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1 Supplementary material

1.1 Proof of Theorems

Proof of Theorem 2.2

Proof. We will show that the conditions DI(g,X, S) ≤ τ and BER(g,X, S) ≤ 1
2 −

a(g)
2 ( 1

τ − 1) are
equivalent, for all g ∈ G. Indeed, given g ∈ G,

BER(g,X, S) ≤ 1

2
− a(g)

2

(
1

τ
− 1

)
=

1

2
−

( 1
τ − 1)

2
P(g(X) = 1 | S = 0)

⇔ P (g(X) = 0 | S = 1) + P (g(X) = 1 | S = 0) ≤ 1−
(

1

τ
− 1

)
P(g(X) = 1 | S = 0)

⇔
(

1 +

(
1

τ
− 1

))
P (g(X) = 1 | S = 0) + P (g(X) = 0 | S = 1) ≤ 1

⇔ 1

τ
P (g(X) = 1 | S = 0) ≤ 1− P (g(X) = 0 | S = 1) = P (g(X) = 1 | S = 1)

⇔ DI(g,X, S) =
P (g(X) = 1 | S = 0)

P (g(X) = 1 | S = 1)
≤ τ.

Moreover, we denote by fi, i = 0, 1, the density functions of the conditioned variables X/S = i,
respectively, whose corresponding probability measures are both supposed to be, without loss of generality,
absolute continuous with respect to a measure µ. In general, the misclassification error could be written
as:

P(g(X) 6= S) = P(S = 0)P (g(X) = 1 | S = 0) + P(S = 1)P (g(X) = 0 | S = 1) =

P(S = 0)

∫
g(X)=1

f0(x)dµ(x) + P(S = 1)

∫
g(X)=0

f1(x)dµ(x). (1)

Now, for s = 0, 1, we fixe the value of πs = P(S = s), and from the Bayes’ Formula, we know that

P (S = s|X) =
πsfs(X)

π0f0(X) + π1f1(X)
.

Hence,
{P (S = 0|X) > P (S = 1|X)} = {π0f0(X) > π1f1(X)} , µ− a.s.

Thus, we can deduce that the classifier that minimizes the missclassification error rate is

g∗(x) =

{
1 if π0f0(x) ≤ π1f1(x)
0 if π0f0(x) > π1f1(x)

,

and from equation (1),

min
g∈G

P(g(X) 6= S) =

∫
{π0f0(x)≤π1f1(x)}

π0f0(x)dµ(x) +

∫
{π0f0(x)>π1f1(x)}

π1f1(x)dµ(x).
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In our particular case, BER(g,X, S) = P(g(X) 6= S) when considering π0 = π1 = 1
2 , so we have that

g∗(x) =

{
1 if f0(x) ≤ f1(x)
0 if f0(x) > f1(x)

and

min
g∈G

BER(g,X, S) = BER(g∗, X, S) =
1

2

[∫
f0(x)≤f1(x)

f0(x)dµ(x) +

∫
f0(x)>f1(x)

f1(x)dµ(x)

]

=
1

2

∫
(f0 ∧ f1)(x)dµ(x).

This concludes the proof since by definition

dTV (µ0, µ1) =
1

2

∫
|f0 − f1| dµ = 1−

∫
(f0 ∧ f1)(x)dµ(x).

Lemma 1.1. Under Assumptions of Theorem 3.3, the following bound holds

R(gB ◦ TS , X)−R(gB , X, S) ≤ 2E [|ηS(X)− ηS ◦ TS(X)|] .

Proof of Lemma (1.1)

Proof. We want to be able to control the difference infh∈G R(h, X̃)− infg∈G R(g,X, S).
To do this, observe that

RB(X̃)−RB(X,S) := inf
h∈G

R(h, X̃)− inf
g∈G

R(g,X, S)

≤ R(gB ◦ TS , X)−R(gB , X, S) = E
[
(2ηS(X)− 1)(1gB◦TS(X)=0 − 1gB(X,S)=0)

]
= E

[
(2ηS(X)− 1)1g◦TS(X) 6=gB(X,S)(1gB◦TS(X)6=1 − 1gB(X,S)6=1)

]
,

where the last equality holds because
(
1gB◦TS(X) 6=1

)
−
(
1gB(X,S) 6=1

)
= 0 if, and only if, both classifiers

have the same response gB ◦ TS(X) = gB(X,S).
Consider X = x and S = s,

• if gB(x, s) = 1, 2ηs(x)− 1 > 0 and 1gB(x,s)6=1 = 0. In this situation, we deduce that

1gB◦Ts(x) 6=gB(x,s) = 1⇔ gB ◦ Ts(x) = 0,

and
1gB◦Ts(x)6=1 − 1gB(x,s)6=1 = 1.

