
Complexity of Linear Regions in Deep Networks

A. Formal Statement of Results for General
Piecewise Linear Activations

In §5, we stated our results in the case of ReLU activation,
and now frame these results for a general piecewise linear
non-linearity. We fix some notation. Let φ : R → R be
a continuous piecewise linear function with T breakpoints
ξ0 = −∞ < ξ1 < ξ2 < · · · < ξT < ξT+1 = ∞. That is,
there exist pj , qj ∈ R so that

t ∈ [ξj , ξj+1] ⇒ φ(t) = qjt+ pj , qj 6= qj+1. (11)

The analog of Theorem 3 for general φ is the following.

Theorem 6. Let φ : R → R be a continuous piecewise
linear function with T breakpoints ξ1 < · · · < ξT as in
(11). Suppose N is a fully connected network with input
dimension nin, output dimension 1, random weights and
biases satisfying A1 and A2 above, and non-linearity φ.

Let Jz1,...,zk be the k × nin Jacobian of the map x 7→
(z1(x), . . . , zk(x)),

‖Jz1,...,zk(x)‖ := det
(
Jz1,...,zk(x) (Jz1,...,zk(x))

T
)1/2

,

and write ρbz1 ,...,bzk for the density of the joint distribution
of the biases bz1 , . . . , bzk . We say a neuron z is good at x
if there exists a path of neurons from z to the output in the
computational graph of N so that each neuron ẑ along this
path is open at x (i.e. φ′(ẑ(x)− bẑ) 6= 0).

Then, for any bounded, measurable set K ⊆ Rnin and any
k = 1, . . . , nin, the average (nin − k)–dimensional volume

E [volnin−k(BN ,k ∩K)]

of BN ,k inside K is, in the notation of (6),

∑
distinct neurons
z1,...,zk in N

T∑
i1,...,ik=1

∫
K

E
[
Y

(ξi1 ,...,ξik )
z1,...,zk (x)

]
dx, (12)

where Y
(ξi1 ,...,ξik )
z1,...,zk (x) equals

‖Jz1,...,zk(x)‖ ρbz1 ,...,bzk (z1(x)− ξi1 , . . . , zk(x)− ξik)
(13)

multiplied by the indicator function of the event that zj is
good at x for every j.

Note that if in the definition (11) of φ we have that the pos-
sible values φ′(t) ∈ {q0, . . . , qT } do not include 0, then we
may ignore the event that zj are good at x in the definition

of Y
(ξi1 ,...,ξik )
z1,...,zk .

Corollary 7. With the notation and assumptions of Theo-
rem 6, suppose in addition that the weights and biases are
independent. Fix k ∈ {1, . . . , nin} and suppose that for

every collection of distinct neurons z1, . . . , zk, the average
magnitude of the product of gradients is uniformly bounded:

sup
neurons z1,...,zk

inputs x

E

 k∏
j=1

‖∇zj(x)‖

 ≤ Ckgrad. (14)

Then we have the following upper bounds

E [volnin−k(BN ,k ∩K)]

volnin
(K)

(15)

≤
(

#{neurons}
k

)
(T · 2CgradCbias)

k,

where T is the number of breakpoints in the non-linearity φ
of N (see (11)) and

Cbias = sup
z

sup
b∈R

ρbz (b).

We prove Corollary 7 in §D and state a final corollary of
Theorem 3:

Corollary 8. SupposeN is as in Theorem 3 and satisfies the
hypothesis (14) in Corollary 7 with constants Cbias, Cgrad.
Then, for any compact set K ⊂ Rnin let x be a uniform
point in K. There exists c > 0 independent of K so that

E [distance(x,BN )] ≥ c T

CbiasCgrad#{neurons}
,

where, as before, T is the number of breakpoints in the
non-linearity φ of N .

