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Abstract
Graphs are a fundamental abstraction for model-
ing relational data. However, graphs are discrete
and combinatorial in nature, and learning rep-
resentations suitable for machine learning tasks
poses statistical and computational challenges. In
this work, we propose Graphite, an algorithmic
framework for unsupervised learning of represen-
tations over nodes in large graphs using deep la-
tent variable generative models. Our model pa-
rameterizes variational autoencoders (VAE) with
graph neural networks, and uses a novel iterative
graph refinement strategy inspired by low-rank
approximations for decoding. On a wide variety
of synthetic and benchmark datasets, Graphite
outperforms competing approaches for the tasks
of density estimation, link prediction, and node
classification. Finally, we derive a theoretical con-
nection between message passing in graph neural
networks and mean-field variational inference.

1. Introduction
Latent variable generative modeling is an effective ap-
proach for unsupervised representation learning of high-
dimensional data (Loehlin, 1998). In recent years, represen-
tations learned by latent variable models parameterized by
deep neural networks have shown impressive performance
on many tasks such as semi-supervised learning and struc-
tured prediction (Kingma et al., 2014; Sohn et al., 2015).
However, these successes have been largely restricted to
specific data modalities such as images and speech. In par-
ticular, it is challenging to apply current deep generative
models for large scale graph-structured data which arise in
a wide variety of domains in physical sciences, information
sciences, and social sciences.

To effectively model the relational structure of large graphs
for deep learning, prior works have proposed to use graph
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neural networks (Gori et al., 2005; Scarselli et al., 2009;
Bruna et al., 2013). A graph neural network learns node-
level representations by parameterizing an iterative message
passing procedure between nodes and their neighbors. The
tasks which have benefited from graph neural networks, in-
cluding semi-supervised learning (Kipf & Welling, 2017)
and few shot learning (Garcia & Bruna, 2018), involve en-
coding an input graph to a final output representation (such
as the labels associated with the nodes). The inverse prob-
lem of learning to decode a hidden representation into a
graph, as in the case of a latent variable generative model,
is a pressing challenge that we address in this work.

We propose Graphite, a latent variable generative model
for graphs based on variational autoencoding (Kingma &
Welling, 2014). Specifically, we learn a directed model ex-
pressing a joint distribution over the entries of adjacency
matrix of graphs and latent feature vectors for every node.
Our framework uses graph neural networks for inference
(encoding) and generation (decoding). While the encoding
is straightforward and can use any existing graph neural net-
work, the decoding of these latent features to reconstruct the
original graph is done using a multi-layer iterative procedure.
The procedure starts with an initial reconstruction based on
the inferred latent features, and iteratively refines the re-
constructed graph via a message passing operation. The
iterative refinement can be efficiently implemented using
graph neural networks. In addition to the Graphite model,
we also contribute to the theoretical understanding of graph
neural networks by deriving equivalences between message
passing in graph neural networks with mean-field inference
in latent variable models via kernel embeddings (Smola
et al., 2007; Dai et al., 2016), formalizing what has thus far
has been largely speculated empirically to the best of our
knowledge (Yoon et al., 2018).

In contrast to recent works focussing on generation of small
graphs e.g., molecules (You et al., 2018; Li et al., 2018), the
Graphite framework is particularly suited for representation
learning on large graphs. Such representations are useful for
several downstream tasks. In particular, we demonstrate that
representations learned via Graphite outperform competing
approaches for graph representation learning empirically
for the tasks of density estimation (over entire graphs), link
prediction, and semi-supervised node classification on syn-
thetic and benchmark datasets.
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2. Preliminaries
Throughout this work, we assume that all probability distri-
butions admit absolutely continuous densities on a suitable
reference measure. Consider a weighted undirected graph
G = (V,E) where V and E denote index sets of nodes and
edges respectively. Additionally, we denote the (optional)
feature matrix associated with the graph as X 2 Rn⇥m for
an m-dimensional signal associated with each node, for e.g.,
these could refer to the user attributes in a social network.
We represent the graph structure using a symmetric adja-
cency matrix A 2 Rn⇥n where n = |V | and the entries Aij

denote the weight of the edge between node i and j.

