
Curriculum Learning in Deep Networks

Supplementary Material

A. Additional Empirical Results
CL with other CIFAR-100 super-classes. In Section 3
we present results when learning to discriminate the “small
mammals” super-class of CIFAR-100. Similar results can be
obtained for other super-classes of CIFAR-100. Each super-
class contains 3000 images, divided into 5 related classes
of CIFAR-100. Each class contains 600 images divided
into 500 train images and 100 test images. Specifically, we
tested our method on the super-classes of “people”, “insects”
and “aquatic mammals” and found that CL trained on these
different super-classes shows the same qualitative results.
We note once again that CL is more effective in the harder
tasks, namely, the super-classes containing classes that are
harder to discriminate (measured by lower vanilla accuracy).
As an example, Fig. 8 shows results using the “aquatic
mammals” super-class, which greatly resembles the results
we’ve seen when discriminating the “small mammals” super-
class (cf. Fig.7).

Figure 8. Results under the same conditions as in Fig. 7, using
instead the “aquatic mammals” CIFAR-100 super-class. Error bars
show STE after 50 iterations.

Transfer based scoring function. In the experiments de-
scribed in Section 3, when using the transfer scoring func-
tion defined in Section 2.3, we use the pre-trained In-
ception network available from https://github.com/Hvass-
Labs/TensorFlow-Tutorials. We normalized the data sim-
ilarly to the normalization done for the neural network,
resized it to 299 × 299, and ran it through the Inception
network. We then used the penultimate layer’s activations
as features for each training image, resulting in 2048 fea-
tures per image. Using these features, we trained a Radial
Basis Kernel (RBF) SVM (Scholkopf et al., 1997) and used
its confidence score to determine the difficulty of each im-
age. The confidence score of the SVM was provided by
sklearn.svm.libsvm.predict proba from Python’s Sklearn li-
brary and is based on cross-validation.

Choosing Inception as the teacher and RBF SVM as the
classifier was a reasonable arbitrary choice – the same qual-

itative results are obtained when using other large networks
trained on ImageNet as teachers, and other classifiers to
establish a confidence score. Specifically, we repeated the
experiments with a transfer scoring function based on the
pre-trained VGG-16 and ResNet networks, which are also
trained on Imagenet. The curriculum method using the trans-
fer scoring function and fixed exponential pacing function
are shown in Fig. 9a, demonstrating the same qualitative
results. Similarly, we used a linear SVM instead of the RBF
kernel SVM with similar results, as shown in Fig. 9b. We
note that the STE error bars are relatively large for the con-
trol conditions described above because we only repeated
these conditions 5 times each, instead of 50 as in the main
experiments.

(a) Three competitive networks trained on Imagenet.

(b) Two different classifiers.

Figure 9. Results in case 1. Comparing different variants of the
transfer scoring function. The inset bars show the final accuracy
of the learning curves. The error bars shows STE after 50 repe-
titions for the vanilla and Inception conditions with RBF kernel
SVM, and 5 repetitions for the ResNet, VGG-16 and the Linear
SVM conditions. (a) Comparing different teacher networks. (b)
Comparing different classifiers for the hardness score.

Varied exponential pacing. We define Varied exponen-
tial pacing similarly to fixed exponential pacing, only allow-
ing to change the step length for each step. Theoretically,
this method results in additional hyper-parameters equal to
the number of performed steps. In practice, to avoid an
unfeasible need to tune too many hyper-parameters, we vary
only the first two step length instances and fix the rest. This
is reasonable as most of the power of the curriculum lies in
the first few steps. Formally, Varied exponential pacing is



Curriculum Learning in Deep Networks

given by:

gϑ(i) =min
(
starting percent · increasez(i), 1

)
·N

z(i) =

#steps∑
k=1

1[i>step lengthk]

where starting percent and increase are the same as fixed
exponential pacing, while step length may vary in each
step. The total number of steps can be calculated from
starting percent and increase:

#step = d− logincrease(starting percent)e

This pacing function allows us to run a CL procedure with-
out the need for further tuning of learning rate. The ad-
ditional parameters added by this method control directly
the number of epochs the network trains on each dataset
size. If tuned correctly, this allows the pacing function to
mitigate most of the indirect effect on the learning rate, as
it can choose fewer epochs for data sizes which has a large
effective learning rate.