We prove Corollary 8 in §E. The basic idea is simple. For
every ε > 0, we have

E [distance(x,BN )] ≥ εP (distance(x,BN ) > ε) ,

with the probability on the right hand side scaling like

1− volnin
(Tε(BN ) ∩K)

/
volnin

(K),

where Tε(BN ) is the tube of radius ε around BN . We ex-
pect that its volume like ε volnin−1(BN ). Taking ε =
c/#{neurons} yields the conclusion of Corollary 8.

B. Outline of Proof of Theorem 6
The purpose of this section is to give an intuitive explanation
of the proof of Theorem 3. We fix a non-linearity φ : R→ R
with breakpoints ξ1 < · · · < ξT (as in (11)) and consider a
fully connected network N with input dimension nin ≥ 1,
output dimension 1, and non-linearity φ. For each neuron z
in N , we write

`(z) := layer index of z (16)
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and set

Sz := {x ∈ Rnin | z(x)− bz ∈ {ξ1, . . . , ξT }}. (17)

We further
S̃z := Sz ∩ O, (18)

where

O :=

{
x ∈ Rnin

∣∣∣∣ ∀ j=1,...,d ∃ neuron z with
`(z)=j s.t. φ′(z(x)−bz)6=0

}
.

Intuitively, the set Sz is the collection of inputs for which
the neuron z turns from on to off. In contrast, the set O is
the collection of inputs x ∈ Rnin for which N is open in
the sense that there is a path from the input to the output
of N so that all neurons along this path compute are not
constant in a neighborhood x. Thus, S̃z is the set of inputs
at which neuron z switches between its linear regions and
at which the output of neuron z actually affects the function
computed by N .

We remark here thatO = ∅ if in the non-linearity φ there are
no linear pieces at which the slopes on φ equals 0 (i.e. qj 6= 0
for all j in the definition (11) of φ). If, for example, φ is
ReLU, then O need not be empty.

The overall proof of Theorem 3 can be divided into several
steps. The first gives the following representation of BN .
Proposition 9. Under Assumptions A1 and A2 of Theorem
3, we have, with probability 1,

BN =
⋃

neurons z

S̃z.

The precise proof of Proposition 9 can be found in §C.1
below. The basic idea is that if for all y near a fixed
input x ∈ Rnin , none of the pre-activations z(y) − bz
cross the boundary of a linear region for φ, then x 6∈ BN .
Thus, BN ⊂

⋃
z Sz. Moreover, if a neuron z satisfies

z(x) − bz = Si for some i but there are no open paths
from z to the output of N for inputs near x, then z is
dead at x and hence does not influence N at x. Thus, we
expect the more refined inclusion BN ⊂

⋃
z S̃z . Finally, if

x ∈ S̃z for some z then x ∈ BN unless the contribution
from other neurons to ∇N (y) for y near x exactly cancels
the discontinuity in∇z(x). This happens with probability 0.

The next step in proving Theorem 3 is to identify the por-
tions of BN of each dimension. To do this, we write for any
distinct neurons z1, . . . , zk,

S̃z1,...,zk :=

k⋂
j=1

S̃zj .

The set S̃z1,...,zk is, intuitively, the collection of inputs at
which zj(x)−bzj switches between linear regions for φ and

at which the output of N is affected by the post-activations
of these neurons. Proposition 9 shows that we may represent
BN as a disjoint union

BN =

nin⋃
k=1

BN ,k,

where

BN ,k :=
⋃

distinct neurons
z1,...,zk

S̃z1,...,zk ∩

 ⋃
z 6=z1,...,zk

S̃z

c

.

In words, BN ,k is the collection of inputs in O at which ex-
actly k neurons turn from on to off. The following Proposi-
tion shows that BN ,k is precisely the “(nin−k)-dimensional
piece of BN ” (see (5)).

Proposition 10. Fix k = 1, . . . , nin, and k distinct neurons
z1, . . . , zk in N . Then, with probability 1, for every x ∈
BN ,k there exists a neighborhood in which BN ,k coincides
with a (nin − k)−dimensional hyperplane.

