A. Formal Statement of Results for General Piecewise Linear Activations

In $\$ 5$, we stated our results in the case of ReLU activation, and now frame these results for a general piecewise linear non-linearity. We fix some notation. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous piecewise linear function with T breakpoints $\xi_{0}=-\infty<\xi_{1}<\xi_{2}<\cdots<\xi_{T}<\xi_{T+1}=\infty$. That is, there exist $p_{j}, q_{j} \in \mathbb{R}$ so that

$$
\begin{equation*}
t \in\left[\xi_{j}, \xi_{j+1}\right] \quad \Rightarrow \quad \phi(t)=q_{j} t+p_{j}, q_{j} \neq q_{j+1} \tag{11}
\end{equation*}
$$

The analog of Theorem 3 for general ϕ is the following.
Theorem 6. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous piecewise linear function with T breakpoints $\xi_{1}<\cdots<\xi_{T}$ as in (11). Suppose \mathcal{N} is a fully connected network with input dimension $n_{\text {in }}$, output dimension 1 , random weights and biases satisfying A1 and A2 above, and non-linearity ϕ.

Let $J_{z_{1}, \ldots, z_{k}}$ be the $k \times n_{\text {in }}$ Jacobian of the map $x \mapsto$ $\left(z_{1}(x), \ldots, z_{k}(x)\right)$,

$$
\left\|J_{z_{1}, \ldots, z_{k}}(x)\right\|:=\operatorname{det}\left(J_{z_{1}, \ldots, z_{k}}(x)\left(J_{z_{1}, \ldots, z_{k}}(x)\right)^{T}\right)^{1 / 2}
$$

and write $\rho_{b_{z_{1}}, \ldots, b_{z_{k}}}$ for the density of the joint distribution of the biases $b_{z_{1}}, \ldots, b_{z_{k}}$. We say a neuron z is good at x if there exists a path of neurons from z to the output in the computational graph of \mathcal{N} so that each neuron \widehat{z} along this path is open at x (i.e. $\left.\phi^{\prime}\left(\widehat{z}(x)-b_{\widehat{z}}\right) \neq 0\right)$.

Then, for any bounded, measurable set $K \subseteq \mathbb{R}^{n_{\text {in }}}$ and any $k=1, \ldots, n_{\mathrm{in}}$, the average $\left(n_{\mathrm{in}}-k\right)$-dimensional volume

$$
\mathbb{E}\left[\operatorname{vol}_{n_{\mathrm{in}}-k}\left(\mathcal{B}_{\mathcal{N}, k} \cap K\right)\right]
$$

of $\mathcal{B}_{\mathcal{N}, k}$ inside K is, in the notation of (6),

$$
\begin{equation*}
\sum_{\substack{\text { distinct neurons } \\ z_{1}, \ldots, z_{k} \text { in } \mathcal{N}}} \sum_{i_{1}, \ldots, i_{k}=1}^{T} \int_{K} \mathbb{E}\left[Y_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)}(x)\right] d x \tag{12}
\end{equation*}
$$

where $Y_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)}(x)$ equals

$$
\begin{equation*}
\left\|J_{z_{1}, \ldots, z_{k}}(x)\right\| \rho_{b_{z_{1}}, \ldots, b_{z_{k}}}\left(z_{1}(x)-\xi_{i_{1}}, \ldots, z_{k}(x)-\xi_{i_{k}}\right) \tag{13}
\end{equation*}
$$

multiplied by the indicator function of the event that z_{j} is good at x for every j.

Note that if in the definition (11) of ϕ we have that the possible values $\phi^{\prime}(t) \in\left\{q_{0}, \ldots, q_{T}\right\}$ do not include 0 , then we may ignore the event that z_{j} are good at x in the definition of $Y_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)}$.
Corollary 7. With the notation and assumptions of Theorem 6. suppose in addition that the weights and biases are independent. Fix $k \in\left\{1, \ldots, n_{\mathrm{in}}\right\}$ and suppose that for
every collection of distinct neurons z_{1}, \ldots, z_{k}, the average magnitude of the product of gradients is uniformly bounded:

$$
\begin{equation*}
\sup _{\substack{\text { neurons } z_{1}, \ldots, z_{k} \\ \text { inputs } x}} \mathbb{E}\left[\prod_{j=1}^{k}\left\|\nabla z_{j}(x)\right\|\right] \leq C_{\text {grad }}^{k} \tag{14}
\end{equation*}
$$

Then we have the following upper bounds

$$
\begin{align*}
& \frac{\mathbb{E}\left[\operatorname{vol}_{n_{\text {in }}-k}\left(\mathcal{B}_{\mathcal{N}, k} \cap K\right)\right]}{\operatorname{vol}_{n_{\text {in }}}(K)} \tag{15}\\
& \quad \leq\binom{ \#\{\text { neurons }\}}{k}\left(T \cdot 2 C_{\text {grad }} C_{\text {bias }}\right)^{k},
\end{align*}
$$

where T is the number of breakpoints in the non-linearity ϕ of \mathcal{N} (see 11) and

$$
C_{\mathrm{bias}}=\sup _{z} \sup _{b \in \mathbb{R}} \rho_{b_{z}}(b)
$$

We prove Corollary 7 in $\S D$ and state a final corollary of Theorem 3 .

Corollary 8. Suppose \mathcal{N} is as in Theorem 3 and satisfies the hypothesis 14p in Corollary 7 with constants $C_{\text {bias }}, C_{\text {grad }}$. Then, for any compact set $K \subset \mathbb{R}^{n_{\text {in }}}$ let x be a uniform point in K. There exists $c>0$ independent of K so that

$$
\mathbb{E}\left[\text { distance }\left(\mathrm{x}, \mathcal{B}_{\mathcal{N}}\right)\right] \geq \frac{c T}{C_{\text {bias }} C_{\text {grad }} \#\{\text { neurons }\}}
$$

where, as before, T is the number of breakpoints in the non-linearity ϕ of \mathcal{N}.