2.1. Weisfeiler-Lehman algorithm

The Weisfeiler-Lehman (WL) algorithm (Weisfeiler &
Lehman, 1968; Douglas, 2011) is a heuristic test of graph
isomorphism between any two graphs G and G0. The algo-
rithm proceeds in iterations. Before the first iteration, we
label every node in G and G0 with a scalar isomorphism
invariant initialization (e.g., node degrees). That is, if G
and G0 are assumed to be isomorphic, then an isomorphism
invariant initialization is one where the matching nodes
establishing the isomorphism in G and G0 have the same
labels (a.k.a. messages). Let H(0) = [h(l)

1 , h(l)
2 , · · · , h(l)

n ]T

denote the vector of initializations for the nodes in the graph
at iteration l 2 N[0. At every iteration l > 0, we perform a
relabelling of nodes in G and G0 based on a message passing
update rule:

H
(l)  hash

⇣
AH

(l�1)
⌘

(1)

where A denotes the adjacency matrix of the corresponding
graph and hash : Rn ! Rn is any suitable hash function
e.g., a non-linear activation. Hence, the message for every
node is computed as a hashed sum of the messages from
the neighboring nodes (since Aij 6= 0 only if i and j are
neighbors). We repeat the process for a specified number
of iterations, or until convergence. If the label sets for the
nodes in G and G0 are equal (which can be checked using
sorting in O(n log n) time), then the algorithm declares the
two graphs G and G0 to be isomorphic.

The “k-dim” WL algorithm extends the 1-dim algorithm
above by simultaneously passing messages of length k (each
initialized with some isomorphism invariant scheme). A
positive test for isomorphism requires equality in all k di-
mensions for nodes in G and G0 after the termination of
message passing. This algorithmic test is a heuristic which
guarantees no false negatives but can give false positives
wherein two non-isomorphic graphs can be falsely declared
isomorphic. Empirically, the test has been shown to fail
on some regular graphs but gives excellent performance on
real-world graphs (Shervashidze et al., 2011).

2.2. Graph neural networks

Intuitively, the WL algorithm encodes the structure of the
graph in the form of messages at every node. Graph neural
networks (GNN) build on this observation and parameterize
an unfolding of the iterative message passing procedure
which we describe next.

A GNN consists of many layers, indexed by l 2 N with each
layer associated with an activation ⌘l and a dimensionality
dl. In addition to the input graph A, every layer l 2 N of
the GNN takes as input the activations from the previous
layer H(l�1) 2 Rn⇥dl�1 , a family of linear transformations
Fl : Rn⇥n ! Rn⇥n, and a matrix of learnable weight
parameters Wl 2 Rdl�1⇥dl and optional bias parameters
Bl 2 Rn⇥dl . Recursively, the layer wise propagation rule
in a GNN is given by:

H
(l)  ⌘l

0

@Bl +
X

f2Fl

f(A)H(l�1)
Wl

1

A (2)

with the base cases H(0) = X and d0 = m. Here, m is the
feature dimensionality. If there are no explicit node features,
we set H(0) = In (identity) and d0 = n. Several variants
of graph neural networks have been proposed in prior work.
For instance, graph convolutional networks (GCN) (Kipf
& Welling, 2017) instantiate graph neural networks with a
permutation equivariant propagation rule:

H
(l)  ⌘l

⇣
Bl + ÃH

(l�1)
Wl

⌘
(3)

where Ã = D
�1/2

AD
�1/2 is the symmetric diagonal-

ization of A given the diagonal degree matrix D (i.e.,
Dii =

P
(i,j)2E

Aij), and same base cases as before. Com-
paring the above with the WL update rule in Eq. (1), we
can see that the activations for every layer in a GCN are
computed via parameterized, scaled activations (messages)
of the previous layer being propagated over the graph, with
the hash function implicitly specified using an activation
function ⌘l.

Our framework is agnostic to instantiations of message
passing rule of a graph neural network in Eq. (2), and we
use graph convolutional networks for experimental vali-
dation due to the permutation equivariance property. For
brevity, we denote the output H for the final layer of a
multi-layer graph neural network with input adjacency ma-
trix A, node feature matrix X, and parameters hW,Bi as
H = GNNhW,Bi(A,X), with appropriate activation func-
tions and linear transformations applied at each hidden layer
of the network.

3. Generative Modeling via Graphite
For generative modeling of graphs, we are interested in
learning a parameterized distribution over adjacency matri-
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Figure 1. Latent variable model for Graphite. Observed evidence
variables in gray.

ces A. In this work, we restrict ourselves to modeling graph
structure only, and any additional information in the form of
node features X is incorporated as conditioning evidence.