We prove Proposition 10 in §C.2. The idea is that each
S̃z1,...,zk is piecewise linear and, with probability 1, at
every point at which exactly the neurons z1, . . . , zk con-
tribute to BN , its co-dimension is the number of linear
conditions needed to define it. Observe that with prob-
ability 1, the bias vector (bz1 , . . . , bzk+1

) for any collec-
tion z1, . . . , zk+1 of distinct neurons is a regular value for
x 7→ (z1(x), . . . , zk+1(x)). Hence,

volnin−k

(
S̃z1,...,zk+1

)
= 0.

Proposition 10 thus implies that, with probability 1,

volnin−k (BN ,k) =
∑

distinct neurons
z1,...,zk

volnin−k

(
S̃z1,...,zk

)
.

The final step in the proof of Theorem 3 is therefore to prove
the following result.

Proposition 11. Let z1, . . . , zk be distinct neurons in N .
Then, for any bounded, measurable K ⊂ Rnin ,

E
[
volnin−k

(
S̃z1,...,zk

)]
=

∫
K

T∑
i1,...,ik=1

E
[
Y

(Si1 ,...,Sik )
z1,...,zk (x)

]
dx,

where Y
(Si1 ,...,Sik )
z1,...,zk is defined as in (13).

We provide a detailed proof of Proposition 11 in §C.3. The
intuition is that the image of the volume element dx under
x 7→ z(x)− Si is the volume element

‖Jz1,...,zk(x)‖ dx



Complexity of Linear Regions in Deep Networks

from (13). The probability of an infinitesimal neighborhood
dx of x belonging to a (nin − k)-dimensional piece of BN
is therefore the probability

ρbz1 ,...,bzk (z1(x)− Si1 , . . . , zk(x)− Sik)

× ‖Jz1,...,zk(x)‖ dx

that the vector of biases (bzj , j = 1, . . . , k) belongs to
the image of dx under map

(
zj(x)− Sij , j = 1, . . . , k

)
for

some collection of breakpoints Sij . The formal argument
uses the co-area formula (see (29) and (30)).

C. Proof of Theorem 3
C.1. Proof of Proposition 9

Recall that the non-linearity φ : R→ R is continuous and
piecewise linear with T breakpoints ξ1 < · · · < ξT , so that,
with ξ0 = −∞, ξT+1 =∞, we have

t ∈ (ξi, ξi+1) ⇒ φ(t) = qit+ pi

with qi 6= qi+1. For each x ∈ Rnin , write

Z+
x :=

{
z
∣∣ z(x)− bz ∈ (ξi, ξi+1) and qi 6= 0 for some i

}
Z−x :=

{
z
∣∣ z(x)− bz ∈ (ξi, ξi+1) and qi = 0 for some i

}
Z0
x :=

{
z
∣∣ z(x)− bz = ξi for some i

}
Intuitively, Z+

x are the neurons that, at the input x are open
(i.e. contribute to the gradient of the output N (x)) but do
not change their contribution in a neighborhood of x, Z−x
are the neurons that are closed, and Z0

x are the neurons that,
at x, produce a discontinuity in the derivative of N . Thus,
for example, if φ = ReLU, then

Z∗x := {z | sgn(z(x)− bz) = ∗}, ∗ ∈ {+,−, 0}.

We begin by proving that BN ⊆
⋃
z S̃z by checking the

contrapositive (⋃
z

S̃z

)c
⊆ BcN . (19)

Fix x ∈
(⋃

z S̃z

)c
. Note that Z±x are locally constant

in the sense that there exists ε > 0 so that for all y with
‖y − x‖ < ε, we have

Z−x ⊆ Z−y , Z+
x ⊆ Z+

y , Z+
y ∪ Z0

y ⊆ Z+
x ∪ Z0

x. (20)

Moreover, observe that if in the definition (11) of φ none of
the slopes qi equal 0, then Z−y = ∅ for every y. To prove
(19), consider any path γ from the input to the output in the
computational graph of N . Such a path consists of d + 1
neurons, one in each layer:

γ =
(
z(0)
γ , . . . , z(d)

γ

)
, `(z(j)

γ ) = j.