We prove Corollary 8 in $\S \mathbb{E}$. The basic idea is simple. For every $\epsilon>0$, we have

$$
\mathbb{E}\left[\operatorname{distance}\left(\mathrm{x}, \mathcal{B}_{\mathcal{N}}\right)\right] \geq \epsilon \mathbb{P}\left(\operatorname{distance}\left(x, \mathcal{B}_{\mathcal{N}}\right)>\epsilon\right)
$$

with the probability on the right hand side scaling like

$$
1-\operatorname{vol}_{n_{\mathrm{in}}}\left(T_{\epsilon}\left(\mathcal{B}_{\mathcal{N}}\right) \cap K\right) / \operatorname{vol}_{n_{\mathrm{in}}}(K)
$$

where $T_{\epsilon}\left(\mathcal{B}_{\mathcal{N}}\right)$ is the tube of radius ϵ around $\mathcal{B}_{\mathcal{N}}$. We expect that its volume like $\epsilon \operatorname{vol}_{n_{\text {in }}-1}\left(\mathcal{B}_{\mathcal{N}}\right)$. Taking $\varepsilon=$ $c / \#\{$ neurons $\}$ yields the conclusion of Corollary 8 .

B. Outline of Proof of Theorem 6

The purpose of this section is to give an intuitive explanation of the proof of Theorem 3 We fix a non-linearity $\phi: \mathbb{R} \rightarrow \mathbb{R}$ with breakpoints $\xi_{1}<\cdots<\xi_{T}$ (as in (11) and consider a fully connected network \mathcal{N} with input dimension $n_{\text {in }} \geq 1$, output dimension 1, and non-linearity ϕ. For each neuron z in \mathcal{N}, we write

$$
\begin{equation*}
\ell(z):=\text { layer index of } z \tag{16}
\end{equation*}
$$

and set

$$
\begin{equation*}
S_{z}:=\left\{x \in \mathbb{R}^{n_{\text {in }}} \mid z(x)-b_{z} \in\left\{\xi_{1}, \ldots, \xi_{T}\right\}\right\} . \tag{17}
\end{equation*}
$$

We further

$$
\begin{equation*}
\widetilde{S}_{z}:=S_{z} \cap \mathcal{O} \tag{18}
\end{equation*}
$$

where

$$
\mathcal{O}:=\left\{\begin{array}{l|l}
x \in \mathbb{R}^{n_{\text {in }}} & \begin{array}{l}
\forall j=1, \ldots, d \quad \exists \text { neuron } z \text { with } \\
\ell(z)=j \text { s.t. } \phi^{\prime}\left(z(x)-b_{z}\right) \neq 0
\end{array}
\end{array}\right\} .
$$

Intuitively, the set S_{z} is the collection of inputs for which the neuron z turns from on to off. In contrast, the set \mathcal{O} is the collection of inputs $x \in \mathbb{R}^{n_{\text {in }}}$ for which \mathcal{N} is open in the sense that there is a path from the input to the output of \mathcal{N} so that all neurons along this path compute are not constant in a neighborhood x. Thus, \widetilde{S}_{z} is the set of inputs at which neuron z switches between its linear regions and at which the output of neuron z actually affects the function computed by \mathcal{N}.

We remark here that $\mathcal{O}=\emptyset$ if in the non-linearity ϕ there are no linear pieces at which the slopes on ϕ equals 0 (i.e. $q_{j} \neq 0$ for all j in the definition (11) of ϕ). If, for example, ϕ is ReLU, then \mathcal{O} need not be empty.

The overall proof of Theorem 3 can be divided into several steps. The first gives the following representation of $\mathcal{B}_{\mathcal{N}}$.
Proposition 9. Under Assumptions $A 1$ and $A 2$ of Theorem 3. we have, with probability 1,

$$
\mathcal{B}_{\mathcal{N}}=\bigcup_{\text {neurons } z} \widetilde{S}_{z}
$$

The precise proof of Proposition 9 can be found in $\$$ C. 1 below. The basic idea is that if for all y near a fixed input $x \in \mathbb{R}^{n_{\text {in }}}$, none of the pre-activations $z(y)-b_{z}$ cross the boundary of a linear region for ϕ, then $x \notin \mathcal{B}_{\mathcal{N}}$. Thus, $\mathcal{B}_{\mathcal{N}} \subset \bigcup_{z} S_{z}$. Moreover, if a neuron z satisfies $z(x)-b_{z}=S_{i}$ for some i but there are no open paths from z to the output of \mathcal{N} for inputs near x, then z is dead at x and hence does not influence \mathcal{N} at x. Thus, we expect the more refined inclusion $\mathcal{B}_{\mathcal{N}} \subset \bigcup_{z} \widetilde{S}_{z}$. Finally, if $x \in \widetilde{S}_{z}$ for some z then $x \in \mathcal{B}_{\mathcal{N}}$ unless the contribution from other neurons to $\nabla \mathcal{N}(y)$ for y near x exactly cancels the discontinuity in $\nabla z(x)$. This happens with probability 0 .

The next step in proving Theorem 3 is to identify the portions of $\mathcal{B}_{\mathcal{N}}$ of each dimension. To do this, we write for any distinct neurons z_{1}, \ldots, z_{k},

$$
\widetilde{S}_{z_{1}, \ldots, z_{k}}:=\bigcap_{j=1}^{k} \widetilde{S}_{z_{j}}
$$

The set $\widetilde{S}_{z_{1}, \ldots, z_{k}}$ is, intuitively, the collection of inputs at which $z_{j}(x)-b_{z_{j}}$ switches between linear regions for ϕ and
at which the output of \mathcal{N} is affected by the post-activations of these neurons. Proposition 9 shows that we may represent $\mathcal{B}_{\mathcal{N}}$ as a disjoint union

$$
\mathcal{B}_{\mathcal{N}}=\bigcup_{k=1}^{n_{\mathrm{in}}} \mathcal{B}_{\mathcal{N}, k}
$$

where

$$
\mathcal{B}_{\mathcal{N}, k}:=\bigcup_{\substack{\text { distinct neurons } \\ z_{1}, \ldots, z_{k}}} \widetilde{S}_{z_{1}, \ldots, z_{k}} \cap\left(\bigcup_{z \neq z_{1}, \ldots, z_{k}} \widetilde{S}_{z}\right)^{c}
$$