In Graphite, we adopt a latent variable approach for model-
ing the generative process. That is, we introduce latent
variable vectors Zi 2 Rk and evidence feature vectors
Xi 2 Rm for each node i 2 {1, 2, · · · , n} along with
an observed variable for each pair of nodes Aij 2 R. Un-
less necessary, we use a succinct representation Z 2 Rn⇥k,
X 2 Rn⇥m, and A 2 Rn⇥n for the variables henceforth.
The conditional independencies between the variables can
be summarized in the directed graphical model (using plate
notation) in Figure 1. We can learn the model parameters
✓ by maximizing the marginal likelihood of the observed
adjacency matrix conditioned on X:

max
✓

log p✓(A|X) = log

Z

Z
p✓(A,Z|X)dZ (4)

Here, p(Z|X) is a fixed prior distribution over the latent
features of every node e.g., isotropic Gaussian. If we have
multiple graphs in our dataset, we maximize the expected
log-likelihoods over all the corresponding adjacency matri-
ces. We can obtain a tractable, stochastic evidence lower
bound (ELBO) to the above objective by introducing a vari-
ational posterior q�(Z|A,X) with parameters �:

log p✓(A|X) � Eq�(Z|A,X)


log

p✓(A,Z|X)

q�(Z|A,X)

�
(5)

The lower bound is tight when the variational posterior
q�(Z|A,X) matches the true posterior p✓(Z|A,X) and
hence maximizing the above objective optimizes for the
parameters that define the best approximation to the true
posterior within the variational family (Blei et al., 2017). We
now discuss parameterizations for specifying q�(Z|A,X)
(i.e., encoder) and p✓(A|Z,X) (i.e., decoder).

Encoding using forward message passing. Typically we
use the mean field approximation for defining the variational
family and hence:

q�(Z|A,X) ⇡
nY

i=1

q�i(Zi|A,X) (6)

Additionally, we would like to make distributional assump-
tions on each variational marginal density q�i(Zi|A,X)
such that it is reparameterizable and easy-to-sample, such
that the gradients w.r.t. �i have low variance (Kingma &
Welling, 2014). In Graphite, we assume isotropic Gaussian
variational marginals with diagonal covariance. The parame-
ters for the variational marginals q�i(Z|A,X) are specified
using a graph neural network:

µ,� = GNN�(A,X) (7)

where µ and � denote the vector of means and standard
deviations for the variational marginals {q�i(Zi|A,X)}n

i=1

and � = {�i}ni=1 are the full set of variational parameters.

Decoding using reverse message passing. For specify-
ing the observation model p✓(A|Z,X), we cannot directly
use a graph neural network since we do not have an input
graph for message passing. To sidestep this issue, we pro-
pose an iterative two-step approach that alternates between
defining an intermediate graph and then gradually refining
this graph through message passing. Formally, given a latent
matrix Z and an input feature matrix X, we iterate over the
following sequence of operations:

bA =
ZZ

T

kZk2 + 11
T , (8)

Z
⇤ = GNN✓(bA, [Z|X]) (9)

where the second argument to the GNN is a concatenation of
Z and X. The first step constructs an intermediate weighted
graph bA 2 Rn⇥n by applying an inner product of Z with
itself and adding an additional constant of 1 to ensure en-
tries are non-negative. And the second step performs a pass
through a parameterized graph neural network. We can
repeat the above sequence to gradually refine the feature
matrix Z

⇤. The final distribution over graph parameters is
obtained using an inner product step on Z

⇤ 2 Rn⇥k
⇤

akin to
Eq. (8), where k⇤ 2 N is determined via the network archi-
tecture. For efficient sampling, we assume the observation
model factorizes:

p✓(A|Z,X) =
nY

i=1

nY

j=1

p(i,j)
✓

(Aij |Z⇤). (10)

The distribution over the individual edges can be expressed
as a Bernoulli or Gaussian distribution for unweighted and
real-valued edges respectively. E.g., the edge probabilities
for an unweighted graph are given as sigmoid(Z⇤

Z
⇤T

).
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Table 1. Mean reconstruction errors and negative log-likelihood estimates (in nats) for autoencoders and variational autoencoders
respectively on test instances from six different generative families. Lower is better.

