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Abstract

We define a unified information-based measure
to provide quantitative explanations on how inter-
mediate layers of deep Natural Language Proces-
sing (NLP) models leverage information of input
words. Our method advances existing explanation
methods by addressing issues in coherency and
generality. Explanations generated by using our
method are consistent and faithful across different
timestamps, layers, and models. We show how
our method can be applied to four widely used
models in NLP and explain their performances on
three real-world benchmark datasets.

1. Introduction
Deep neural networks have demonstrated significant impro-
vements over traditional approaches in many tasks (Socher
et al., 2012). Their high prediction accuracy stems from
their ability to learn discriminative feature representations.
However, in contrast to the high discrimination power, the
interpretability of DNNs has been considered an Achilles’
heel for decades. The black-box representation hampers
end-user trust (Ribeiro et al., 2016) and results in problems
such as the time-consuming trail-and-error optimization pro-
cess (Bengio et al., 2013; Liu et al., 2017), hindering further
development and application of deep learning.

Recently, quantitatively explaining intermediate layers of a
DNN has attracted increasing attention, especially in com-
puter vision (Bau et al., 2017; Zhang et al., 2018a;d; 2019).
A key task in this direction is to associate latent represen-
tations with the interpretable input units (e.g., image pixels
or words) by measuring the contribution or saliency of the
inputs. Existing methods can be grouped into three major
categories: gradient-based (Li et al., 2015; Fong & Vedal-

*Equal contribution 1John Hopcroft Center and the MoE Key
Lab of Artificial Intelligence, AI Institute, at the Shanghai Jiao
Tong University, Shanghai, China 2Microsoft Research Asia, Bei-
jing, China 3Peking University, Beijing, China. Correspondence
to: Quanshi Zhang <zqs1022@sjtu.edu.cn>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(a) Gradient-based method (b) Ours

Figure 1. Illustration of coherency: (a) The gradient-based method
highlights the third layer only because the parameters of this layer
have larger absolute values; (b) Our method shows how the network
gradually processes input words through layers.

Methods Coherency GeneralityNeuron Layer Model
Gradient-based × × ×
Inversion-based × × ×

LRP × × × ×
Ours

Table 1. Comparison of different methods in terms of coherency
and generality. Our unified information-based measure can be defi-
ned with minimum assumptions (generality) and provides coherent
results across neurons (timestamps in NLP), layers, and models.

di, 2017; Sundararajan et al., 2017), inversion-based (Du
et al., 2018), and methods that utilize layer-wise relevance
propagation (LRP) (Arras et al., 2016). These methods have
demonstrated that quantitative explanations for intermediate
layers can enrich our understanding about the inner working
mechanism of a model, such as, the roles of neurons.

The major issue of aforementioned methods is that their
measures of saliency are usually defined based on heuri-
stic assumptions. This leads to problems with respect to
coherency and generality (Table 1):

Coherency requires that a method generates consistent ex-
planations across different neurons, layers, and models. Exis-
ting measures usually fail to meet this criterion because of
their biased assumptions. For example, gradient-based me-
thods assume that saliency can be measured by absolute
values of derivatives. Fig. 1(a) shows gradient-based expla-
nations. Each line in this figure represents a layer. According
to this figure, the input words contribute most to the third
layer (darkest color in L3). However, the third layer stands
out only because the absolute values of their parameters
are large. A desirable measure should quantify word contri-
butions without bias and reveal how the network structure
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gradually processes inputs through layers (Fig. 1(b)).

Generality refers to the problem that existing measures
are usually de�ned under certain restrictions on model
architectures or tasks. For example, gradient-based methods
can only be de�ned for models whose neural activations are
differentiable or smooth (Ding et al., 2017). Inversion-based
methods are typical methods for explaining vision models
and assume that the feature maps can be inverted to a recon-
structed image by using functions such as upsampling (Du
et al., 2018). This limits their application in NLP models.