To each path we may associate a sequence of weights:

w(j)
γ := weight connecting z(j−1)

γ to z(j)
γ , j = 1, . . . , d.

We will also define

q(j)
γ (x) :=

T∑
i=0

qi1{z(x)γ −b
z
(j)
γ
∈(ξi,ξi+1]}.

For instance, if φ = ReLU, then

q(j)
γ (x) = 1{z(j)γ (x)−bz≥0},

and in general only one term in the definition of q(j)
γ (x) is

non-zero for each z. We may write

N (y) =

nin∑
i=1

yi
∑

paths γ:i→out

d∏
j=1

q(j)
γ (y)w(j)

γ + constant,

(21)
Note that if x ∈

(⋃
z S̃z

)c
, then for any path γ through a

neuron z ∈ Z0
x, we have

∃ j s.t. z(j)
γ ∈ Z−x .

This is an open condition in light of (20), and hence for all y
in a neighborhood of x and for any path γ through a neuron
z ∈ Z0

x we also have that

∃ j s.t. z(j)
γ ∈ Z−y .

Thus, since the summand in (21) vanishes identically if
γ ∩ Z−y 6= ∅, we find that for y in a neighborhood of any

x ∈
(⋃

z S̃z

)c
we may write

N (y) =

nin∑
i=1

yi
∑

paths γ:i→out
γ⊂Z+

x

d∏
j=1

q(j)
γ (y)w(j)

γ + constant.

(22)
But, again by (20), for any fixed x, all y in a neighborhood
of x and each z ∈ Z+

x , we have z ∈ Z+
y as well. Thus, in

particular,

z(x)− bz ∈ (ξi, ξi+1) ⇒ z(y)− bz ∈ (ξi, ξi+1).

Thus, for y sufficiently close to x, we have for every path in
the sum (22) that

q(j)
γ (y) = q(j)

γ (x).

Therefore, the partial derivatives (∂N/∂yi)(y) are indepen-
dent of y in a neighborhood of x and hence continuous at x.
This proves (19). Let us now prove the reverse inclusion:⋃

z

S̃z ⊆ BN (23)
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Note that, with probability 1, we have

volnin−1
(Sz1 ∩ Sz2) = 0

for any pair of distinct neurons z1, z2. Note also that since
x 7→ N (x) is continuous and piecewise linear, the set BN
is closed. Thus, it is enough to show the slightly weaker
inclusion ⋃

z

S̃z∖ ⋃
ẑ 6=z

Sẑ

 ⊆ BN (24)

since the closure of S̃z
∖⋃

ẑ 6=z Sẑ equals S̃z. Fix a neuron z

and suppose x ∈ S̃z
∖⋃

ẑ 6=z Sẑ . By definition, we have that
for every neuron ẑ 6= z, either

ẑ ∈ Z+
x or ẑ ∈ Z−x .

This has two consequences. First, by (20), the map y 7→
z(y) is linear in a neighborhood of x. Second, in a neighbor-
hood of x, the set S̃z coincides with Sz . Hence, combining
these facts, near x the set S̃z coincides with the hyperplane

{x | z(x)− bz = ξi}, for some i. (25)

We may take two sequences of inputs y+
n , y

−
n on opposite

sides of this hyperplane so that

lim
n→∞

y+
n = lim

n→∞
y−n = x

and

φ′(z(y+
n )− bz) = qi, φ′(z(y+

n )− bz) = qi−1, ∀n,

where the index i the same as the one that defines the hyper-
plane (25). Further, since BN has co-dimension 1 (it is con-
tained in the piecewise linear co-dimension 1 set

⋃
z Sz , for

example), we may also assume that y+
n , y

−
n 6∈ BN . Consider

any path γ from the input to the output of the computational
graph of N passing through z (so that z = z