• if gB(x, s) = 0, 2ηs(x)− 1 < 0 and 1gB(x,s)6=1 = 1. We deduce that

1gB◦Ts(x) 6=gB(x,s) = 1⇔ gB ◦ Ts(x) = 1,

and
1gB◦Ts(x) 6=1 − 1gB(x,s) 6=1 = −1.

In any case, the random variable (2ηS(X) − 1)1g◦TS(X)6=gB(X,S)(1gB◦TS(X)6=1 − 1gB(X,S) 6=1) is positive
and so it is its expectation

R(gB ◦ TS , X)−R(gB , X, S) = E
[
|2ηS(X)− 1|1g◦TS(X) 6=gB(X,S)

]
> 0.

Moreover, notice that gB ◦ Ts(x) = 1ηs◦Ts(x)>
1
2
, forallx, foralls. Hence, gB ◦ Ts(x) 6= gB(x, s) if, and

only if, either ηs(x) > 1
2 and ηs ◦ Ts(x) < 1

2 or ηs(x) < 1
2 and ηs ◦ Ts(x) > 1

2 . In both cases,

|ηs(x)− ηs ◦ Ts(x)| =
∣∣∣∣ηs(x)− 1

2
+

1

2
− ηs ◦ Ts(x)

∣∣∣∣ =

∣∣∣∣ηs(x)− 1

2

∣∣∣∣+

∣∣∣∣12 − ηs ◦ Ts(x)

∣∣∣∣ ,
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and then it is clear that ∣∣∣∣ηs(x)− 1

2

∣∣∣∣ ≤ |ηs(x)− ηs ◦ Ts(x)| , for all x, for all s.

In conclusion, the difference between the risk using the Bayes’ classifier with the original variable X,S
and the modified version X̃ = TS(X) can be bounded as follows

R(gB ◦ TS , X)−R(gB , X, S) ≤ 2E [|ηS(X)− ηS ◦ TS(X)|] .

Proof of Theorem 3.3

Proof. First, note that R(h, X̃) = R(h, TS(X)) ≤ R(gB , TS(X)) = R(gB ◦ TS , X). Thus, it suffices
bounding the difference between the minimal risks obtained for the best classifier with input data (X,S),
called gB , and the risk obtained with this classification rule using the input data X̃

R(gB ◦ TS , X)−R(gB , X, S) ≤ 2E(X,S) [|ηS(X)− ηS ◦ TS(X)|]
= 2 [P(S = 0)EX [|η0(X)− η0 ◦ T0(X)| | S = 0] + P(S = 1)EX [|η1(X)− η1 ◦ T1(X)| | S = 1]]

= 2
∑
s=0,1

πsEX [|ηs(X)− ηs ◦ Ts(X)| | S = s] .

Moreover, by the Lipschitz condition and noting that a+ b ≤ 2
1
2 (a2 + b2)

1
2 , forall a, b ∈ R, we can write

R(gB ◦ TS , X)−R(gB , X, S) ≤ 2
∑
s=0,1

πsKsEX [‖X − Ts(X)‖ | S = s]

≤ 2
√

2K

(∑
s=0,1

π2
s (EX [‖X − Ts(X)‖ | S = s])

2

) 1
2

,

where K = max{K0,K1}. Finally, the Cauchy-Schwarz inequality gives

R(gB ◦ TS , X)−R(gB , X, S) ≤ 2
√

2K

(∑
s=0,1

π2
sEX

[
‖X − Ts(X)‖2 | S = s

]) 1
2

= 2
√

2K

(∑
s=0,1

π2
sW

2
2 (µs, µs]Ts)

) 1
2

≤ 2
√

2K

(∑
s=0,1

πsW
2
2 (µs, µs]Ts)

) 1
2

.

