between
the trends of H

(
Bin(T`)

)
and I(X;T`) is seen, indicating

that H
(
Bin(T`)

)
measures clustering in a manner similar

to I(X;T`). This is important when moving back to de-
terministic DNNs, where I(X;T`) is no longer informative
(being independent of the system parameters). Fig. 1 shows
H
(
Bin(T`)

)
for the deterministic SZT model (β = 0). The

bin size is a free parameter, and depending on its value,
H
(
Bin(T`)

)
reveals different clustering granularities. More-

over, since in deterministic networks T` = f`(X), for a de-
terministic map f` we have I

(
X;Bin(T`)

)
= H

(
Bin(T`)

)
.

Thus, the plots from (Shwartz-Ziv & Tishby, 2017), (Saxe
et al., 2018), and our Fig. 1 all show that H

(
Bin(T`)

)
evolu-

tion during training of deterministic DNNs tracks the degree
of clustering in the internal representation spaces, rather
than the theoretically impossible compression of I(X;T`).

5.2. Deterministic MNIST CNN

We also examine a deterministic model that is more repre-
sentative of current machine learning practice: the MNIST
CNN trained with dropout from Section 2. Fig. 7 portrays
the near-injective behavior of this model. Even when only
two bins are used to compute H

(
Bin(T`)

)
, it takes values

that are approximately ln(10000) = 9.210, for all layers
and training epochs, even though the two convolutional lay-
ers use max-pooling. While Fig. 7 does not show compres-
sion at the level of entire layers, computing H

(
Bin(T`(k))

)

for individual units k in layer 3 reveals a gradual decrease
over epochs 1–128. To quantify this trend, we computed lin-
ear regressions predicting H

(
Bin(T`(k))

)
from the epoch

index, for all units k in layer 3, and determined the mean
and standard deviation of the slope of the linear predictions.
If most slopes are negative, then compression occurs during
training at the level of individual units. For a range of bin
sizes from 10−4–10−1 the least negative mean slope was
−0.002 nats/epoch with a maximum standard deviation of
0.001, showing that most units undergo compression.

In Fig. 8 we show histograms of pairwise distances between
MNIST validation set samples in the input (pixel) space
and in the four layers of the CNN. The histograms were
computed for epochs 0, 1, 32, and 128, where epoch 0 is the
initial random weights and epoch 128 is the final weights.
The histogram for the input shows that the mode of within-
class pairwise distances is lower than the mode of between-
class pairwise distances, but that there is substantial overlap.
Layers 1 and 2, which are convolutional and therefore do
not contain any units that receive the full input, do little
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Figure 7. H
(
Bin(T`)

)
for the MNIST CNN, computed using two

bins: [−1, 0] and (0, 1]. The tiny range of the y axis shows the
near injectivity of the model.

to reduce this overlap, suggesting that the features learned
in these layers are somewhat generic. In contrast, even
after one epoch of training, layers 3 and 4, which are fully
connected, separate the distribution of within-class distances
from the distribution of between-class distances.

5.3. Summary of Experiments

We made the following observations in our experiments.
(1) Compression can occur in noisy networks, e.g., the
noisy SZT model inspired by the deterministic network
from (Shwartz-Ziv & Tishby, 2017), for which compression
was first observed (upper left plot in Fig. 5(a)). (2) Compres-
sion is caused by clustering of internal representations, with
clusters comprising mostly samples from the same class, as
seen in the scatter plots on the right sides of Figs. 5(a) and
(c), and the distributions of pairwise distances in Figs. 6 and
8. (3) Regularization that limits the network’s ability to satu-
rate hidden units can suppress the formation of tight clusters
in the internal representation spaces and eliminate compres-
sion (Fig. 5(b)). Observing that the regularized network
from Fig. 5(b) (where no compression occurs) generalizes
better than the unregularized version in Fig. 5(a), indicates
that I(X;T`) compression and generalization may not be
causally related. This relation warrants further investigation.
(4) Fig. 5 demonstrated that I(X;T`) and H

(
Bin(T`)

)
are

highly correlated, establishing the latter as another measure
for clustering (applicable both in noisy and deterministic
DNNs). (5) Clustering is also observed in a convolutional
network trained on MNIST. While Fig. 7 shows that due to
the high dimensionality of the CNN, H

(
Bin(T`)

)
fails to

track compression, strong evidence for clustering is found
via estimates done at the individual units level and the anal-
ysis of pairwise distances between samples shown in Fig. 8.

6. Conclusions and Future Work
This work studied the mutual information I(X;T`) in a
DNN. We reexamined the ‘compression’ aspect of the In-
formation Bottleneck theory (Shwartz-Ziv & Tishby, 2017),
noting that fluctuations of I(X;T`) in deterministic net-
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Figure 8. Histograms of within-class and between-class pairwise
distances from the MNIST CNN.

works with strictly monotone nonlinearities are impossible.
Aiming to test for I(X;T`) compression rigorously and dis-
cover its source, we: (1) created a rigorous framework for
studying and accurately estimating information-theoretic
quantities in DNNs whose weights are fixed; (2) identified
clustering of the learned representations as the geometric
phenomenon underlying compression; and (3) demonstrated
that the compression-related experiments on deterministic
networks in prior works were in fact measuring this cluster-
ing through the lens of binned mutual information.

We thus identify clustering as the common phenomenon
of interest, which happens in both deterministic and noisy
networks. In contrast, the mutual information I(X;T`) is
meaningful only if a mechanism for shedding information
(e.g., noise) exists in the network, and even then, it merely
tracks the same clustering effect. Although binning-based
measures do not accurately estimate mutual information,
they are simple to compute (as opposed to the exponential
in dimension burden of mutual information estimation) and
are useful for tracking changes in clustering. We believe that
further study of this geometric phenomenon is warranted
to gain more insight into the learned representations and
potentially establish connections with generalization. To
this end we are currently developing efficient methods to
track clustering in high-dimensional spaces. Such methods
also open the door to algorithmic advances in deep learn-
ing. In fact, inspired by the clustering phenomenon, we are
working on a new regularization procedure for DNN train-
ing that encourages intermediate layers of the network to
increase a clustering-based analog of I(Y ;T`). This makes
the regularized layer learn well-separated representations
of the data (with possibly nonlinear decision boundaries)
and enhances the training process, according to our initial
experiments. We aim to further develop this into a practical
algorithm that accelerates DNN training in the near future.
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