(j)
γ ∈ γ). By

construction, for every n, we have

q(j)
γ (y+

n ) 6= q(j)
γ (y−n ),

and hence, after passing to a subsequence, we may assume
that the symmetric difference

Z+

y+n
∆Z+

y−n
6= ∅ (26)

of the paths that contribute to the representation (21) for
y+
n , y

−
n is fixed and non-empty (the latter since it always

contains z). For any y 6∈ BN , we may write, for each
i = 1, . . . , nin

∂N
∂yi

(y) =
∑

paths γ:i→out
γ⊂Z+

y

d∏
j=1

q(j)
γ (y)w(j)

γ . (27)

Substituting into this expression y = y±n , we find that there
exists a non-empty collection Γ of paths from the input to
the output of N so that

∂N
∂yi

(y+
n )− ∂N

∂yi
(y−n ) =

∑
γ∈Γ

aj

d∏
j=1

c(j)γ w(j)
γ

where

aj ∈ {−1, 1}, c(j)γ ∈ {q0, . . . , qT }.

Note that the expression above is a polynomial in the
weights of N . Note also that, by construction, this polyno-
mial is not identically zero due to the condition (26). There
are only finitely many such polynomials since both aj and
c
(j)
γ range over a finite alphabet. For each such non-zero

polynomial, the set of weights at which it vanishes has
co-dimension 1. Hence, with probability 1, the difference
∂N
∂yi

(y+
n ) − ∂N

∂yi
(y−n ) is non-zero. This shows that the par-

tial derivatives ∂N
∂yi

are not continuous at x and hence that
x ∈ BN . �

C.2. Proof of Proposition 10

Fix distinct neurons z1, . . . , zk and suppose x ∈ S̃z1,...,zk
but not in S̃z for any z 6= z1, . . . , zk. After relabeling, we
may assume that they are ordered by layer index:

`(z1) ≤ · · · ≤ `(zk).

Since x ∈ O, we also have that x 6∈ Sz for any z 6=
z1, . . . , zk. Thus, there exists a neighborhood U of x so
Sz ∩ U = ∅ for every z 6= z1, . . . , zk. Thus, there exists a
neighborhood of x on which y 7→ z1(y) is linear.

Hence, as explained near (25) above, S̃z1 is a hyperplane
near x. We now restrict our inputs to this hyperplane and
repeat this reasoning to see that, near x, the set S̃z1,z2 is
a hyperplane inside S̃z1 and hence, near x, is the inter-
section of two hyperplanes in Rnin . Continuing in this
way shows that in a neighborhood of x, the set S̃z1,...,zk
is equal to the intersection of k hyperplanes in Rnin . Thus,

S̃z1,...,zk\
(⋃

z 6=z1,...,zk S̃z

)c
is precisely the intersection of

k hyperplanes in a neighborhood of each of its points. �

C.3. Proof of Proposition 11

Let z1, . . . , zk be distinct neurons in N , and fix a com-
pact set K ⊂ Rnin . We seek to compute the mean of
volnin−k

(
S̃z1,...,zk ∩K

)
, which we may rewrite as∫

Sz1,...,zk∩K
1{zj is good at x

j=1,...,k

} dvolnin−k(x) (28)

=

T∑
i1,...,ik=1

∫
S

(ξi1
,...,ξik

)

z1,...,zk
∩K

1{zj is good at x
j=1,...,k

}dvolnin−k(x),
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where we’ve set

S
(ξi1 ,...,ξik )
z1,...,zk = {x | zj(x)− bzj = ξij , j = 1, . . . , k}.

Note that the map x 7→ (z1(x), . . . , zk(x)) is Lipschitz, and
recall the co-area formula, which says that if ψ ∈ L1(Rn)
and g : Rn → Rm with m ≤ n is Lipschitz, then∫

Rm

∫
g−1(t)

ψ(x) dvoln−m(x)dt (29)

equals ∫
Rn
ψ(x) ‖Jg(x)‖ dvoln(x), (30)

where Jg is the m× n Jacobian of g and

‖Jg(x)‖ = det
(
(Jg(x))(Jg(x))T

)1/2
.