Once again we evaluate case 1, fixing the learning rate
parameters to be the same as in the vanilla test condition,
while tuning the remaining hyper-parameters as described
in Section 2.3 using a grid search with cross-validation.
We see improvement in the accuracy throughout the entire
learning session, although smaller than the one observed
with fixed exponential pacing. However, decreasing the
learning rate of the vanilla by a small fraction and then
tuning the curriculum parameters achieves results which
are very similar to the fixed exponential pacing, suggesting
that this method can almost completely nullify the indirect
manipulation of the learning rate in the fixed exponential
pacing function. These results are shown in Fig. 10.

Figure 10. Comparing fixed exponential pacing to varied expo-
nential pacing in case 1, with Inception-based transfer scoring
function. Inset: bars indicating the average final accuracy in each
condition over the last few iterations. Error bars indicate the STE
after 50 repetitions.

Figure 11. Results in case 1, when using the AUC as the grid-
search optimization criteria. Bars showing final accuracy in percent
for all test conditions. Error bars indicate STE after 50 repetitions.

Figure 12. Self-taught learning vs. self-paced learning. Results
are in case 1 with the Inception-based transfer scoring function.
Inset: bars indicating the average final accuracy in each condition,
over the last few iterations. Error bars indicate the STE after 50
repetitions

B. Extended Discussion
Self-taught bootstrapping In principle, the self-taught
scoring function can be used repeatedly to boost the perfor-
mance of the network indefinitely: after training the network
using a curriculum, we can use its confidence score to de-
fine a new scoring function and retrain the network from
scratch. However, scoring functions created by repeating
this procedure tend to accumulate errors: once an example
is misclassified as being easy, this example will be shown
more often in subsequent iterations, making it more likely
to be considered easy. In practice, we did not observe any
benefit to repeated bootstrapping, and even observed an
impairment after a large number of repetitions.

Fair comparison in parameter tuning

When using the moderate size hand-crafted network (cases
1, 2, 3 and 6), learning rate tuning is done for the vanilla case
as well. In these cases, for the curriculum, anti-curriculum
and random test conditions, we perform a coarse grid search
for the pacing hyper-parameters as well as the learning rate
hyper-parameters, with an identical range of values for all
conditions. For the vanilla condition, there are no pacing



Curriculum Learning in Deep Networks

hyper-parameters. Therefore, we expand and refine the
range of learning rate hyper-parameters in the grid search,
such that the total number of parameter combinations for
each condition is approximately the same.

When using a public domain competitive network (case 4),
the published learning rate scheduling is used. Therefore we
employ the varied exponential pacing function without addi-
tional learning rate tuning and perform a coarse grid search
on the pacing hyper-parameters. To ensure a fair compari-
son, we repeat the experiment with the vanilla condition the
same number of times as in the total number of experiments
done during grid search, choosing the best results. The exact
range of values that are used for each parameter is given
below in Suppl C. All prototypical results were confirmed
with cross-validation, showing similar qualitative behavior
as when using the coarse grid search.

Learning Rate Tuning

To control for the possibility that the results we report
are an artifact of the way the learning rate is being sched-
uled, which is indeed the method in common use, we test
other learning rate scheduling methods, and specifically
the method proposed by Smith (2017) which dynamically
changes the learning rate, increasing and decreasing it pe-
riodically in a cyclic manner. We have implemented and
tested this method using cases 2 and 3. The final results of
both the vanilla and curriculum conditions have improved,
suggesting that this method is superior to the naı̈ve expo-
nential decrease with grid search. Still, the main qualitative
advantage of the CL algorithm holds now as well - CL im-
proves the training accuracy during all stages of learning.
As before, the improvement is more significant when the
training dataset is harder. Results for case 3 (CIFAR-100)
are shown in Fig. 13.

Figure 13. Results under conditions similar to test case 3 as shown
in 3, using cyclic scheduling for the learning rate as proposed by
Smith (2017).

C. Methodology, additional details
Exponential Pacing Throughout this work, we use pac-
ing functions that increase the data size each step exponen-
tially. This is done in line with the customary change of
learning rate in an exponential manner.