Erdos-Renyi Ego Regular Geometric Power Law Barabasi-Albert

GAE 221.79 ± 7.58 197.3 ± 1.99 198.5 ± 4.78 514.26 ± 41.58 519.44 ± 36.30 236.29 ± 15.13
Graphite-AE 195.56 ± 1.49 182.79 ± 1.45 191.41 ± 1.99 181.14 ± 4.48 201.22 ± 2.42 192.38 ± 1.61

VGAE 273.82 ± 0.07 273.76 ± 0.06 275.29 ± 0.08 274.09 ± 0.06 278.86 ± 0.12 274.4 ± 0.08
Graphite-VAE 270.22 ± 0.15 270.70 ± 0.32 266.54 ± 0.12 269.71 ± 0.08 263.92 ± 0.14 268.73 ± 0.09

3.1. Scalable learning & inference in Graphite

For representation learning of large graphs, we require the
encoding and decoding steps in Graphite to be computation-
ally efficient. On the surface, the decoding step involves
inner products of potentially dense matrices Z, which is an
O(n2k) operation. Here, k is the dimension of the per-node
latent vectors Zi used to define bA.

For any intermediate decoding step as in Eq. (8), we propose
to offset this expensive computation by using the associa-
tivity property of matrix multiplications for the message
passing step in Eq. (9). For notational brevity, consider the
simplified graph propagation rule for a GNN:

H
(l)  ⌘l

⇣
bAH

(l�1)
⌘

where bA is defined in Eq. (8).

Instead of directly taking an inner product of Z with it-
self, we note that the subsequent operation involves another
matrix multiplication and hence, we can perform right mul-
tiplication instead. If dl and dl�1 denote the size of the
layers H(l) and H

(l�1) respectively, then the time complex-
ity of propagation based on right multiplication is given by
O(nkdl�1 + ndl�1dl).

The above trick sidesteps the quadratic n2 complexity for
decoding in the intermediate layers without any loss in sta-
tistical accuracy. The final layer however still involves an
inner product with respect to Z

⇤ between potentially dense
matrices. However, since the edges are generated indepen-
dently, we can approximate the loss objective by performing
a Monte Carlo evaluation of the reconstructed adjacency
matrix parameters in Eq. (10). By adaptively choosing the
number of entries for Monte Carlo approximation, we can
trade-off statistical accuracy for computational budget.

4. Experimental Evaluation
We evaluate Graphite on tasks involving entire graphs,
nodes, and edges. We consider two variants of our pro-
posed framework: the Graphite-VAE, which corresponds to
a directed latent variable model as described in Section 3 and
Graphite-AE, which corresponds to an autoencoder trained

to minimize the error in reconstructing an input adjacency
matrix. For unweighted graphs (i.e., A 2 {0, 1}n⇥n), the
reconstruction terms in the objectives for both Graphite-
VAE and Graphite-AE minimize the negative cross entropy
between the input and reconstructed adjacency matrices. For
weighted graphs, we use the mean squared error. Additional
hyperparameter details are described in Appendix B.

4.1. Reconstruction & density estimation

In the first set of tasks, we evaluate learning in Graphite
based on held-out reconstruction losses and log-likelihoods
estimated by the learned Graphite-VAE and Graphite-AE
models respectively on a collection of graphs with varying
sizes. In direct contrast to modalities such as images, graphs
cannot be straightforwardly reduced to a fixed number of
vertices for input to a graph convolutional network. One
simplifying modification taken by Bojchevski et al. (2018)
is to consider only the largest connected component for
evaluating and optimizing the objective, which we appeal
to as well. Thus by setting the dimensions of Z⇤ to a maxi-
mum number of vertices, Graphite can be used for inference
tasks over entire graphs with potentially smaller sizes by
considering only the largest connected component.

We create datasets from six graph families with fixed,
known generative processes: the Erdos-Renyi, ego-nets,
random regular graphs, random geometric graphs, random
Power Law Tree and Barabasi-Albert. For each family, 300
graph instances were sampled with each instance having
10� 20 nodes and evenly split into train/validation/test in-
stances. As a benchmark comparison, we compare against
the Graph Autoencoder/Variational Graph Autoencoder
(GAE/VGAE) (Kipf & Welling, 2016). The GAE/VGAE
models consist of an encoding procedure similar to Graphite.
However, the decoder has no learnable parameters and re-
construction is done solely through an inner product opera-
tion (such as the one in Eq. (8)).