We assumed that the biases bz1 , . . . , bzj have a joint condi-
tional density

ρbz = ρbz1 ,...,bzk

given all other weights and biases. The mean of the term
in (28) corresponding to a fixed ξ = (ξi1 , . . . , ξik) over the
conditional distribution of bz1 , . . . , bzj is therefore∫

Rk
dbρbz(b)

∫
{z−b=ξ}∩K

1{zj is good at x
j=1,...,k

} dvolnin−k(x),

where we’ve abbreviated b = (b1, . . . , bk) as well as
z(x) = (z1(x), . . . , zk(x)). This can rewritten as∫
Rk
db

∫
{z=b}∩K

ρbz(z(x)−ξ)1{zj is good at x
j=1,...,k

}dvoln0−k(x).

Thus, applying the co-area formula (29), (30) shows that
the average of (28) over the conditional distribution of
bz1 , . . . , bzj is precisely∫

K

Yz1,...,zk(x) dx.

Taking the average over the remaining weighs and biases,
we may commute the expectation E [·] with the dx integral
since the integrand is non-negative. This completes the
proof of Proposition 11. �

D. Proof of Corollary 7
We begin by proving the upper bound in (15). By Theorem
3, E [vol (BN ,k ∩K)] equals

∑
distinct neurons z1,...,zk

T∑
i1,...,ik=1

∫
K

E
[
Y

(ξi1 ,...,ξik )
z1,...,zk (x)

]
(x)dx,

where, as in (13), Y
(ξi1 ,...,ξik )
z1,...,zk (x) is

‖Jz1,...,zk(x)‖ ρbz1 ,...,bzk (z1(x)− ξi1 , . . . , zk(z)− ξik)

times the indicator function of the even that zj is good
at x for every j. When the weights and biases of N are
independent, we may write ρbz1 ,...,bzk (b1, . . . , bk) as

k∏
j=1

ρbzj (bj) ≤
(

sup
neurons z

sup
b∈R

ρbz (b)

)k
= Ckbias.

Hence,

Yz1,...,zk(x) ≤ Ckbias

(
det
(
Jz1,...,zk(x) (Jz1,...,zk(x))

T
))1/2

.

Note that

Jz1,...,zk(x) (Jz1,...,zk(x))
T

= Gram (∇z1(x), . . . ,∇zk(x)) ,

where for any vi ∈ Rn

Gram(v1, . . . , vk)i,j = 〈vi, vj〉

is the associated Gram matrix. The Gram identity says that

det
(
Jz1,...,zk(x) (Jz1,...,zk(x))

T
)1/2

equals

‖∇z1(x) ∧ · · · ∧ ∇zk(x)‖ ,

which is the the k-dimensional volume of the parallelopiped
in Rnin spanned by {∇zj(x), j = 1, . . . , k}. We thus have

det
(
Jz1,...,zk(x) (Jz1,...,zk(x))

T
)1/2

≤
k∏
j=1

‖∇zj(x)‖ .

The estimate (14) proves the upper bound (15). For the
special case of φ = ReLU we use the AM-GM inequality
and Jensen’s inequality to write

E

 k∏
j=1

‖∇zj(x)‖

 ≤ E


1

k

k∑
j=1

‖∇zj(x)‖

k


≤ 1

k

k∑
j=1

E
[
‖∇zj‖k

]
.

Therefore, by Theorem 1 of Hanin & Nica (2018), there
exist C1, C2 > 0 so that

E

 k∏
j=1

‖∇zj(x)‖

 ≤ (C1e
C2

∑d
j=1

1
nj

)k
.