In words, $\mathcal{B}_{\mathcal{N}, k}$ is the collection of inputs in \mathcal{O} at which exactly k neurons turn from on to off. The following Proposition shows that $\mathcal{B}_{\mathcal{N}, k}$ is precisely the " $\left(n_{\mathrm{in}}-k\right)$-dimensional piece of $\mathcal{B}_{\mathcal{N}}$ " (see (5)).
Proposition 10. Fix $k=1, \ldots, n_{\mathrm{in}}$, and k distinct neurons z_{1}, \ldots, z_{k} in \mathcal{N}. Then, with probability 1 , for every $x \in$ $\mathcal{B}_{\mathcal{N}, k}$ there exists a neighborhood in which $\mathcal{B}_{\mathcal{N}, k}$ coincides with a $\left(n_{\mathrm{in}}-k\right)$-dimensional hyperplane.
 $\widetilde{S}_{z_{1}, \ldots, z_{k}}$ is piecewise linear and, with probability 1 , at every point at which exactly the neurons z_{1}, \ldots, z_{k} contribute to $\mathcal{B}_{\mathcal{N}}$, its co-dimension is the number of linear conditions needed to define it. Observe that with probability 1 , the bias vector $\left(b_{z_{1}}, \ldots, b_{z_{k+1}}\right)$ for any collection z_{1}, \ldots, z_{k+1} of distinct neurons is a regular value for $x \mapsto\left(z_{1}(x), \ldots, z_{k+1}(x)\right)$. Hence,

$$
\operatorname{vol}_{n_{\mathrm{in}}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k+1}}\right)=0
$$

Proposition 10 thus implies that, with probability 1,

$$
\operatorname{vol}_{n_{\mathrm{in}}-k}\left(\mathcal{B}_{\mathcal{N}, k}\right)=\sum_{\substack{\text { distinct neurons } \\ z_{1}, \ldots, z_{k}}} \operatorname{vol}_{n_{\mathrm{in}}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k}}\right)
$$

The final step in the proof of Theorem 3 is therefore to prove the following result.
Proposition 11. Let z_{1}, \ldots, z_{k} be distinct neurons in \mathcal{N}. Then, for any bounded, measurable $K \subset \mathbb{R}^{n_{\text {in }}}$,

$$
\begin{aligned}
\mathbb{E} & {\left[\operatorname{vol}_{n_{\text {in }}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k}}\right)\right] } \\
& =\int_{K_{i_{1}, \ldots, i_{k}=1}} \sum^{T} \mathbb{E}\left[Y_{z_{1}, \ldots, z_{k}}^{\left(S_{i_{1}}, \ldots, S_{i_{k}}\right)}(x)\right] d x
\end{aligned}
$$

where $Y_{z_{1}, \ldots, z_{k}}^{\left(S_{i_{1}}, \ldots, S_{i_{k}}\right)}$ is defined as in 13).
We provide a detailed proof of Proposition 11 in $\$$ C.3. The intuition is that the image of the volume element $d x$ under $x \mapsto z(x)-S_{i}$ is the volume element

$$
\left\|J_{z_{1}, \ldots, z_{k}}(x)\right\| d x
$$

from (13). The probability of an infinitesimal neighborhood $d x$ of x belonging to a $\left(n_{\text {in }}-k\right)$-dimensional piece of $\mathcal{B}_{\mathcal{N}}$ is therefore the probability

$$
\begin{aligned}
& \rho_{b_{z_{1}}, \ldots, b_{z_{k}}}\left(z_{1}(x)-S_{i_{1}}, \ldots, z_{k}(x)-S_{i_{k}}\right) \\
& \quad \times\left\|J_{z_{1}, \ldots, z_{k}}(x)\right\| d x
\end{aligned}
$$

that the vector of biases $\left(b_{z_{j}}, j=1, \ldots, k\right)$ belongs to the image of $d x$ under map $\left(z_{j}(x)-S_{i_{j}}, j=1, \ldots, k\right)$ for some collection of breakpoints $S_{i_{j}}$. The formal argument uses the co-area formula (see 29) and 30).

C. Proof of Theorem 3

C.1. Proof of Proposition 9

Recall that the non-linearity $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and piecewise linear with T breakpoints $\xi_{1}<\cdots<\xi_{T}$, so that, with $\xi_{0}=-\infty, \xi_{T+1}=\infty$, we have

$$
t \in\left(\xi_{i}, \xi_{i+1}\right) \quad \Rightarrow \quad \phi(t)=q_{i} t+p_{i}
$$

with $q_{i} \neq q_{i+1}$. For each $x \in \mathbb{R}^{n_{\text {in }}}$, write
$Z_{x}^{+}:=\left\{z \mid z(x)-b_{z} \in\left(\xi_{i}, \xi_{i+1}\right)\right.$ and $q_{i} \neq 0$ for some $\left.i\right\}$
$Z_{x}^{-}:=\left\{z \mid z(x)-b_{z} \in\left(\xi_{i}, \xi_{i+1}\right)\right.$ and $q_{i}=0$ for some $\left.i\right\}$
$Z_{x}^{0}:=\left\{z \mid z(x)-b_{z}=\xi_{i}\right.$ for some $\left.i\right\}$
Intuitively, Z_{x}^{+}are the neurons that, at the input x are open (i.e. contribute to the gradient of the output $\mathcal{N}(x)$) but do not change their contribution in a neighborhood of x, Z_{x}^{-} are the neurons that are closed, and Z_{x}^{0} are the neurons that, at x, produce a discontinuity in the derivative of \mathcal{N}. Thus, for example, if $\phi=\operatorname{ReLU}$, then

$$
Z_{x}^{*}:=\left\{z \mid \operatorname{sgn}\left(z(x)-b_{z}\right)=*\right\}, \quad * \in\{+,-, 0\}
$$

We begin by proving that $\mathcal{B}_{\mathcal{N}} \subseteq \bigcup_{z} \widetilde{S}_{z}$ by checking the contrapositive

$$
\begin{equation*}
\left(\bigcup_{z} \widetilde{S}_{z}\right)^{c} \subseteq \mathcal{B}_{\mathcal{N}}^{c} \tag{19}
\end{equation*}
$$

Fix $x \in\left(\bigcup_{z} \widetilde{S}_{z}\right)^{c}$. Note that $Z_{x}^{ \pm}$are locally constant in the sense that there exists $\varepsilon>0$ so that for all y with $\|y-x\|<\varepsilon$, we have

$$
\begin{equation*}
Z_{x}^{-} \subseteq Z_{y}^{-}, \quad Z_{x}^{+} \subseteq Z_{y}^{+}, \quad Z_{y}^{+} \cup Z_{y}^{0} \subseteq Z_{x}^{+} \cup Z_{x}^{0} \tag{20}
\end{equation*}
$$

Moreover, observe that if in the definition (11) of ϕ none of the slopes q_{i} equal 0 , then $Z_{y}^{-}=\emptyset$ for every y. To prove (19), consider any path γ from the input to the output in the computational graph of \mathcal{N}. Such a path consists of $d+1$ neurons, one in each layer:

$$
\gamma=\left(z_{\gamma}^{(0)}, \ldots, z_{\gamma}^{(d)}\right), \ell\left(z_{\gamma}^{(j)}\right)=j
$$

To each path we may associate a sequence of weights: $w_{\gamma}^{(j)}:=$ weight connecting $z_{\gamma}^{(j-1)}$ to $z_{\gamma}^{(j)}, \quad j=1, \ldots, d$.