The mean reconstruction errors and the negative log-
likelihood results on a test set of instances are shown in
Table 1. Both Graphite-AE and Graphite-VAE outperform
AE and VGAE significantly on these tasks, indicating the
usefulness of learned decoders in Graphite.
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Table 2. Citation network statistics

Nodes Edges Node Features Labels

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

4.2. Link prediction

The task of link prediction is to predict whether an edge
exists between a pair of nodes (Loehlin, 1998). Even though
Graphite learns a distribution over graphs, it can be used for
predictive tasks within a single graph. In order to do so, we
learn a model for a random, connected training subgraph of
the true graph. For validation and testing, we add a balanced
set of positive and negative (false) edges to the original
graph and evaluate the model performance based on the
reconstruction probabilities assigned to the validation and
test edges (similar to denoising of the input graph). In our
experiments, we held out a set of 5% edges for validation,
10% edges for testing, and train all models on the remaining
subgraph. Additionally, the validation and testing sets also
each contain an equal number of non-edges.

Datasets. We compared across standard benchmark cita-
tion network datasets: Cora, Citeseer, and Pubmed with
papers as nodes and citations as edges (Sen et al., 2008).
The node-level features correspond to the text attributes in
the papers. The dataset statistics are summarized in Table 2.

Baselines and evaluation metrics. We evaluate perfor-
mance based on the Area Under the ROC Curve (AUC) and
Average Precision (AP) metrics. We evaluated Graphite-
VAE and Graphite-AE against the following baselines: Spec-
tral Clustering (SC) (Tang & Liu, 2011), DeepWalk (Per-
ozzi et al., 2014), node2vec (Grover & Leskovec, 2016),
and GAE/VGAE (Kipf & Welling, 2016). SC, DeepWalk,
and node2vec do not provide the ability to incorporate node
features while learning embeddings, and hence we evaluate
them only on the featureless datasets.

Results. The AUC and AP results (along with standard
errors) are shown in Table 3 and Table 4 respectively aver-
aged over 50 random train/validation/test splits. On both
metrics, Graphite-VAE gives the best performance overall.
Graphite-AE also gives good results, generally outperform-
ing its closest competitor GAE.

Qualitative evaluation. We visualize the embeddings
learned by Graphite and given by a 2D t-SNE projec-
tion (Maaten & Hinton, 2008) of the latent feature vectors
(given as rows for Z with � = 0.5) on the Cora dataset in
Figure 2. Even without any access to label information for

(a) Graphite-AE

(b) Graphite-VAE

Figure 2. t-SNE embeddings of the latent feature vectors for the
Cora dataset. Colors denote labels.

the nodes during training, the name models are able to clus-
ter the nodes (papers) as per their labels (paper categories).

4.3. Semi-supervised node classification

Given labels for a subset of nodes in an underlying graph,
the goal of this task is to predict the labels for the remaining
nodes. We consider a transductive setting, where we have
access to the test nodes (without their labels) during training.

Closest approach to Graphite for this task is a supervised
graph convolutional network (GCN) trained end-to-end. We
consider an extension of this baseline, wherein we augment
the GCN objective with the Graphite objective and a hy-
perparameter to control the relative importance of the two
terms in the combined objective. The parameters � for the
encoder are shared across these two objectives, with an
additional GCN layer for mapping the encoder output to
softmax probabilities over the requisite number of classes.
All parameters are learned jointly.



Graphite: Iterative Generative Modeling of Graphs

Table 3. Area Under the ROC Curve (AUC) for link prediction (* denotes dataset with features). Higher is better.

Cora Citeseer Pubmed Cora* Citeseer* Pubmed*

SC 89.9 ± 0.20 91.5 ± 0.17 94.9 ± 0.04 - - -
DeepWalk 85.0 ± 0.17 88.6 ± 0.15 91.5 ± 0.04 - - -
node2vec 85.6 ± 0.15 89.4 ± 0.14 91.9 ± 0.04 - - -

GAE 90.2 ± 0.16 92.0 ± 0.14 92.5 ± 0.06 93.9 ± 0.11 94.9 ± 0.13 96.8 ± 0.04
VGAE 90.1 ± 0.15 92.0 ± 0.17 92.3 ± 0.06 94.1 ± 0.11 96.7 ± 0.08 95.5 ± 0.13

Graphite-AE 91.0 ± 0.15 92.6 ± 0.16 94.5 ± 0.05 94.2 ± 0.13 96.2 ± 0.10 97.8 ± 0.03
Graphite-VAE 91.5 ± 0.15 93.5 ± 0.13 94.6 ± 0.04 94.7 ± 0.11 97.3 ± 0.06 97.4 ± 0.04

Table 4. Average Precision (AP) scores for link prediction (* denotes dataset with features). Higher is better.