This completes the proof of the upper bound in (15). To
prove the power bound, lower bound in (15) we must argue
in a different way. Namely, we will induct on k and use the
following facts to prove the base case k = 1:
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1. At initialization, for each fixed input x, the random
variables {1{z(x)>bz}} are independent Bernoulli ran-
dom variables with parameter 1/2. This fact is proved
in Proposition 2 of Hanin & Nica (2018). In particular,
the event {z is good at x}, which occurs when there
exists a layer j ∈ `(z) + 1, . . . , d in which z(x) ≤ bz
for every neuron, is independent of {z(x), bz} and
satisfies

P (z is good at x) ≥ 1−
d∑
j=1

2−nj . (31)

2. At initialization, for each fixed input x, we have

1

2
E
[
z(x)2

]
=
‖x‖2

nin
+

`(z)∑
j=1

σ2
bj , (32)

where σ2
bj

:= Var[biases at layer j]. This is Equation
(11) in the proof of Theorem 5 from Hanin & Rolnick
(2018).

3. At initialization, for every neuron z and each input x,
we have

E
[
‖∇z(x)‖2

]
= 2. (33)

This follows easily from Theorem 1 of Hanin (2018).

4. At initialization, for each 1 ≤ j ≤ nin and every
x ∈ Rnin

E

[
log

(
nin

(
∂z

∂xj
(x)

)2
)]

= − 5

2

`(z)∑
j=1

1

nj
(34)

plus O
(∑`(z)

j=1
1
n2
j

)
, where nj is the width of the jth

hidden layer and the implied constant depends only on
the 4th moment of the measure µ according to which
weights are distributed. This estimate follows immedi-
ately by combining Corollary 26 and Proposition 28 in
Hanin & Nica (2018).

We begin by proving the lower bound in (15) when k = 1.
We use (31) to see that E [volnin−1 (BN ∩K)] is bounded
below by(

1−
d∑
j=1

2−nj
) ∑

neurons z

∫
K

E [‖∇z(x)‖ ρbz (z(x))] dx.

Next, we bound the integrand. Fix x ∈ Rnin and a
parameter η > 0 to be chosen later. The integrand
E [‖∇z(x)‖ ρbz (z(x))] is bounded below by

E
[
‖∇z(x)‖ ρbz (z(x))1{|z(x)|}≤η

]
≥
[

inf
|b|≤η

ρbz (b)

]
E
[
‖∇z(x)‖1{|z(x)|≤η}

]
,

which is bounded below by[
inf
|b|≤η

ρbz (b)

] [
E [‖∇z(x)‖]− E

[
‖∇z(x)‖1{|z(x)|}>η

]]
.

Using Cauchy-Schwarz, the term E
[
‖∇z(x)‖1{|z(x)|}>η

]
is bounded above by(

E [‖∇z(x)‖]2 P (|z(x)| > η)
)1/2

,

which using (33) and (32) together with Markov’s inequality,
is bounded above by

2

η1/2

‖x‖2
nin

+

`(z)∑
j=1

σ2
bj

1/2

.

Next, using Jensen’s inequality twice, we write

logE [‖∇z(x)‖] ≥ 1

2
E
[
log
(
‖∇z(x)‖2

)]
=

1

2
E

log

 nin∑
j=1

(
∂z

∂xj
(x)

)2


≥ 1

2
E

[
log

(
n

1/2
in

∂z

∂xj
(x)

)2
]

= − 5

4

`(z)∑
j=1

1

nj
+O

`(z)∑
j=1

1

n2
j

 ,

where in the last inequality we applied (34). Putting this all
together, we find that exists c > 0 so that

E [‖∇z(x)‖ ρbz (z(x))] ≥ c

[
inf
|b|≤η

ρbz (b)

]
,

where

η ≥ 4

‖x‖2
nin

+

d∑
j=1

σ2
bj

 e
5
4

∑d
j=1

1
nj

+O

(∑`(z)
j=1

1

n2
j

)
.