We will also define

$$
q_{\gamma}^{(j)}(x):=\sum_{i=0}^{T} q_{i} \mathbf{1}_{\left\{z_{\gamma}^{(x)}-b_{z_{\gamma}^{(j)}} \in\left(\xi_{i}, \xi_{i+1}\right]\right\}}
$$

For instance, if $\phi=\operatorname{ReLU}$, then

$$
q_{\gamma}^{(j)}(x)=\mathbf{1}_{\left\{z_{\gamma}^{(j)}(x)-b_{z} \geq 0\right\}}
$$

and in general only one term in the definition of $q_{\gamma}^{(j)}(x)$ is non-zero for each z. We may write

$$
\begin{equation*}
\mathcal{N}(y)=\sum_{i=1}^{n_{\text {in }}} y_{i} \sum_{\text {paths } \gamma: i \rightarrow \text { out }} \prod_{j=1}^{d} q_{\gamma}^{(j)}(y) w_{\gamma}^{(j)}+\text { constant } \tag{21}
\end{equation*}
$$

Note that if $x \in\left(\bigcup_{z} \widetilde{S}_{z}\right)^{c}$, then for any path γ through a neuron $z \in Z_{x}^{0}$, we have

$$
\exists j \text { s.t. } z_{\gamma}^{(j)} \in Z_{x}^{-}
$$

This is an open condition in light of (20), and hence for all y in a neighborhood of x and for any path γ through a neuron $z \in Z_{x}^{0}$ we also have that

$$
\exists j \text { s.t. } z_{\gamma}^{(j)} \in Z_{y}^{-}
$$

Thus, since the summand in 21 vanishes identically if $\gamma \cap Z_{y}^{-} \neq \emptyset$, we find that for y in a neighborhood of any $x \in\left(\bigcup_{z} \widetilde{S}_{z}\right)^{c}$ we may write

$$
\begin{equation*}
\mathcal{N}(y)=\sum_{i=1}^{n_{\text {in }}} y_{i} \sum_{\substack{\text { paths } \gamma: i \rightarrow \text { out } \\ \gamma \subset Z_{x}^{+}}} \prod_{j=1}^{d} q_{\gamma}^{(j)}(y) w_{\gamma}^{(j)}+\text { constant } \tag{22}
\end{equation*}
$$

But, again by 20, for any fixed x, all y in a neighborhood of x and each $z \in Z_{x}^{+}$, we have $z \in Z_{y}^{+}$as well. Thus, in particular,

$$
z(x)-b_{z} \in\left(\xi_{i}, \xi_{i+1}\right) \quad \Rightarrow \quad z(y)-b_{z} \in\left(\xi_{i}, \xi_{i+1}\right)
$$

Thus, for y sufficiently close to x, we have for every path in the sum (22) that

$$
q_{\gamma}^{(j)}(y)=q_{\gamma}^{(j)}(x)
$$

Therefore, the partial derivatives $\left(\partial \mathcal{N} / \partial y_{i}\right)(y)$ are independent of y in a neighborhood of x and hence continuous at x. This proves (19). Let us now prove the reverse inclusion:

$$
\begin{equation*}
\bigcup_{z} \widetilde{S}_{z} \subseteq \mathcal{B}_{\mathcal{N}} \tag{23}
\end{equation*}
$$

Note that, with probability 1 , we have

$$
\operatorname{vol}_{n_{\mathrm{in}-1}}\left(S_{z_{1}} \cap S_{z_{2}}\right)=0
$$

for any pair of distinct neurons z_{1}, z_{2}. Note also that since $x \mapsto \mathcal{N}(x)$ is continuous and piecewise linear, the set $\mathcal{B}_{\mathcal{N}}$ is closed. Thus, it is enough to show the slightly weaker inclusion

$$
\begin{equation*}
\bigcup_{z}\left(\widetilde{S}_{z} \backslash \bigcup_{\widehat{z} \neq z} S_{\widehat{z}}\right) \subseteq \mathcal{B}_{\mathcal{N}} \tag{24}
\end{equation*}
$$

since the closure of $\widetilde{S}_{z} \backslash \bigcup_{\widehat{z} \neq z} S_{\widehat{z}}$ equals \widetilde{S}_{z}. Fix a neuron z and suppose $x \in \widetilde{S}_{z} \backslash \bigcup_{\widehat{z} \neq z} S_{\widehat{z}}$. By definition, we have that for every neuron $\widehat{z} \neq z$, either

$$
\widehat{z} \in Z_{x}^{+} \quad \text { or } \quad \widehat{z} \in Z_{x}^{-} .
$$

This has two consequences. First, by (20), the map $y \mapsto$ $z(y)$ is linear in a neighborhood of x. Second, in a neighborhood of x, the set \widetilde{S}_{z} coincides with S_{z}. Hence, combining these facts, near x the set \widetilde{S}_{z} coincides with the hyperplane

$$
\begin{equation*}
\left\{x \mid z(x)-b_{z}=\xi_{i}\right\}, \quad \text { for some } i \tag{25}
\end{equation*}
$$

We may take two sequences of inputs y_{n}^{+}, y_{n}^{-}on opposite sides of this hyperplane so that

$$
\lim _{n \rightarrow \infty} y_{n}^{+}=\lim _{n \rightarrow \infty} y_{n}^{-}=x
$$

and

$$
\phi^{\prime}\left(z\left(y_{n}^{+}\right)-b_{z}\right)=q_{i}, \quad \phi^{\prime}\left(z\left(y_{n}^{+}\right)-b_{z}\right)=q_{i-1}, \quad \forall n
$$

where the index i the same as the one that defines the hyperplane 25]. Further, since $\mathcal{B}_{\mathcal{N}}$ has co-dimension 1 (it is contained in the piecewise linear co-dimension $1 \operatorname{set} \bigcup_{z} S_{z}$, for example), we may also assume that $y_{n}^{+}, y_{n}^{-} \notin \mathcal{B}_{\mathcal{N}}$. Consider any path γ from the input to the output of the computational graph of \mathcal{N} passing through z (so that $z=z_{\gamma}^{(j)} \in \gamma$). By construction, for every n, we have

$$
q_{\gamma}^{(j)}\left(y_{n}^{+}\right) \neq q_{\gamma}^{(j)}\left(y_{n}^{-}\right)
$$

and hence, after passing to a subsequence, we may assume that the symmetric difference

$$
\begin{equation*}
Z_{y_{n}^{+}}^{+} \Delta Z_{y_{n}^{-}}^{+} \neq \emptyset \tag{26}
\end{equation*}
$$

of the paths that contribute to the representation 21 for y_{n}^{+}, y_{n}^{-}is fixed and non-empty (the latter since it always contains z). For any $y \notin \mathcal{B}_{\mathcal{N}}$, we may write, for each $i=1, \ldots, n_{\text {in }}$

$$
\begin{equation*}
\frac{\partial \mathcal{N}}{\partial y_{i}}(y)=\sum_{\substack{\text { paths } \gamma: i \rightarrow \text { out } \\ \gamma \subset Z_{y}^{+}}} \prod_{j=1}^{d} q_{\gamma}^{(j)}(y) w_{\gamma}^{(j)} \tag{27}
\end{equation*}
$$