Architecture Details The moderate-size neural network
we used for cases 1,2,3,6, is a convolutional neural network,
containing 8 convolutional layers with 32, 32, 64, 64, 128,
128, 256, 256 filters respectively. The first 6 layers have
filters of size 3× 3, and the last 2 layers have filters of size
2×2. Every second layer there is a 2×2 max-pooling layer
and a 0.25 dropout layer. After the convolutional layers,
the units are flattened, and there is a fully-connected layer
with 512 units followed by 0.5 dropout layer. The batch size
was 100. The output layer is a fully connected layer with
output units matching the number of classes in the dataset,
followed by a softmax layer. We trained the network using
the SGD optimizer, with cross-entropy loss. All the code
will be published upon acceptance.

Grid-search hyper-parameters When using grid search,
identical ranges of values are used for the curriculum, anti-
curriculum and random test conditions. Since vanilla con-
tains fewer parameters to tune – as it has no pacing pa-
rameters – we used a finer and broader search range. The
range of parameters was similar between different scoring
functions and pacing functions and was determined by the
architecture and dataset. The range of parameters for case
1: (i) initial learning rate: 0.1 ∼ 0.01; (ii) learning rate
exponential decrease 2 ∼ 1.1; (iii) learning rate step size
200 ∼ 800; (iv) step size 20 ∼ 400, for both varied and
fixed; (v) increase 1.1 ∼ 3; (vi) starting percent 4% ∼ 15%
(note that 4% is in the size of a single mini-batch). For cases
2, 3 the ranges is wider since the dataset is larger: (i) initial
learning rate: 0.2 ∼ 0.05; (ii) learning rate exponential de-
crease 2 ∼ 1.1; (iii) learning rate step size 200 ∼ 800; (iv)
step size 100 ∼ 2000, for both varied and fixed; (v) increase
1.1 ∼ 3; (vi) starting percent 0.4% ∼ 15%. For cases 4,
5, the learning rate parameters are left as publicly deter-
mined, while the initial learning rate has been decreased
by 10% from 0.1 to 0.09. The pacing parameter ranges
are: (i) step size 50 ∼ 2500, for both varied and fixed; (ii)
increase 1.1 ∼ 2; (iii) starting percent 2% ∼ 20%. For
case 6: (i) initial learning rate: 0.2 ∼ 0.01; (ii) learning rate
exponential decrease 3 ∼ 1.05; (iii) learning rate step size
300 ∼ 5000; (iv) step size 50 ∼ 400; (v) increase 1.9; (vi)
starting percent 2% ∼ 15%.

ImageNet Dataset Details In case 6, we used a subset of
the ImageNet dataset ILSVRC 2012. We used 7 classes of
cats, which obtained by picking all the hyponyms of the cat
synset that appeared in the dataset. The 7 cat classes were:



Curriculum Learning in Deep Networks

’Egyptian cat’, ’Persian cat’, ’cougar, puma, catamount,
mountain lion, painter, panther, Felis concolor’, ’tiger cat’,
’Siamese cat, Siamese’, ’tabby, tabby cat’, ’lynx, catamount’.
All images were resized to size 56 × 56 for faster perfor-
mance. All classes contained 1300 train images and 50 test
images. The dataset mean was normalized to 0 mean and
STD 1 for each channel separately.

Robustness Of Results The learning curves are shown in
Fig. 7 were obtained by searching for the parameters that
maximize the final accuracy. This procedure only takes into
account a few data points, which makes it less robust. In
Fig. 11 we plot the bars of the final accuracy of the learn-
ing curves obtained by searching for the parameters that
maximize the Area Under the Learning Curve. AUC is pos-
itively correlated with high final performance while being
more robust. Comparing the different conditions using this
maximization criterion gives similar qualitative results - the
performance in all the curriculum conditions is still signifi-
cantly higher than the control conditions. However, now the
curriculum based on the Inception-based scoring function
with fixed exponential pacing achieves performance that is
significantly higher than the other curriculum methods, in
evidence that it is more robust.

Theoretical Section Proof for proposition 2:

Proof Claim 1 follows directly from (5), while for claim 2:

Up(ϑ̃)− Up(ϑ) = Up(ϑ̃)− U(ϑ)− ˆCov[Uϑ, p]

≥ Up(ϑ̃)− U(ϑ)− ˆCov[Uϑ̃, p] = U(ϑ̃)− U(ϑ)