Cora Citeseer Pubmed Cora* Citeseer* Pubmed*

SC 92.8 ± 0.12 94.4 ± 0.11 96.0 ± 0.03 - - -
DeepWalk 86.6 ± 0.17 90.3 ± 0.12 91.9 ± 0.05 - - -
node2vec 87.5 ± 0.14 91.3 ± 0.13 92.3 ± 0.05 - - -

GAE 92.4 ± 0.12 94.0 ± 0.12 94.3 ± 0.5 94.3 ± 0.12 94.8 ± 0.15 96.8 ± 0.04
VGAE 92.3 ± 0.12 94.2 ± 0.12 94.2 ± 0.04 94.6 ± 0.11 97.0 ± 0.08 95.5 ± 0.12

Graphite-AE 92.8 ± 0.13 94.1 ± 0.14 95.7 ± 0.06 94.5 ± 0.14 96.1 ± 0.12 97.7 ± 0.03
Graphite-VAE 93.2 ± 0.13 95.0 ± 0.10 96.0 ± 0.03 94.9 ± 0.13 97.4 ± 0.06 97.4 ± 0.04

Table 5. Classification accuracies (* denotes dataset with features).
Baseline numbers from Kipf & Welling (2017).

Cora* Citeseer* Pubmed*

SemiEmb 59.0 59.6 71.1
DeepWalk 67.2 43.2 65.3

ICA 75.1 69.1 73.9
Planetoid 75.7 64.7 77.2

GCN 81.5 70.3 79.0

Graphite 82.1 ± 0.06 71.0 ± 0.07 79.3 ± 0.03

Results. The classification accuracy of the semi-
supervised models is given in Table 5. We find that Graphite-
hybrid outperforms the competing models on all datasets
and in particular the GCN approach which is the closest
baseline. Recent work in Graph Attention Networks shows
that extending GCN by incoporating attention can boost
performance on this task (Veličković et al., 2018). Using
GATs in place of GCNs for parameterizing Graphite could
yield similar performance boost in future work.

5. Theoretical Analysis
In this section, we derive a theoretical connection between
message passing in graph neural networks and approximate
inference in related undirected graphical models.

5.1. Kernel embeddings

We first provide a brief background on kernel embeddings.
A kernel defines a notion of similarity between pairs of
objects (Schölkopf & Smola, 2002; Shawe-Taylor & Cris-
tianini, 2004). Let K : Z ⇥ Z ! R be the kernel function
defined over a space of objects, say Z . With every kernel
function K, we have an associated feature map  : Z ! H
where H is a potentially infinite dimensional feature space.

Kernel methods can be used to specify embeddings of dis-
tributions of arbitrary objects (Smola et al., 2007; Gretton
et al., 2007). Formally, we denote these functional map-
pings as T : P ! H where P specifies the space of all
distributions on Z . These mappings, referred to as kernel
embeddings of distributions, are defined as:

T (p) := EZ⇠p[ (Z)] (11)

for any p 2 P . We are particularly interested in kernels with
feature maps  that define injective embeddings, i.e., for any
pair of distributions p1 and p2, we have T (p1) 6= T (p2)
if p1 6= p2. For injective embeddings, we can compute
functionals of any distribution by directly applying a cor-
responding function on its embedding. Formally, for every
function O : P ! Rd, d 2 N and injective embedding T ,
there exists a function Õ : H! Rd such that:

O(p) = Õ (T (p)) 8p 2 P. (12)

Informally, we can see that the operator Õ can be defined
as the composition of O with the inverse of T .
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2 3

1

(a) Input graph with edge set E = {(1, 2), (1, 3)}.

X2 Z2 X3Z3

X1

Z1

A12

A23

A13

(b) Latent variable model G satisfying Property 1 with A12 6=
0,A23 = 0,A13 6= 0.