Substituting into this expression $y=y_{n}^{ \pm}$, we find that there exists a non-empty collection Γ of paths from the input to the output of \mathcal{N} so that

$$
\frac{\partial \mathcal{N}}{\partial y_{i}}\left(y_{n}^{+}\right)-\frac{\partial \mathcal{N}}{\partial y_{i}}\left(y_{n}^{-}\right)=\sum_{\gamma \in \Gamma} a_{j} \prod_{j=1}^{d} c_{\gamma}^{(j)} w_{\gamma}^{(j)}
$$

where

$$
a_{j} \in\{-1,1\}, \quad c_{\gamma}^{(j)} \in\left\{q_{0}, \ldots, q_{T}\right\} .
$$

Note that the expression above is a polynomial in the weights of \mathcal{N}. Note also that, by construction, this polynomial is not identically zero due to the condition (26). There are only finitely many such polynomials since both a_{j} and $c_{\gamma}^{(j)}$ range over a finite alphabet. For each such non-zero polynomial, the set of weights at which it vanishes has co-dimension 1. Hence, with probability 1 , the difference $\frac{\partial \mathcal{N}}{\partial y_{i}}\left(y_{n}^{+}\right)-\frac{\partial \mathcal{N}}{\partial y_{i}}\left(y_{n}^{-}\right)$is non-zero. This shows that the partial derivatives $\frac{\partial \mathcal{N}}{\partial y_{i}}$ are not continuous at x and hence that $x \in \mathcal{B}_{\mathcal{N}}$.

C.2. Proof of Proposition 10

Fix distinct neurons z_{1}, \ldots, z_{k} and suppose $x \in \widetilde{S}_{z_{1}, \ldots, z_{k}}$ but not in \widetilde{S}_{z} for any $z \neq z_{1}, \ldots, z_{k}$. After relabeling, we may assume that they are ordered by layer index:

$$
\ell\left(z_{1}\right) \leq \cdots \leq \ell\left(z_{k}\right)
$$

Since $x \in \mathcal{O}$, we also have that $x \notin S_{z}$ for any $z \neq$ z_{1}, \ldots, z_{k}. Thus, there exists a neighborhood U of x so $S_{z} \cap U=\emptyset$ for every $z \neq z_{1}, \ldots, z_{k}$. Thus, there exists a neighborhood of x on which $y \mapsto z_{1}(y)$ is linear.
Hence, as explained near (25) above, $\widetilde{S}_{z_{1}}$ is a hyperplane near x. We now restrict our inputs to this hyperplane and repeat this reasoning to see that, near x, the set $\widetilde{S}_{z_{1}, z_{2}}$ is a hyperplane inside $\widetilde{S}_{z_{1}}$ and hence, near x, is the intersection of two hyperplanes in $\mathbb{R}^{n_{\text {in }}}$. Continuing in this way shows that in a neighborhood of x, the set $\widetilde{S}_{z_{1}, \ldots, z_{k}}$ is equal to the intersection of k hyperplanes in $\mathbb{R}^{n_{\mathrm{in}}}$. Thus, $\widetilde{S}_{z_{1}, \ldots, z_{k}} \backslash\left(\bigcup_{z \neq z_{1}, \ldots, z_{k}} \widetilde{S}_{z}\right)^{c}$ is precisely the intersection of k hyperplanes in a neighborhood of each of its points.

C.3. Proof of Proposition 11

Let z_{1}, \ldots, z_{k} be distinct neurons in \mathcal{N}, and fix a compact set $K \subset \mathbb{R}^{n_{\text {in }}}$. We seek to compute the mean of $\operatorname{vol}_{n_{\text {in }}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k}} \cap K\right)$, which we may rewrite as

$$
\begin{aligned}
& \int_{S_{z_{1}, \ldots, z_{k} \cap K} \cap} \mathbf{1}_{\left\{\begin{array}{c}
z_{j} \text { is good at } x \\
j=1, \ldots, k
\end{array}\right\}} \operatorname{dvol}_{n_{\text {in }}-k}(x) \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{T} \int_{S_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)} \cap K} \mathbf{1}_{\left\{\begin{array}{c}
z_{j} \text { is good at } x \\
j=1, \ldots, k
\end{array}\right\}} \operatorname{dvol}_{n_{\text {in }}-k}(x),
\end{aligned}
$$

where we've set

$$
S_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)}=\left\{x \mid z_{j}(x)-b_{z_{j}}=\xi_{i_{j}}, \quad j=1, \ldots, k\right\} .
$$

Note that the map $x \mapsto\left(z_{1}(x), \ldots, z_{k}(x)\right)$ is Lipschitz, and recall the co-area formula, which says that if $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m \leq n$ is Lipschitz, then