In this paper, we aim to provide quantitative explanations
based on a measure that satis�es coherency and generality.
Coherencycorresponds to the notion ofequitability, which
requires that the measure quanti�es associations between
inputs and latent representations without bias with respect to
relationships of a speci�c form. Recently, (Kinney & Atwal,
2014) have mathematically formalized equitability and pro-
ven that mutual information satis�es this criterion. Moreo-
ver, as a fundamental quantity in information theory, mutual
information can be mathematically de�ned without much
restrictions on model architectures or tasks (generality). Ba-
sed on these observations, we explain intermediate layers
based on mutual information. Speci�cally, this study aims
to answer the following research questions:

RQ1. How does one use mutual information to quantitative-
ly explain intermediate layers of DNNs?

RQ2. Can we leverage measures based on information as
a tool to analyze and compare existing explanation
methods theoretically?

RQ3. How can the information-based measure enrich our
capability of explaining DNNs and provide insights?

By examining these issues, we move towards a deep (aware
of intermediate layers) and uni�ed (coherent) understanding
of neural models. We use models in NLP as guiding examp-
les to show the effectiveness of information-based measures.
In particular, we make the following contributions.

First, wede�ne a uni�ed information-based measure to
quantify how much information of an input word is encoded
in an intermediate layer of a deep NLP model (RQ1)1. We
show that our measure advances existing measures in terms
of coherency and generality. This measure can be ef�ciently
estimated by perturbation-based approximation and can be
used for �ne-grained analysis on word attributes.

Second, weshow how the information-based measure
can be used as a tool for comparing different explanati-
on methods(RQ2). We demonstrate that our method can
be regarded as a combination of maximum entropy optimi-
zation and maximum likelihood estimation.

Third, wedemonstrate how the information-based mea-

1Codes available at https://aka.ms/nlp/explainability

sure enriches the capability of explaining DNNsby con-
ducting experiments in one synthetic and three real-world
benchmark datasets (RQ3). We explain four widely used
models in NLP, including BERT (Devlin et al., 2018), Trans-
former (Vaswani et al., 2017), LSTM (Hochreiter & Schmid-
huber, 1997), and CNN (Kim, 2014).

2. Related Works

Our work is related to various methods for explaining deep
neural networks and learning interpretable features.

Explaining deep vision models.Many approaches have be-
en proposed to diagnose deep models in computer vision.
Most of them focus on understanding CNNs. Among all
methods, the visualization of �lters in a CNN is the most
intuitive way for exploring appearance patterns inside the
�lters (Simonyan et al., 2013; Zeiler & Fergus, 2014; Ma-
hendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016; Olah
et al., 2017). Besides network visualization, methods are
developed to show image regions that are responsible for
prediction. (Bau et al., 2017) use spatial masks on images
to determine the related image regions. (Kindermans et al.,
2017) extract the related pixels by adding noises to input
images. (Fong & Vedaldi, 2017; Selvaraju et al., 2017) com-
pute gradients of the output with respect to the input image.

Other methods (Zhang et al., 2018b;a; 2017; Vaughan et al.,
2018; Sabour et al., 2017) learn interpretable representa-
tions for neural networks. Adversarial diagnosis of neural
networks (Koh & Liang, 2017) investigates network repre-
sentation �aws using adversarial samples of a CNN. (Zhang
et al., 2018c) discovers representation �aws in neural net-
works caused by potential bias in data collection.

Explaining neural models in NLP. Model-agnostic me-
thods that explain a black-box model by probing into its
input and/or output layers can be used for explaining any
model, including neural models in NLP (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Koh & Liang, 2017; Peake & Wang,
2018; Tenney et al., 2019). These methods are successful in
helping understand the overall behavior of a model. Howe-
ver, they fail to explain the inner working mechanism of a
model as the informative intermediate layers are ignored (Du
et al., 2018). For example, they cannot explain the role of
each layer or how information �ows through the network.

Recently, explaining the inner mechanism of deep NLP mo-
dels has started to attract attention. Pioneer works on this
direction can be divided into two categories. The �rst ca-
tegory learns an interpretable structure (e.g., Finite State
Automaton) from RNN and use the interpretable structure
as an explanation (Hou & Zhou, 2018). Works in the se-
cond category visualize neural networks to help understand
their meaning composition. These works either leverage di-
mension reduction methods such as t-SNE to plot the latent

https://aka.ms/nlp/explainability
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representation (Li et al., 2015) or compute the contribution
of a word to predictions or hidden states by using �rst-
derivative saliency (Li et al., 2015) or layer-wise relevance
propagation (LRP) (Arras et al., 2016; Ding et al., 2017).