In particular, we may take

η =

 supx∈K ‖x‖
2

nin
+

d∑
j=1

σ2
bj

 e
C
∑d
j=1

1
nj

for C sufficiently large. This completes the proof of the
lower bound in (15) when k = 1. To complete the proof
of Corollary 7, suppose we have proved the lower bound in
(15) for all ReLU networks N and all collections of k − 1
distinct neurons. We may assume after relabeling that the
neurons z1, . . . , zk are ordered by layer index:

`(z1) ≤ · · · ≤ `(zk).
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With probability 1, the set Sz1 ⊂ Rnin is piecewise linear,
co-dimension 1 with finitely many pieces, which we denote
by Pα. We may therefore rewrite volnin−k

(
S̃z1,...,zk ∩K

)
as ∑

α

volnin−k

(
S̃z2,...,zk ∩ Pα ∩K

)
.

We now define a new neural network Nα, obtained by
restricting N to Pα. The input dimension for Nα equals
nin − 1, and the weights and biases of Nα satisfy all the as-
sumptions of Corollary 7. We can now apply our inductive
hypothesis to the k− 1 neurons z2, . . . , zk inNα and to the
set K ∩ Pα. This gives

E

[∑
α

volnin−k

(
S̃z2,...,zk ∩ Pα ∩K

)]

≥
(

inf
z

inf
|b|≤η

ρbz (b)

)k−1

E [volnin−1 (Pα ∩K)] .

Summing this lower bound over α yields

E
[
volnin−k

(
S̃z1,...,zk ∩K

)]
≥
(

inf
z

inf
|b|≤η

ρbz (b)

)k−1

E
[
volnin−1

(
S̃z1 ∩K

)]
.

Applying the inductive hypothesis once more completes the
proof. �

E. Proof of Corollary 8
We will need the following observation.

Lemma 12. Fix a positive integer n ≥ 1, and let S ⊆
Rn be a compact continuous piecewise linear submanifold
with finitely many pieces. Define S0 = ∅ and let Sk be
the union of the interiors of all k-dimensional pieces of
S\(S0 ∪ · · · ∪ Sk−1). Denote by Tε(X) the ε−tubular
neighborhood of any X ⊂ Rn. We have

voln (Tε(S)) ≤
n∑
k=0

ωn−kε
n−k volk (Sk) ,

where ωd := volume of ball of radius 1 in Rd.

Proof. Define d to be the maximal dimension of the linear
pieces in S. Let x ∈ Tε(S). Suppose x 6∈ Tε(Sk) for all
k = 0, . . . , d− 1. Then the intersection of the ball of radius
ε around s with S is a ball inside Sd ∼= U ⊂ Rd. Using the
convexity of this ball, there exists a point y in Sd so that
the vector x− y is parallel to the normal vector to Sd at y.
Hence, x belong to the normal ε-ball bundle Bε(N∗(Sd))
(i.e. the union of the fiber-wise ε-balls in the normal bundle
to Sd). Therefore, we have

voln (Tε(S)) ≤ voln(Bε(N
∗(Sd))) + voln (Tε(S≤d−1)) ,

where we abbreviated S≤d−1 :=
⋃d−1
k=0 Sk. Using that

voln(Bε(N
∗(Sd))) = vold(Sd) voln−d(Bε(Rn−d))

= vold(Sd)ε
n−dωn−d

and repeating this argument d−1 times completes the proof.

We are now ready to prove Corollary 2. Let x ∈ K =
[0, 1]nin be uniformly chosen. Then, for any ε > 0, using
Markov’s inequality and Lemma 12, we have

E [distance(x,BN )]

≥ εP (distance(x,BN ) > ε)

= ε (1− P (distance(x,BN ) ≤ ε))
= ε (1− E [volnin (Tε (BN ))])

≥ ε

(
1−

nin∑
k=1

ωnin−kε
nin−kE

[
volnin−k(BN ,k)

])

≥ ε

(
1−

nin∑
k=1

(CgradCbiasε#{neurons})k
)

≥ ε (1− C ′CgradCbiasε#{neurons})

for some C ′ > 0. Taking ε to be a small constant times
1/(Cgrad#{neurons}) completes the proof. �
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