1.2 Application on a real dataset

To ilustrate the performance of the repairing procedures in Section 3, we consider the Adult Income
data set (available at https://archive.ics.uci.edu/ml/datasets/adult). It contains 29.825 instances
consisting in the values of 14 attributes, 6 numeric and 8 categorical, and a categorization of each person
as having an income of more or less than 50, 000$ per year. This attribute will be the target variable in
the study. In the following, we estimate the Disparate Impact using its empirical counterpart and provide
a confidence interval which was established in Besse et al. (2018). Among the rest of the categorical
attributes, we focus on the sensitive attribute Gender (“male”or “female”) to be the potentially protected.
As the repairing procedures work only with the numerical attributes, to check their effectiveness we will
follow the next steps:

1. Split the data set into the test and the learning sample using the ratio 2.500 / 27.325.

2. Train the classifiers based on logistic regression and random forests using the five numerical variables:
Age, Education Level, Capital Gain, Capital Loss and Worked hours per week.
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3. Predict the target for the test sample with the built model and compute the misclassification error
of each rule.

4. Apply the repair procedure to the test sample described by the numerical variables.

5. Predict the target for the repaired data set with the built model and compute the misclassification
error again.

In Table 1 a summary of the performance of the two classification rules considered is presented. With
a confidence of 95%, we can say that the logit classifier has Disparate Impact at level 0.555 and the
Random Forests at 0.54, with respect to Gender. Hence, both rules are committing discrimination with
respect to this sensitive variable. Now we will see how the repairing procedures studied in section ?? help
in blurring the protected variable.

In Table 2 we can see that in the experiments with procedure (A) the estimated value for DI is not
exactly 1, as we have already anticipated. On the other hand, procedure (B) manages to change the
data in such a way that both classification rules attain Statistical Parity. Moreover, the error in the
classification done with the repaired data sets is smaller when using procedure (B) in the two cases. In
Feldman et al. (2015), they propose a generalization to higher dimension by computing the repairing
procedure for each attribute. This procedure is denoted in the table with the letter (C). We see that
the error is smaller than with (A) but still much bigger than with (B). Moreover, the estimated level of
Disparate Impact is not 1 but it is closer to the Statistical Parity than with procedure (A).

Finally, we present some results of the performance of the Geometric and Random Repairs. Left part
of Figures 1 and 2 represent the evolution of the estimated Disparate Impact with the amount of repair
0 ≤ λ ≤ 1, while the right part show the evolution with λ of the error in the classification done from
the modified data set. For the experiments concerning the Random Repair procedure (denoted RR in
the figures) we have repeated it 100 times, and then we have computed the mean of the simulations.
Clearly, the level of DI reached is higher with the Random Repair for the logit rule. For the random forest
procedure since the rule is not linear, the difference is not as high and Disparate Impacts have similar
behaviors. Yet for larger amount of repair the gap between the two different kinds of repair increases at
the advantage of the Geometric Repair.
Moreover, the error in the prediction from the new data modified with this procedure is smaller than with
the Geometric Repair. We note that the amount of repair necessary to achieve a confidence interval for
DI at level 0.8 for the logit rule is 0.3 with the Random Repair, which entails an error of 0.2068; and 0.55
with the Geometric Repair, which entails an error of 0.2136. In the case of the random forests rule, this
value is 0.5 for both but the error is 0.1927 with the Random Repair; and 0.2076 with the Geometric
Repair

Table 1: Performance and Disparate Impact with respect to the protected variable Gender.

Statistical Model Error D̂I CI 95%

Logit 0.2064 0.496 (0.437, 0.555)
Random Forests 0.168 0.484 (0.429, 0.54)

Table 2: Repairing procedures and Disparate impact of the rules with the modified dataset

Statistical Model Repair Error Difference D̂I CI 95%

Logit (A) 0.218 0.0116 0.937 (0.841, 1.033)
Logit (B) 0.2077 0.00128 1 (0.905, 1.095)
Logit (C) 0.2132 0.0068 0.94 (0.842, 1.038)

Random Forests (A) 0.2272 0.0592 1.1 (0.976, 1.223)
Random Forests (B) 0.2045 0.0365 1 (0.886, 1.114)
Random Forests (C) 0.2152 0.0472 1.091 (0.978, 1.203)
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Figure 1: CI at level 95% for DI (left) and error (right) of the classifier logit with respect to Gender and
the data repaired by the Geometric and Random Repair
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Figure 2: CI at level 95% for DI (left) and error (right) of the classifier random forests with respect to
Gender and the data repaired by the Geometric and Random Repair
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