Compared with the aforementioned methods, our uni�ed
information-based method can provide consistent and in-
terpretable results across different timestamps, layers, and
models (coherency), can be de�ned with minimum assump-
tions (generality), and is able to analyze word attributes.

3. Methods

In this section, we �rst introduce the objective of interpre-
ting deep NLP neural networks. Then, we de�ne the word
information in hidden states and analyze �ne-grained attri-
bute information within each word.

3.1. Problem Introduction

A deep NLP neural network can be represented as a function
f (x) of the input sentencex. LetX denote a set of input sen-
tences. Each sentence is given as a concatenation of the vec-
torized embedding of each wordx = [ xT

1 ; xT
2 ; : : : ; xT

n ]T 2
X , wherex i 2 RK denotes the embedding of thei -th word.

Suppose the neural networkf containsL intermediate
layers. f can be constructed by layers of RNNs, self-
attention layers like that in Transformer, or other types of
layers. Given an input sentencex, the output of each inter-
mediate layer is a series of hidden states. The goal of our
research is to explain hidden states of intermediate layers by
quantifying the information of the wordx i that is contained
by the hidden states. More speci�cally, we explain hidden
states from the following two perspectives.

� Word information quanti�cation: Quantifying con-
tributions of individual input units is a fundamental
task in explainable AI (Ding et al., 2017). Givenx i

and a hidden states = �( x), where�( �) denotes the
function of the corresponding intermediate layer, we
quantify the amount of information inx i that is enco-
ded ins. The measure of word information provides
the foundation for explaining intermediate layers.

� Fine-grained analysis of word attributes:We analy-
ze the �ne-grained reason why a neural network uses
the information of a word. More speci�cally, when
the neural network pays attention to a wordx i (e.g.,
tragic), we disentangle the information representing its
attributes (e.g.,negative adjectiveor emotional adjecti-
ve) away from the speci�c information of the word.

3.2. Word Information Quanti�cation

In this section, we quantify the information of wordx i

that is encoded in the hidden states of the intermediate

layers. To this end, we �rst de�ne information at the coarsest
level (i.e. corpus-level), and then gradually decompose the
information to �ne-grained levels (i.e. sentence-level and
word-level). Next, we show how the information can be
ef�ciently estimated via perturbation-based approximation.

3.2.1. MULTI -LEVEL QUANTIFICATION

Corpus-level.We provide a global explanation of the in-
termediate layer considering the entire sentence space. Let
random variableS denotes a hidden state, the information
of X encoded byS can be measured by

MI (X ; S) = H (X ) � H (X jS); (1)

whereMI (�; �) represents the mutual information,H (�) re-
presents the entropy.H (X ) is a constant, andH (X jS) de-
notes the amount of information that is discarded by the
hidden states. We can calculateH (X jS) by decomposing it
into the sentence level:

H (X jS) =
R

s2 S p(s)H (X js)ds: (2)

Sentence-level.Let x ands = �( x) denote the input sen-
tence and its corresponding hidden state of an intermediate
layer. The information thats discards can be measured as
the conditional entropy of input sentences givens:

H (X js) = �
Z

x 02 X
p(x0js) log p(x0js)dx0: (3)

H (X js = �( x)) re�ects how much information from
sentencex is discarded bys during the forward propagation.
The entropyH (X js) reaches the minimum value if and only
if p(x0j�( x)) � p(x j�( x)) , 8x0 6= x. This indicates that
�( x0) 6= �( x), 8x0 6= x, which means that all information
of x is leveraged. If only a small fraction of information
of x is leveraged, then we expectp(x0js) to be more evenly
distributed, resulting in a larger entropyH (X js).

Word-level. To further disentangle information components
of individual words from the sentence, we follow the
assumption of independence between input words, which
has been widely used in studies of disentangling linear
word attributions (Ribeiro et al., 2016; Lundberg & Lee,
2017). In this case, we haveH (X js) =

P
i H (X i js) and

H (X i js) = �
Z

x 0
i 2 X i

p(x0
i js) log p(x0

i js)dx0
i ; (4)

whereX i is the random variable of thei -th input word.