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \int_{g^{-1}(t)} \psi(x) \mathrm{dvol}_{n-m}(x) d t \tag{29}
\end{equation*}
$$

equals

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \psi(x)\|J g(x)\| \operatorname{dvol}_{n}(x) \tag{30}
\end{equation*}
$$

where $J g$ is the $m \times n$ Jacobian of g and

$$
\|J g(x)\|=\operatorname{det}\left((J g(x))(J g(x))^{T}\right)^{1 / 2}
$$

We assumed that the biases $b_{z_{1}}, \ldots, b_{z_{j}}$ have a joint conditional density

$$
\rho_{\mathbf{b}_{\mathbf{z}}}=\rho_{b_{z_{1}}, \ldots, b_{z_{k}}}
$$

given all other weights and biases. The mean of the term in (28) corresponding to a fixed $\xi=\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)$ over the conditional distribution of $b_{z_{1}}, \ldots, b_{z_{j}}$ is therefore
$\int_{\mathbb{R}^{k}} d \mathbf{b} \rho_{\mathbf{b}_{\mathbf{z}}}(\mathbf{b}) \int_{\{\mathbf{z}-\mathbf{b}=\xi\} \cap K} \mathbf{1}_{\left\{\begin{array}{c}z_{j} \text { is good at } x \\ j=1, \ldots, k\end{array}\right.} \operatorname{dvol}_{n_{\mathrm{in}}-k}(x)$,
where we've abbreviated $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$ as well as $\mathbf{z}(x)=\left(z_{1}(x), \ldots, z_{k}(x)\right)$. This can rewritten as
$\int_{\mathbb{R}^{k}} d \mathbf{b} \int_{\{\mathbf{z}=\mathbf{b}\} \cap K} \rho_{\mathbf{b}_{\mathbf{z}}}(\mathbf{z}(x)-\xi) \mathbf{1}_{\left\{\begin{array}{c}\left.z_{j} \text { is good at } x\right\} \\ j=1, \ldots, k\end{array}\right.} \operatorname{dvol}_{n_{0}-k}(x)$.
Thus, applying the co-area formula (29, 30) shows that the average of (28) over the conditional distribution of $b_{z_{1}}, \ldots, b_{z_{j}}$ is precisely

$$
\int_{K} Y_{z_{1}, \ldots, z_{k}}(x) d x
$$

Taking the average over the remaining weighs and biases, we may commute the expectation $\mathbb{E}[\cdot]$ with the $d x$ integral since the integrand is non-negative. This completes the proof of Proposition 11

D. Proof of Corollary 7

We begin by proving the upper bound in (15). By Theorem 3. $\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}, k} \cap K\right)\right]$ equals
$\sum_{\text {distinct neurons }} \sum_{z_{1}, \ldots, z_{k}}^{T} \sum_{i_{1}, \ldots, i_{k}=1}^{T} \mathbb{E}\left[Y_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{k}}, \ldots, \xi_{i_{k}}\right)}(x)\right](x) d x$,
where, as in (13), $Y_{z_{1}, \ldots, z_{k}}^{\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)}(x)$ is

$$
\left\|J_{z_{1}, \ldots, z_{k}}(x)\right\| \rho_{b_{z_{1}}, \ldots, b_{z_{k}}}\left(z_{1}(x)-\xi_{i_{1}}, \ldots, z_{k}(z)-\xi_{i_{k}}\right)
$$

times the indicator function of the even that z_{j} is good at x for every j. When the weights and biases of \mathcal{N} are independent, we may write $\rho_{b_{z_{1}}, \ldots, b_{z_{k}}}\left(b_{1}, \ldots, b_{k}\right)$ as

$$
\prod_{j=1}^{k} \rho_{b_{z_{j}}}\left(b_{j}\right) \leq\left(\sup _{\text {neurons }} \sup _{z \in \mathbb{R}} \rho_{b_{z}}(b)\right)^{k}=C_{\mathrm{bias}}^{k}
$$

Hence,

$$
Y_{z_{1}, \ldots, z_{k}}(x) \leq C_{\mathrm{bias}}^{k}\left(\operatorname{det}\left(J_{z_{1}, \ldots, z_{k}}(x)\left(J_{z_{1}, \ldots, z_{k}}(x)\right)^{T}\right)\right)^{1 / 2}
$$

Note that
$J_{z_{1}, \ldots, z_{k}}(x)\left(J_{z_{1}, \ldots, z_{k}}(x)\right)^{T}=\operatorname{Gram}\left(\nabla z_{1}(x), \ldots, \nabla z_{k}(x)\right)$,
where for any $v_{i} \in \mathbb{R}^{n}$

$$
\operatorname{Gram}\left(v_{1}, \ldots, v_{k}\right)_{i, j}=\left\langle v_{i}, v_{j}\right\rangle
$$

is the associated Gram matrix. The Gram identity says that $\operatorname{det}\left(J_{z_{1}, \ldots, z_{k}}(x)\left(J_{z_{1}, \ldots, z_{k}}(x)\right)^{T}\right)^{1 / 2}$ equals

$$
\left\|\nabla z_{1}(x) \wedge \cdots \wedge \nabla z_{k}(x)\right\|
$$

which is the the k-dimensional volume of the parallelopiped in $\mathbb{R}^{n_{\text {in }}}$ spanned by $\left\{\nabla z_{j}(x), j=1, \ldots, k\right\}$. We thus have
$\operatorname{det}\left(J_{z_{1}, \ldots, z_{k}}(x)\left(J_{z_{1}, \ldots, z_{k}}(x)\right)^{T}\right)^{1 / 2} \leq \prod_{j=1}^{k}\left\|\nabla z_{j}(x)\right\|$.
The estimate (14) proves the upper bound (15). For the special case of $\phi=\operatorname{ReLU}$ we use the AM-GM inequality and Jensen's inequality to write

$$
\begin{aligned}
\mathbb{E}\left[\prod_{j=1}^{k}\left\|\nabla z_{j}(x)\right\|\right] & \leq \mathbb{E}\left[\left(\frac{1}{k} \sum_{j=1}^{k}\left\|\nabla z_{j}(x)\right\|\right)^{k}\right] \\
& \leq \frac{1}{k} \sum_{j=1}^{k} \mathbb{E}\left[\left\|\nabla z_{j}\right\|^{k}\right]
\end{aligned}
$$

Therefore, by Theorem 1 of Hanin \& Nica (2018), there exist $C_{1}, C_{2}>0$ so that

$$
\mathbb{E}\left[\prod_{j=1}^{k}\left\|\nabla z_{j}(x)\right\|\right] \leq\left(C_{1} e^{C_{2} \sum_{j=1}^{d} \frac{1}{n_{j}}}\right)^{k}
$$

This completes the proof of the upper bound in 15). To prove the power bound, lower bound in (15) we must argue in a different way. Namely, we will induct on k and use the following facts to prove the base case $k=1$:

1. At initialization, for each fixed input x, the random variables $\left\{\mathbf{1}_{\left\{z(x)>b_{z}\right\}}\right\}$ are independent Bernoulli random variables with parameter $1 / 2$. This fact is proved in Proposition 2 of Hanin \& Nica (2018). In particular, the event $\{z$ is good at $x\}$, which occurs when there exists a layer $j \in \ell(z)+1, \ldots, d$ in which $z(x) \leq b_{z}$ for every neuron, is independent of $\left\{z(x), b_{z}\right\}$ and satisfies

$$
\begin{equation*}
\mathbb{P}(z \text { is good at } x) \geq 1-\sum_{j=1}^{d} 2^{-n_{j}} \tag{31}
\end{equation*}
$$