Figure 3. Interpreting message passing in Graph Neural Networks
via Kernel Embeddings and Mean-field inference

5.2. Connections with mean-field inference

Locality preference for representational learning is a key
inductive bias for graphs. We formulate this using an (undi-
rected) graphical model G over X, A, and {Z1, · · · ,Zn}.
As in a GNN, we assume that X and A are observed
and specify conditional independence structure in a con-
ditional distribution over the latent variables, denoted as
r(Z1, · · · ,Zn|A,X). We are particularly interested in mod-
els that satisfy the following property.

Property 1. The edge set E defined by the adjacency
matrix A is an undirected I-map for the distribution
r(Z1, · · · ,Zn|A,X).

In words, the above property implies that according to the
conditional distribution over Z, any individual Zi is inde-
pendent of all other Zj when conditioned on A, X, and the
neighboring latent variables of node i as determined by the
edge set E. See Figure 3 for an illustration.

A mean-field (MF) approximation for G approximates the
conditional distribution r(Z1, · · · ,Zn|A,X) as:

r(Z1, · · · ,Zn|A,X) ⇡
nY

i=1

q�i(Zi|A,X) (13)

where �i denotes the set of parameters for the i-th varia-
tional marginal. These parameters are optimized by mini-
mizing the KL-divergence between the variational and the
true conditional distributions:

min
�1,··· ,�n

KL

 
nY

i=1

q�i (Zi|A,X)kr(Z1, · · · ,Zn|A,X)

!

(14)

Using standard variational arguments (Wainwright et al.,
2008), we know that the optimal variational marginals as-
sume the following functional form:

q�i(Zi|A,X) = OMF

G
�
Zi, {q�j}j2N (i)

�
(15)

where N (i) denotes the neighbors of Zi in G and O is a
function determined by the fixed point equations that de-
pends on the potentials associated with G. Importantly, the
above functional form suggests that the optimal marginals
in mean field inference are locally consistent that they are
only a function of the neighboring marginals. An iterative
algorithm for mean-field inference is to perform message
passing over the underlying graph until convergence. With
an appropriate initialization at l = 0, the updated marginals
at iteration l 2 N are given as:

q(l)
�i
(Zi|A,X) = OMF

G

⇣
Zi, {q(l�1)

�j
}j2N (i)

⌘
. (16)

We will sidestep deriving O, and instead use the kernel
embeddings of the variational marginals to directly rea-
son in the embedding space. That is, we assume we have
an injective embedding for each marginal q�i given by
µi = EZi⇠q�i

[ (Zi)] for some feature map  : Rk ! Rk
0

and directly use the equivalence established in Eq. (12) it-
eratively. For mean-field inference via message passing as
in Eq. (16), this gives us the following recursive expression
for iteratively updating the embeddings at iteration l 2 N:

µ(l)
i

= ÕMF

 ,G

⇣
{µ(l�1)

j
}j2N (i)

⌘
(17)

with an appropriate base case for µ(0)
i

. We then have the
following result:

Theorem 2. Let G be any undirected latent variable model
such that the conditional distribution r(Z1, · · · ,Zn|A,X)
expressed by the model satisfies Property 1.

Then there exists a choice of ⌘l, Fl, Wl, and Bl such that
for all {µ(l�1)

i
}n
i=1, the GNN propagation rule in Eq. (2) is

computationally equivalent to updating {µ(l�1)
i

}n
i=1 via a

first order approximation of Eq. (17).

Proof. See Appendix A.

While ⌘l and Fl are typically fixed beforehand, the parame-
ters Wl, and Bl are directly learned from data in practice.
Hence we have shown that a GNN is a good model for
computation with respect to latent variable models that at-
tempt to capture inductive biases relevant to graphs, i.e.,
ones where the latent feature vector for every node is condi-
tionally independent from everything else given the feature
vectors of its neighbors (and A, X). Note that such a graphi-
cal model would satisfy Property 1 but is in general different
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from the posterior specified by the one in Figure 1. However
if the true (but unknown) posterior on the latent variables
for the model proposed in Figure 1 could be expressed as an
equivalent model satisfying the desired property, then Theo-
rem 2 indeed suggests the use of GNNs for parameterizing
variational posteriors, as we do so in the case of Graphite.

6. Discussion & Related Work
Our framework effectively marries probabilistic modeling
and representation learning on graphs. We review some of
the dominant prior works in these fields below.