Comparisons with word attribution/importance: The
quanti�cation of word information is different from previous
studies of estimating word importance/attribution with re-
spect to the prediction output (Ribeiro et al., 2016; Lundberg
& Lee, 2017). Our research aims to quantify the amount
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of information of a word that is used to compute hidden
states in intermediate layers. In contrast, previous studies
estimate a word's numerical contribution to the �nal output
without considering how much information in the word is
used by the network. Generally speaking, from the perspecti-
ve of word importance/attribution estimation (Ribeiro et al.,
2016; Lundberg & Lee, 2017), our word information can be
regarded as the con�dence of the use of each input word.

3.2.2. PERTURBATION-BASED APPROXIMATION

Approximating H (X i js) by perturbation: The core of
calculatingH (X i js) is to estimatep(x i js) in Eq. (4). Ho-
wever, the relationship betweenx i ands is very complex
(modeled by the deep neural network) , which makes calcu-
lating the distribution ofX i directly froms intractable.

Therefore, in this subsection, we propose a perturbation-
based method to approximateH (X i js). Let ~x i = x i + � i
denote an input with a certain noise� i . We assume that the
noise term is a random variable that follows a Gaussian dis-
tribution, � i 2 RK and� i � N (0; � i = � 2

i I ). In order to
approximateH (X i js), we �rst learn an optimal distribution
of � = [ � T

1 ; � T
2 ; :::; � T

n ]T with respect to the hidden states
with the following loss.

L (� ) = E� k�( ~x ) � sk2 � �
nX

i =1

H ( ~X i js)j � i �N ( 0 ;� 2
i I ) ; (5)

where� > 0 is a hyper-parameter,� = [ � 1; :::; � n ], and
~x = x + � . The �rst term on the left corresponds to the
maximum likelihood estimation (MLE) of the distribution
of ~x i that maximizes

P
i

P
~x i

logp(~x i js), if we considerP
i logp(~x i js) / �k �( ~x) � sk2. In other words, the �rst

term learns a distribution that generates all potential inputs
corresponding to the hidden states. The second term on
the right encourages a high conditional entropyH ( ~X i js),
which corresponds to the maximum entropy principle. In
other words, the noise� needs to enumerate all perturbation
directions to reach the representation limit ofs. Generally
speaking,� depicts the range that the inputs can change to
obtain the hidden states. Large� means that a large amount
of input information has been discarded. We provide an
intuitive example to illustrate this in the supplement.

Since we use the MLE loss as constraints to approximate the
conditional distribution ofx i givens, we can useH ( ~X i js)
to approximateH (X i js). In this way, we have

p(~x i js) = p(� i ) ) H ( ~X i js) =
K
2

log(2�e ) + K log � i

(6)
Therefore, the objective can be rewritten as the minimization
of the following loss.

L (� ) =
nX

i =1

(� log � i ) +
1

K�
E~x i :� i �N ( 0 ;� 2

i I )
k�( ~x ) � sk2

� 2
S

: (7)

Here,� 2
S denotes the variance ofS for normalization, which

can be computed using sampling.

Relationship with the existing perturbation method:
Our perturbation method is similar to the one in (Du et al.,
2018). While our method enumerates all possible perturbing
directions in the embedding space to learn an optimal noise
distribution, (Du et al., 2018) perturb inputs towards one
heuristically designed direction that may not be optimal.

3.3. Fine-Grained Analysis of Word Attributes

In this subsection, we analyze the �ne-grained attribute
information inside each input word that is used by the inter-
mediate layers of the neural network.

Given a wordx i (e.g.,tragic) in sentencex, we assume
that each of its attribute corresponds to a conceptc (e.g.,
negative adjectiveor emotional adjective). Here, conceptc
(e.g.,emotional adjective) is represented by the set of words
belonging to this concept (e.g.,f happy, sorrowful, sad, ...g).
The concepts can be mined by using knowledge bases such
as DBpedia (Lehmann et al., 2015) and Microsoft Concept
Graph (Wu et al., 2012; Wang et al., 2015).