2. At initialization, for each fixed input x, we have

$$
\begin{equation*}
\frac{1}{2} \mathbb{E}\left[z(x)^{2}\right]=\frac{\|x\|^{2}}{n_{\mathrm{in}}}+\sum_{j=1}^{\ell(z)} \sigma_{b_{j}}^{2} \tag{32}
\end{equation*}
$$

where $\sigma_{b_{j}}^{2}:=\operatorname{Var}[$ biases at layer $j]$. This is Equation (11) in the proof of Theorem 5 from Hanin \& Rolnick (2018).
3. At initialization, for every neuron z and each input x, we have

$$
\begin{equation*}
\mathbb{E}\left[\|\nabla z(x)\|^{2}\right]=2 \tag{33}
\end{equation*}
$$

This follows easily from Theorem 1 of Hanin (2018).
4. At initialization, for each $1 \leq j \leq n_{\text {in }}$ and every $x \in \mathbb{R}^{n_{\text {in }}}$

$$
\begin{equation*}
\mathbb{E}\left[\log \left(n_{\text {in }}\left(\frac{\partial z}{\partial x_{j}}(x)\right)^{2}\right)\right]=-\frac{5}{2} \sum_{j=1}^{\ell(z)} \frac{1}{n_{j}} \tag{34}
\end{equation*}
$$

plus $O\left(\sum_{j=1}^{\ell(z)} \frac{1}{n_{j}^{2}}\right)$, where n_{j} is the width of the $j^{\text {th }}$ hidden layer and the implied constant depends only on the $4^{\text {th }}$ moment of the measure μ according to which weights are distributed. This estimate follows immediately by combining Corollary 26 and Proposition 28 in Hanin \& Nica (2018).

We begin by proving the lower bound in $(15$ when $k=1$. We use (31) to see that $\mathbb{E}\left[\operatorname{vol}_{n_{\text {in }}-1}\left(\mathcal{B}_{\mathcal{N}} \cap K\right)\right]$ is bounded below by

$$
\left(1-\sum_{j=1}^{d} 2^{-n_{j}}\right) \sum_{\text {neurons } z} \int_{K} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x))\right] d x
$$

Next, we bound the integrand. Fix $x \in \mathbb{R}^{n_{\text {in }}}$ and a parameter $\eta>0$ to be chosen later. The integrand $\mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x))\right]$ is bounded below by

$$
\begin{aligned}
& \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\{|z(x)|\} \leq \eta}\right] \\
& \quad \geq\left[\inf _{|b| \leq \eta} \rho_{b_{z}}(b)\right] \mathbb{E}\left[\|\nabla z(x)\| \mathbf{1}_{\{|z(x)| \leq \eta\}}\right]
\end{aligned}
$$

which is bounded below by

$$
\left[\inf _{|b| \leq \eta} \rho_{b_{z}}(b)\right]\left[\mathbb{E}[\|\nabla z(x)\|]-\mathbb{E}\left[\|\nabla z(x)\| \mathbf{1}_{\{|z(x)|\}>\eta}\right]\right]
$$

Using Cauchy-Schwarz, the term $\mathbb{E}\left[\|\nabla z(x)\| \mathbf{1}_{\{|z(x)|\}>\eta}\right]$ is bounded above by

$$
\left(\mathbb{E}[\|\nabla z(x)\|]^{2} \mathbb{P}(|z(x)|>\eta)\right)^{1 / 2}
$$

which using (33) and (32) together with Markov's inequality, is bounded above by

$$
\frac{2}{\eta^{1 / 2}}\left(\frac{\|x\|^{2}}{n_{\mathrm{in}}}+\sum_{j=1}^{\ell(z)} \sigma_{b_{j}}^{2}\right)^{1 / 2}
$$

Next, using Jensen's inequality twice, we write

$$
\begin{aligned}
\log \mathbb{E}[\|\nabla z(x)\|] & \geq \frac{1}{2} \mathbb{E}\left[\log \left(\|\nabla z(x)\|^{2}\right)\right] \\
& =\frac{1}{2} \mathbb{E}\left[\log \left(\sum_{j=1}^{n_{\text {in }}}\left(\frac{\partial z}{\partial x_{j}}(x)\right)^{2}\right)\right] \\
& \geq \frac{1}{2} \mathbb{E}\left[\log \left(n_{\mathrm{in}}^{1 / 2} \frac{\partial z}{\partial x_{j}}(x)\right)^{2}\right] \\
& =-\frac{5}{4} \sum_{j=1}^{\ell(z)} \frac{1}{n_{j}}+O\left(\sum_{j=1}^{\ell(z)} \frac{1}{n_{j}^{2}}\right)
\end{aligned}
$$

where in the last inequality we applied (34). Putting this all together, we find that exists $c>0$ so that

$$
\mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x))\right] \geq c\left[\inf _{|b| \leq \eta} \rho_{b_{z}}(b)\right]
$$

where

$$
\eta \geq 4\left(\frac{\|x\|^{2}}{n_{\mathrm{in}}}+\sum_{j=1}^{d} \sigma_{b_{j}}^{2}\right) e^{\frac{5}{4} \sum_{j=1}^{d} \frac{1}{n_{j}}+O\left(\sum_{j=1}^{\ell(z)} \frac{1}{n_{j}^{2}}\right)}
$$

In particular, we may take

$$
\eta=\left(\frac{\sup _{x \in K}\|x\|^{2}}{n_{\mathrm{in}}}+\sum_{j=1}^{d} \sigma_{b_{j}}^{2}\right) e^{C \sum_{j=1}^{d} \frac{1}{n_{j}}}
$$

for C sufficiently large. This completes the proof of the lower bound in 15 when $k=1$. To complete the proof of Corollary 7, suppose we have proved the lower bound in (15) for all ReLU networks \mathcal{N} and all collections of $k-1$ distinct neurons. We may assume after relabeling that the neurons z_{1}, \ldots, z_{k} are ordered by layer index:

$$
\ell\left(z_{1}\right) \leq \cdots \leq \ell\left(z_{k}\right)
$$

With probability 1 , the set $S_{z_{1}} \subset \mathbb{R}^{n_{\text {in }}}$ is piecewise linear, co-dimension 1 with finitely many pieces, which we denote by P_{α}. We may therefore rewrite $\operatorname{vol}_{n_{\text {in }}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k}} \cap K\right)$ as

$$
\sum_{\alpha} \operatorname{vol}_{n_{\mathrm{in}}-k}\left(\widetilde{S}_{z_{2}, \ldots, z_{k}} \cap P_{\alpha} \cap K\right)
$$

