
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplemental Material for the ICML Submission
’Understanding and Controlling Memory in Recurrent Neural Networks’

1. Delayed Template Matching Task
To examine the relevance of our results to other tasks, we considered a delayed template matching setup (also known as
delayed match to sample). Here instead of introducing a trigger via an extra input channel, we introduce a second stimulus.
When the second stimulus is introduced, the system is to report whether both stimuli belong to the same class or not.
At all other times, the system should report a null output. We trained both architectures on the MNIST dataset, with the
same minimal and maximal delays as the original task and an equal probability of both stimuli belonging or not belonging
to the same class. As a result of the simpler nature of the template matching task compared to the classification task,
both architectures were able to perform well without curricula training for nominal delays. We then repeated the analysis
reported in Figure 4 of the main text. Figure A demonstrates here, similarly to the original task, the predictive nature of
slow-point speeds. The faster the slow-point is, the less likely is the memory of the corresponding class to sustain for long
delays.

Figure A: Speed of slow-point and the accuracy of the corresponding class for a long delay on the delayed template
matching task. Similarly to the main text Figure 4 both architectures exhibit a clear negative correlation between slow-
point speed and the effectiveness for long delays. Note that the delayed template matching task was learn-able without any
curricula, further generalizing our findings to naive training. Ten networks for each architecture were used.

2. LSTM Branching
Performing the branching analysis of Section 7 but for the LSTM architechure instead of GRU. Just as for GRU, Figure B
shows that the details of slow-point branching affect performance. In the VoCu protocol, the introduction of new classes is
accompanied by branching of an existing slow point. The classes associated with this spawning slow point are significantly
adversely affected by this event, compared to other classes.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Understanding and Controlling Memory in Recurrent Neural Networks

Figure B: Same as main text Figure 5E but for LSTM instead of GRU. Here as well, classes which split when new classes
were spawned were more adversely affected compared to classes which did not experience a branching.

3. Regularization Figures
Results of Section 8 to all the data sets, training curricula and unit types are reported in Figure C. Following the trend of
section 8, when regularizing the speed of the center-of-mass of each class or of the appropriate slow-point superior results
were achieved for extended delays compared to when no regularization was applied (λ ≡ 0).

4. Validity of backtracking procedure during introductions of new classes in VoCu
Backtracking of slow point speeds around an event of introduction of new class reveals a spurious behavior of these speeds.
We validated that even at these training epochs the tracking follows specific slow points and does not just capture random
slow points in the hidden representation space. Fig. D depicts displacements |ξk(τi − 1) − ξk(τi + 1)| of slow points
associated with classes 1 ≤ k ≤ i back tracked along the step of introduction of a new class ci, and compares them to
distances to other slow points being tracked. It confirms that displacements of the points claimed to be tracked are indeed
systematically lower than distances from other slow points under tracking. Importantly this is also true for the slow point
ξi which is assigned to a newly introduced class.

5. Accuracies on Test and Train sets for nominal task
Accuracies on the MNIST and CIFAR-10 train and test sets for the nominal task, for both GRU and LSTM architectures
and the described curricula are reported in tables A,B,C,D.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Understanding and Controlling Memory in Recurrent Neural Networks

Figure C: Effect of speed regularization on the performance is demonstrated for all the test cases from Figure 6.

Figure D: Displacement of slow points along the training steps where new classes introduced is shown for all steps of a
VoCu training example. Newly introduced class is always at the bottom-right corner.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Understanding and Controlling Memory in Recurrent Neural Networks

Table A: MNIST - LSTM

DeCu VoCu

Training Set Null 100% 100%
Digits 97.3± 0.1% 95.2± 0.3%

Test Set Null 100% 100%
Digits 97.3± 0.1% 95.2± 0.2%

Table B: MNIST - GRU

DeCu VoCu

Training Set Null 100% 100%
Digits 97.5± 0.2% 94.3± 0.8%

Test Set Null 100% 100%
Digits 94.3± 0.8% 94.3± 0.8%

Table C: CIFAR - LSTM

DeCu VoCu

Training Set Null 100% 100%
Digits 96.8± 0.2% 97.1± 0.2%

Test Set Null 100% 100%
Digits 71.2± 0.5% 69.8± 0.8%

Table D: CIFAR - GRU

DeCu VoCu

Training Set Null 100% 100%
Digits 97.12± 0.2% 97.0± 0.7%

Test Set Null 100% 100%
Digits 72.0± 0.3% 69.8± 0.3%

	Delayed Template Matching Task
	LSTM Branching
	Regularization Figures
	Validity of backtracking procedure during introductions of new classes in VoCu
	Accuracies on Test and Train sets for nominal task