When the neural network uses a wordx i , we disentangle
the information of a common conceptc away from all the
information of the target word. The major idea is to calculate
the relative con�dence ofs encoding certain words with
respect to random words:

A i = log p(x i js) � Ex 0
i 2 X i logp(x0

i js) (8)

Ac = Ex 0
i 2 X c logp(x0

i js) � Ex 0
i 2 X i logp(x0

i js): (9)

Here,X c is the word embeddings corresponding toc and
Ex 0

i 2 X i logp(x0
i js) indicates the baseline log-likelihood of

all random words. We useA i (or Ac ) to approximate
the relative con�dence ofs encodingx i (or words inc)
with respect to random words. The intuition is that larger
logp(x0

i js) corresponds to larger con�dence thats encodes
the information inx0

i .

Based on Eqs. (8)(9), we user i;c = A i � Ac to investigate
the remaining information of the wordx i when we remove
the information of the common attributec from the word.

4. Comparative Study

In this study, we compare our methods with three baselines
in terms of their explanation capability. In particular, we
study whether the methods can give faithful and coherent ex-
planations when used for comparing differenttimestamps
(Sec. 4.1),layers (Sec. 4.2), andmodels(Sec. 4.3). Results
indicate that our method gives the most faithful explanati-
ons and may be used as a guidance for selecting models or
tuning model parameters. Thebaselineswe use include:

� Perturbation (Fong & Vedaldi, 2017) is a method for
explaining computer vision models. We migrate this
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Figure 2.Saliency maps at differenttimestampscompared with three baselines. The model we analyze learns to reverse sequences. Our
method shows a clear “reverse” pattern. Perturbation and gradient methods also reveal this pattern, although not as clear as ours.

Figure 3.Saliency maps of differentlayerscomparing with three baselines. Our method shows how information decreases through layers.

Figure 4.Saliency maps formodelswith different hyperparame-
ters. Here,� refers to the weight of the regularization term.

method directly to NLP by treating the input sentence
x as an image.

� LRP (Bach et al., 2015) is a method that can measure
the relevance score of any two neurons. Following
(Ding et al., 2017), we visualize the absolute values of
the relevance scores between a certain hidden state and
input word embeddings.

� Gradient (Li et al., 2015) is a method that uses the ab-
solute value of �rst-derivative to represent the saliency
of each input words. We use the average saliency value
of all dimensions of word embedding to represent the
its word-level saliency value.

The baselines are the most representative methods in each
category. Other more advanced methods (Sundararajan et al.,
2017) share similar issues with the selected baselines and
their results are presented in the supplement.

4.1. Across Timestamp Analysis

In this experiment, we compare our methods with the base-
lines in terms of their ability in giving faithful and coherent
explanations across timestamps in the last hidden layer.

Model. We train a two-layer LSTM model (with attention)

that learns to reverse sequences. The model is trained by
using a synthetic dataset that contains only four words:a,
b, c, andd. The input sentences are generated by randomly
sampling tokens and the output sentence is computed by
reversing the input sentence. The test accuracy is 81.21%.

Result.Fig. 2 shows saliency maps computed by different
explanation methods. Each line in the map represents a ti-
mestamp and each column represents an input word. For our
method, we visualize� i calculated by optimizing Eq. (7).
The saliency maps show how the hidden state in the last hid-
den layer changes as different words are fed into the network.
For example, the line shown in Fig. 2A means that after the
3rd wordb is fed into the decoder (t=3), the hidden state
of the last hidden layer mainly encodes �ve input words:a,
b, c from the encoder andc, b from the decoder. Note that
all words before< EOS> are inputs to the encoder and all
words after the second< SOS> are inputs to the decoder.

As shown in the �gure, our method shows a very clear “re-
verse” pattern, which means that the last hidden layer mainly
encodes two parts of information. The �rst part contains in-
formation about the last words fed into the decoder (e.g.c, b
in Fig. 2A). Used as a query in the attention layer, this part
is used to retrieve the second part of information, which are
related input words in the encoder (e.g.,a, b, c in Fig. 2A).
By comparing the two parts, the model obtains information
about the next output word (e.g.,a). The gradient method
and the perturbation method also reveal this pattern, alt-
hough their patterns are not as clear as ours. Compared with
others, LRP fails to display a clear pattern.

4.2. Across Layer Analysis

In this subsection, we compare our method and the baselines
in terms of their ability in providing faithful and coherent
explanations across different layers. For each layer, we con-