Probabilistic modeling of graphs. The earliest proba-
bilistic models of graphs proposed to generate graphs by
creating an edge between any pair of nodes with a constant
probability (Erdös & Rényi, 1959). Several alternatives have
been proposed since; e.g., the small-world model generates
graphs that exhibit local clustering (Watts & Strogatz, 1998),
the Barabasi-Albert models preferential attachment wherein
high-degree nodes are likely to form edges with newly added
nodes (Barabasi & Albert, 1999), the stochastic block model
is based on inter and intra community linkages (Holland
et al., 1983) etc. We direct the interested reader to prominent
surveys on this topic (Newman, 2003; Mitzenmacher, 2004;
Chakrabarti & Faloutsos, 2006).

Representation learning on graphs. For representation
learning on graphs, there are broadly three kinds of ap-
proaches: matrix factorization, random walk based ap-
proaches, and graph neural networks. We include a brief
discussion on the first two kinds in Appendix C and refer
the reader to Hamilton et al. (2017b) for a recent survey.

Graph neural networks, a collective term for networks that
operate over graphs using message passing, have shown suc-
cess on several downstream applications, e.g., (Duvenaud
et al., 2015; Li et al., 2016; Kearnes et al., 2016; Kipf &
Welling, 2017; Hamilton et al., 2017a) and the references
therein. Gilmer et al. (2017) provides a comprehensive
characterization of these networks in the message passing
setup. We used Graph Convolution Networks, partly to pro-
vide a direct comparison with GAE/VGAE and leave the
exploration of other GNN variants for future work.

Latent variable models for graphs. Hierarchical
Bayesian models parameterized by deep neural networks
have been recently proposed for graphs (Hu et al., 2017;
Wang et al., 2017). Besides being restricted to single
graphs, these models are limited since inference requires
running expensive Markov chains (Hu et al., 2017) or are
task-specific (Wang et al., 2017). Johnson (2017) and
Kipf et al. (2018) generate graphs as latent representations
learned directly from data. In contrast, we are interested

in modeling observed (and not latent) relational structure.
Finally, there has been a fair share of recent work for
generation of special kinds of graphs, such as parsed trees
of source code (Maddison & Tarlow, 2014) and SMILES
representations for molecules (Olivecrona et al., 2017).

Several deep generative models for graphs have recently
been proposed. Amongst adversarial generation approaches,
Wang et al. (2018) and Bojchevski et al. (2018) model local
graph neighborhoods and random walks on graphs respec-
tively. Li et al. (2018) and You et al. (2018) model graphs
as sequences and generate graphs via autoregressive pro-
cedures. Adversarial and autoregressive approaches are
successful at generating graphs, but do not directly allow
for inferring latent variables via encoders. Latent variable
generative models have also been proposed for generating
small molecular graphs (Jin et al., 2018; Samanta et al.,
2018; Simonovsky & Komodakis, 2018). These methods
involve an expensive decoding procedure that limits scaling
to large graphs. Finally, closest to our framework is the
GAE/VGAE approach (Kipf & Welling, 2016) discussed
in Section 4. Pan et al. (2018) extends this approach with
an adversarial regularization framework but retain the inner
product decoder. Our work proposes a novel multi-step
decoding mechanism based on graph refinement.

7. Conclusion & Future Work
We proposed Graphite, a scalable deep generative model
for graphs based on variational autoencoding. The encoders
and decoders in Graphite are parameterized by graph neural
networks that propagate information locally on a graph. Our
proposed decoder performs a multi-layer iterative decod-
ing comprising of alternate inner product operations and
message passing on the intermediate graph.

Current generative models for graphs are not permutation-
invariant and are learned by feeding graphs with a fixed or
heuristic ordering of nodes. This is an exciting challenge for
future work, which could potentially be resolved by incor-
porate graph representations robust to permutation invari-
ances (Verma & Zhang, 2017) or modeling distributions over
permutations of node orderings via recent approaches such
as NeuralSort (Grover et al., 2019). Extending Graphite
for modeling richer graphical structure such as heteroge-
neous and time-varying graphs, as well as integrating do-
main knowledge within Graphite decoders for applications
in generative design and synthesis e.g., molecules, programs,
and parse trees is another interesting future direction.

Finally, our theoretical results in Section 5 suggest that a
principled design of layerwise propagation rules in graph
neural networks inspired by additional message passing
inference schemes (Dai et al., 2016; Gilmer et al., 2017) is
another avenue for future research.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
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