We now define a new neural network \mathcal{N}_{α}, obtained by restricting \mathcal{N} to P_{α}. The input dimension for \mathcal{N}_{α} equals $n_{\text {in }}-1$, and the weights and biases of \mathcal{N}_{α} satisfy all the assumptions of Corollary 7 We can now apply our inductive hypothesis to the $k-1$ neurons z_{2}, \ldots, z_{k} in \mathcal{N}_{α} and to the set $K \cap P_{\alpha}$. This gives

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{\alpha} \operatorname{vol}_{n_{\mathrm{in}}-k}\left(\widetilde{S}_{z_{2}, \ldots, z_{k}} \cap P_{\alpha} \cap K\right)\right] \\
& \quad \geq\left(\inf _{z} \inf _{|b| \leq \eta} \rho_{b_{z}}(b)\right)^{k-1} \mathbb{E}\left[\operatorname{vol}_{n_{\text {in }}-1}\left(P_{\alpha} \cap K\right)\right]
\end{aligned}
$$

Summing this lower bound over α yields

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{vol}_{n_{\text {in }}-k}\left(\widetilde{S}_{z_{1}, \ldots, z_{k}} \cap K\right)\right] \\
& \quad \geq\left(\inf _{z} \inf _{|b| \leq \eta} \rho_{b_{z}}(b)\right)^{k-1} \mathbb{E}\left[\operatorname{vol}_{n_{\mathrm{in}}-1}\left(\widetilde{S}_{z_{1}} \cap K\right)\right] .
\end{aligned}
$$

Applying the inductive hypothesis once more completes the proof.

E. Proof of Corollary 8

We will need the following observation.
Lemma 12. Fix a positive integer $n \geq 1$, and let $S \subseteq$ \mathbb{R}^{n} be a compact continuous piecewise linear submanifold with finitely many pieces. Define $S_{0}=\emptyset$ and let S_{k} be the union of the interiors of all k-dimensional pieces of $S \backslash\left(S_{0} \cup \cdots \cup S_{k-1}\right)$. Denote by $T_{\varepsilon}(X)$ the $\varepsilon-$ tubular neighborhood of any $X \subset \mathbb{R}^{n}$. We have

$$
\operatorname{vol}_{n}\left(T_{\varepsilon}(S)\right) \leq \sum_{k=0}^{n} \omega_{n-k} \varepsilon^{n-k} \operatorname{vol}_{k}\left(S_{k}\right)
$$

where $\omega_{d}:=$ volume of ball of radius 1 in \mathbb{R}^{d}.
Proof. Define d to be the maximal dimension of the linear pieces in S. Let $x \in T_{\varepsilon}(S)$. Suppose $x \notin T_{\varepsilon}\left(S_{k}\right)$ for all $k=0, \ldots, d-1$. Then the intersection of the ball of radius ε around s with S is a ball inside $S_{d} \cong U \subset \mathbb{R}^{d}$. Using the convexity of this ball, there exists a point y in S_{d} so that the vector $x-y$ is parallel to the normal vector to S_{d} at y. Hence, x belong to the normal ε-ball bundle $B_{\varepsilon}\left(N^{*}\left(S_{d}\right)\right)$ (i.e. the union of the fiber-wise ε-balls in the normal bundle to S_{d}). Therefore, we have

$$
\operatorname{vol}_{n}\left(T_{\varepsilon}(S)\right) \leq \operatorname{vol}_{n}\left(B_{\varepsilon}\left(N^{*}\left(S_{d}\right)\right)\right)+\operatorname{vol}_{n}\left(T_{\varepsilon}\left(S_{\leq d-1}\right)\right)
$$

where we abbreviated $S_{\leq d-1}:=\overline{\bigcup_{k=0}^{d-1} S_{k}}$. Using that

$$
\begin{aligned}
\operatorname{vol}_{n}\left(B_{\varepsilon}\left(N^{*}\left(S_{d}\right)\right)\right) & =\operatorname{vol}_{d}\left(S_{d}\right) \operatorname{vol}_{n-d}\left(B_{\varepsilon}\left(\mathbb{R}^{n-d}\right)\right) \\
& =\operatorname{vol}_{d}\left(S_{d}\right) \varepsilon^{n-d} \omega_{n-d}
\end{aligned}
$$

and repeating this argument $d-1$ times completes the proof.

We are now ready to prove Corollary 2, Let $x \in K=$ $[0,1]^{n_{\text {in }}}$ be uniformly chosen. Then, for any $\varepsilon>0$, using Markov's inequality and Lemma 12, we have

$$
\begin{aligned}
\mathbb{E} & {\left[\operatorname{distance}\left(x, \mathcal{B}_{\mathcal{N}}\right)\right] } \\
& \geq \varepsilon \mathbb{P}\left(\operatorname{distance}\left(x, \mathcal{B}_{\mathcal{N}}\right)>\varepsilon\right) \\
\quad & =\varepsilon\left(1-\mathbb{P}\left(\operatorname{distance}\left(x, \mathcal{B}_{\mathcal{N}}\right) \leq \varepsilon\right)\right) \\
& =\varepsilon\left(1-\mathbb{E}\left[\operatorname{vol}_{n_{\text {in }}}\left(T_{\varepsilon}\left(\mathcal{B}_{\mathcal{N}}\right)\right)\right]\right) \\
& \geq \varepsilon\left(1-\sum_{k=1}^{n_{\text {in }}} \omega_{n_{\text {in }}-k} \varepsilon^{n_{i n-k}} \mathbb{E}\left[\operatorname{vol}_{n_{\text {in }-k}}\left(\mathcal{B}_{\mathcal{N}, k}\right)\right]\right) \\
& \geq \varepsilon\left(1-\sum_{k=1}^{n_{\text {in }}}\left(C_{\text {grad }} C_{\mathrm{bias}} \varepsilon \#\{\text { neurons }\}\right)^{k}\right) \\
& \geq \varepsilon\left(1-C^{\prime} C_{\text {grad }} C_{\mathrm{bias}} \varepsilon \#\{\text { neurons }\}\right)
\end{aligned}
$$

for some $C^{\prime}>0$. Taking ε to be a small constant times $1 /\left(C_{\text {grad }} \#\{\right.$ neurons $\left.\}\right)$ completes the proof.

